
Published as a conference paper at ICLR 2020

SELF-LABELLING VIA SIMULTANEOUS CLUSTERING
AND REPRESENTATION LEARNING

Yuki M. Asano Christian Rupprecht Andrea Vedaldi

Visual Geometry Group
University of Oxford
{yuki,chrisr,vedaldi}@robots.ox.ac.uk

ABSTRACT

Combining clustering and representation learning is one of the most promising
approaches for unsupervised learning of deep neural networks. However, doing
so naively leads to ill posed learning problems with degenerate solutions. In this
paper, we propose a novel and principled learning formulation that addresses
these issues. The method is obtained by maximizing the information between
labels and input data indices. We show that this criterion extends standard cross-
entropy minimization to an optimal transport problem, which we solve efficiently
for millions of input images and thousands of labels using a fast variant of the
Sinkhorn-Knopp algorithm. The resulting method is able to self-label visual data
so as to train highly competitive image representations without manual labels. Our
method achieves state of the art representation learning performance for AlexNet
and ResNet-50 on SVHN, CIFAR-10, CIFAR-100 and ImageNet and yields the
first self-supervised AlexNet that outperforms the supervised Pascal VOC detection
baseline. Code and models are available1.

1 INTRODUCTION

Learning from unlabelled data can dramatically reduce the cost of deploying machine learning
algorithms to new applications, thus amplifying their impact in the real world. Self-supervision is an
increasingly popular framework for learning without labels. The idea is to define pretext learning
tasks that can be constructed from raw data alone, but that still result in neural networks that transfer
well to useful applications.

Much of the research in self-supervision has focused on designing new pretext tasks. However,
given supervised data such as ImageNet (Deng et al., 2009), the standard classification objective of
minimizing the cross-entropy loss still results in better or at least as good pre-training than any of
such methods (for a given amount of data and for a given model complexity). This suggests that
the task of classification is sufficient for pre-training networks, provided that suitable data labels
are available. In this paper, we thus focus on the problem of obtaining the labels automatically by
designing a self-labelling algorithm.

Learning a deep neural network together while discovering the data labels can be viewed as simultane-
ous clustering and representation learning. The latter can be approached by combining cross-entropy
minimization with an off-the-shelf clustering algorithm such as K-means. This is precisely the
approach adopted by the recent DeepCluster method (Caron et al., 2018), which achieves excellent
results in unsupervised representation learning. However, combining representation learning, which
is a discriminative task, with clustering is not at all trivial. In particular, we show that the combination
of cross-entropy minimization and K-means as adopted by DeepCluster cannot be described as
the optimization of an overall learning objective; instead, there exist degenerate solutions that the
algorithm avoids via particular implementation choices.

In order to address this technical shortcoming, in this paper, we contribute a new principled formula-
tion for simultaneous clustering and representation learning. The starting point is to minimize a single
loss, the cross-entropy loss, for learning the deep network and for estimating the data labels. This

1https://github.com/yukimasano/self-label

1

https://github.com/yukimasano/self-label

Published as a conference paper at ICLR 2020

is often done in semi-supervised learning and multiple instance learning. However, when applied
naively to the unsupervised case, it immediately leads to a degenerate solution where all data points
are mapped to the same cluster.

We solve this issue by adding the constraint that the labels must induce an equipartition of the data,
which we show maximizes the information between data indices and labels. We also show that the
resulting label assignment problem is the same as optimal transport, and can therefore be solved in
polynomial time by linear programming. However, since we want to scale the algorithm to millions of
data points and thousands of labels, standard transport solvers are inadequate. Thus, we also propose
to use a fast version of the Sinkhorn-Knopp algorithm for finding an approximate solution to the
transport problem efficiently at scale, using fast matrix-vector algebra.

Compared to methods such as DeepCluster, the new formulation is more principled and allows
to more easily demonstrate properties of the method such as convergence. Most importantly, via
extensive experimentation, we show that our new approach leads to significantly superior results
than DeepCluster, achieving the new state of the art for representation learning approaches. In
fact, the method’s performance surpasses others that use a single type of supervisory signal for
self-supervision, and is on par or better than very recent contributions as well (Tian et al., 2019; He
et al., 2019; Misra & van der Maaten, 2019; Oord et al., 2018).

2 RELATED WORK

Our paper relates to two broad areas of research: (a) self-supervised representation learning, and (b)
more specifically, training a deep neural network using pseudo-labels, i.e. the assignment of a label
to each image. We discuss closely related works for each.

Self-supervised learning: A wide variety of methods that do not require manual annotations have
been proposed for the self-training of deep convolutional neural networks. These methods use
various cues and proxy tasks namely, in-painting (Pathak et al., 2016), patch context and jigsaw
puzzles (Doersch et al., 2015; Noroozi & Favaro, 2016; Noroozi et al., 2018; Mundhenk et al.,
2017), clustering (Caron et al., 2018; Huang et al., 2019; Zhuang et al., 2019; Bautista et al., 2016),
noise-as-targets (Bojanowski & Joulin, 2017), colorization (Zhang et al., 2016; Larsson et al., 2017),
generation (Jenni & Favaro, 2018; Ren & Lee, 2018; Donahue et al., 2017; Donahue & Simonyan,
2019), geometry (Dosovitskiy et al., 2016), predicting transformations (Gidaris et al., 2018; Zhang
et al., 2019) and counting (Noroozi et al., 2017). Most recently, contrastive methods have shown
great performance gains, (Oord et al., 2018; Hénaff et al., 2019; Tian et al., 2019; He et al., 2019)
by leveraging augmentation and adequate losses. In (Feng et al., 2019), predicting rotation (Gidaris
et al., 2018) is combined with instance retrieval (Wu et al., 2018) and multiple tasks are combined in
(Doersch & Zisserman, 2017).

Pseudo-labels for images: In the self-supervised domain, we find a spectrum of methods that either
give each data point a unique label (Wu et al., 2018; Dosovitskiy et al., 2016) or train on a flexible
number of labels with K-means (Caron et al., 2018), with mutual information (Ji et al., 2018) or with
noise (Bojanowski & Joulin, 2017). In (Noroozi et al., 2018) a large network is trained with a pretext
task and a smaller network is trained via knowledge transfer of the clustered data. Finally, (Bach &
Harchaoui, 2008; Vo et al., 2019) use convex relaxations to regularized affine-transformation invariant
linear clustering, but can not scale to larger datasets.

Our contribution is a simple method that combines a novel pseudo-label extraction procedure from
raw data alone and the training of a deep neural network using a standard cross-entropy loss.

3 METHOD

We will first derive our self-labelling method, then interpret the method as optimizing labels and
targets of a cross-entropy loss and finally analyze similarities and differences with other clustering-
based methods.

3.1 SELF-LABELLING

Neural network pre-training is often achieved via a supervised data classification task. Formally,
consider a deep neural network x = Φ(I) mapping data I (e.g. images) to feature vectors x ∈ RD.
The model is trained using a dataset (e.g. ImageNet) of N data points I1, . . . , IN with corresponding

2

Published as a conference paper at ICLR 2020

labels y1, . . . , yN ∈ {1, . . . ,K}, drawn from a space of K possible labels. The representation is
followed by a classification head h : RD → RK , usually consisting of a single linear layer, converting
the feature vector into a vector of class scores. The class scores are mapped to class probabilities via
the softmax operator:

p(y = ·|xi) = softmax(h ◦ Φ(xi)).

The model and head parameters are learned by minimizing the average cross-entropy loss

E(p|y1, . . . , yN) = − 1

N

N∑
i=1

log p(yi|xi). (1)

Training with objective (1) requires a labelled dataset. When labels are unavailable, we require a
self-labelling mechanism to assign the labels automatically.

In semi-supervised learning, self-labelling is often achieved by jointly optimizing (1) with respect
to the model h ◦ Φ and the labels y1, . . . , yN . This can work if at least part of the labels are known,
thus constraining the optimization. However, in the fully unsupervised case, it leads to a degenerate
solution: eq. (1) is trivially minimized by assigning all data points to a single (arbitrary) label.

To address this issue, we first rewrite eq. (1) by encoding the labels as posterior distributions q(y|xi):

E(p, q) = − 1

N

N∑
i=1

K∑
y=1

q(y|xi) log p(y|xi). (2)

If we set the posterior distributions q(y|xi) = δ(y−yi) to be deterministic, the formulations in eqs. (1)
and (2) are equivalent, in the sense that E(p, q) = E(p|y1, . . . , yN). In this case, optimizing q is the
same as reassigning the labels, which leads to the degeneracy. To avoid this, we add the constraint
that the label assignments must partition the data in equally-sized subsets. Formally, the learning
objective objective2 is thus:

min
p,q

E(p, q) subject to ∀y : q(y|xi) ∈ {0, 1} and
N∑
i=1

q(y|xi) =
N

K
. (3)

The constraints mean that each data point xi is assigned to exactly one label and that, overall, the N
data points are split uniformly among the K classes.

The objective in eq. (3) is combinatorial in q and thus may appear very difficult to optimize. However,
this is an instance of the optimal transport problem, which can be solved relatively efficiently. In order
to see this more clearly, let Pyi = p(y|xi) 1

N be the K ×N matrix of joint probabilities estimated by
the model. Likewise, let Qyi = q(y|xi) 1

N be K ×N matrix of assigned joint probabilities. Using
the notation of (Cuturi, 2013), we relax matrix Q to be an element of the transportation polytope

U(r, c) := {Q ∈ RK×N+ | Q1 = r, Q>1 = c}. (4)

Here 1 are vectors of all ones of the appropriate dimensions, so that r and c are the marginal
projections of matrix Q onto its rows and columns, respectively. In our case, we require Q to be a
matrix of conditional probability distributions that split the data uniformly, which is captured by:

r =
1

K
· 1, c =

1

N
· 1.

With this notation, we can rewrite the objective function in eq. (3), up to a constant shift, as

E(p, q) + logN = 〈Q,− logP 〉, (5)

where 〈·〉 is the Frobenius dot-product between two matrices and log is applied element-wise. Hence
optimizing eq. (3) with respect to the assignments Q is equivalent to solving the problem:

min
Q∈U(r,c)

〈Q,− logP 〉. (6)

2We assume for simplicity that K divides N exactly, but the formulation is easily extended to any N ≥ K
by setting the constraints to either bN/Kc or bN/Kc+ 1, in order to assure that there is a feasible solution.

3

Published as a conference paper at ICLR 2020

This is a linear program, and can thus be solved in polynomial time. Furthermore, solving this
problem always leads to an integral solution despite having relaxed Q to the continuous polytope
U(r, c), guaranteeing the exact equivalence to the original problem.

In practice, however, the resulting linear program is large, involving millions of data points and
thousands of classes. Traditional algorithms to solve the transport problem scale badly to instances
of this size. We address this issue by adopting a fast version (Cuturi, 2013) of the Sinkhorn-Knopp
algorithm. This amounts to introducing a regularization term

min
Q∈U(r,c)

〈Q,− logP 〉+
1

λ
KL(Q‖rc>), (7)

where KL is the Kullback-Leibler divergence and rc> can be interpreted as a K ×N probability
matrix. The advantage of this regularization term is that the minimizer of eq. (7) can be written as:

Q = diag(α)Pλ diag(β) (8)

where exponentiation is meant element-wise and α and β are two vectors of scaling coefficients
chosen so that the resulting matrix Q is also a probability matrix (see (Cuturi, 2013) for a derivation).
The vectors α and β can be obtained, as shown below, via a simple matrix scaling iteration.

For very large λ, optimizing eq. (7) is of course equivalent to optimizing eq. (6), but even for
moderate values of λ the two objectives tend to have approximately the same optimizer (Cuturi,
2013). Choosing λ trades off convergence speed with closeness to the original transport problem.
In our case, using a fixed λ is appropriate as we are ultimately interested in the final clustering and
representation learning results, rather than in solving the transport problem exactly.

Our final algorithm’s core can be described as follows. We learn a model h◦Φ and a label assignment
matrix Q by solving the optimization problem eq. (6) with respect to both Q, which is a probability
matrix, and the model h ◦ Φ, which determines the predictions Pyi = softmaxy(h ◦ Φ(xi)). We do
so by alternating the following two steps:

Step 1: representation learning. Given the current label assignments Q, the model is updated by
minimizing eq. (6) with respect to (the parameters of) h ◦ Φ. This is the same as training the model
using the common cross-entropy loss for classification.

Step 2: self-labelling. Given the current model h ◦ Φ, we compute the log probabilities P . Then,
we find Q using eq. (8) by iterating the updates (Cuturi, 2013)

∀y : αy ← [Pλβ]−1y ∀i : βi ← [α>Pλ]−1i .

Each update involves a single matrix-vector multiplication with complexityO(NK), so it is relatively
quick even for millions of data points and thousands of labels and so the cost of this method scales
linearly with the number of images N . In practice, convergence is reached within 2 minutes on
ImageNet when computed on a GPU. Also, note that the parameters α and β can be retained between
steps, thus allowing a warm start of Step 2.

3.2 INTERPRETATION

As shown above, the formulation in eq. (2) uses scaled versions of the probabilities. We can interpret
these by treating the data index i as a random variable with uniform distribution p(i) = 1/N and
by rewriting the posteriors p(y|xi) = p(y|i) and q(y|xi) = q(y|i) as conditional distributions with
respect to the data index i instead of the feature vector xi. With these changes, we can rewrite eq. (5)
as

E(p, q) + logN = −
N∑
i=1

K∑
y=1

q(y, i) log p(y, i) = H(q, p), (9)

which is the cross-entropy between the joint label-index distributions q(y, i) and p(y, i). The mini-
mum of this quantity w.r.t. q is obtained when p = q, in which case E(q, q) + logN reduces to the
entropy Hq(y, i) of the random variables y and i. Additionally, since we assumed that q(i) = 1/N ,
the marginal entropy Hq(i) = logN is constant and, due to the equipartition condition q(y) = 1/K,
Hq(y) = logK is also constant. Subtracting these two constants from the entropy yields:

min
p
E(p, q)+logN = E(q, q)+logN = Hq(y, i) = Hq(y)+Hq(i)−Iq(y, i) = const.−Iq(y, i).

4

Published as a conference paper at ICLR 2020

Thus we see that minimizing E(p, q) is the same as maximizing the mutual information between the
label y and the data index i.

In our formulation, the maximization above is carried out under the equipartition constraint. We can
instead relax this constraint and directly maximize the information I(y, i). However, by rewriting
information as the difference I(y, i) = H(y)−H(y|i), we see that the optimal solution is given by
H(y|i) = 0, which states each data point i is associated to only one label deterministically, and by
H(y) = lnK, which is another way of stating the equipartition condition.

In other words, our learning formulation can be interpreted as maximizing the information between
data indices and labels while explicitly enforcing the equipartition condition, which is implied by
maximizing the information in any case. Compared to minimizing the entropy alone, maximizing
information avoids degenerate solutions as the latter carry no mutual information between labels y
and indices i. Similar considerations can be found in (Ji et al., 2018).

3.3 RELATION TO SIMULTANEOUS REPRESENTATION LEARNING AND CLUSTERING

In the discussion above, self-labelling amounts to assigning discrete labels to data and can thus be
interpreted as clustering. Most of the traditional clustering approaches are generative. For example,
K-means takes a dataset x1, . . . ,xN of vectors and partitions it into K classes in order to minimize
the reconstruction error

E(µ1, . . . ,µK , y1, . . . , yN) =
1

N

N∑
i=1

‖xi − µyi‖2 (10)

where yi ∈ {1, . . . ,K} are the data-to-cluster assignments and µy are means approximating the
vectors in the corresponding clusters. The K-means energy can thus be interpreted as the average
data reconstruction error.

It is natural to ask whether a clustering method such as K-means, which is based on approximating
the input data, could be combined with representation learning, which uses a discriminative objective.
In this setting, the feature vectors x = Φ(I) are extracted by the neural network Φ from the input data
I . Unfortunately, optimizing a loss such as eq. (10) with respect to the clustering and representation
parameters is meaningless: in fact, the obvious solution is to let the representation send all the data
points to the same constant feature vector and setting all the means to coincide with it, in which case
the K-means reconstruction error is zero (and thus minimal).

Nevertheless, DeepCluster (Caron et al., 2018) does successfully combine K-means with represen-
tation learning. DeepCluster can be related to our approach as follows. Step 1 of the algorithm,
namely representation learning via cross-entropy minimization, is exactly the same. Step 2, namely
self-labelling, differs: where we solve an optimal transport problem to obtain the pseudo-labels, they
do so by running K-means on the feature vectors extracted by the neural network.

DeepCluster does have an obvious degenerate solution: we can assign all data points to the same
label and learn a constant representation, achieving simultaneously a minimum of the cross-entropy
loss in Step 1 and of the K-means loss in Step 2. The reason why DeepCluster avoids this pitfall is
due to the particular interaction between the two steps. First, during Step 2, the features xi are fixed
so K-means cannot pull them together. Instead, the means spread to cover the features as they are,
resulting in a balanced partitioning. Second, during the classification step, the cluster assignments yi
are fixed, and optimizing the features xi with respect to the cross-entropy loss tends to separate them.
Lastly, the method in (Caron et al., 2018) also uses other heuristics such as sampling the training data
inversely to their associated clusters’ size, leading to further regularization.

However, a downside of DeepCluster is that it does not have a single, well-defined objective to
optimize, which means that it is difficult to characterize its convergence properties. By contrast, in our
formulation, both Step 1 and Step 2 optimize the same objective, with the advantage that convergence
to a (local) optimum is guaranteed.

3.4 AUGMENTING SELF-LABELLING VIA DATA TRANSFORMATIONS

Methods such as DeepCluster extend the training data via augmentations. In vision problems, this
amounts to (heavily) distorting and cropping the input images at random. Augmentations are applied
so that the neural network is encouraged to learn a labelling function which is transformation invariant.

5

Published as a conference paper at ICLR 2020

In practice, this is crucial to learn good clusters and representations, so we adopt it here. This is
achieved by setting Pyi = Et[log softmaxy h ◦ Φ(txi)] where the transformations t are sampled at
random. In practice, in Step 1 (representation learning), this is implemented via the application of the
random transformations to data batches during optimization via SGD, which is corresponds to the
usual data augmentation scheme for deep neural networks. As noted in (YM. et al., 2020), and as can
be noted by an analysis of recent publications (Hénaff et al., 2019; Tian et al., 2019; Misra & van der
Maaten, 2019), augmentation is critical for good performance.

3.5 MULTIPLE SIMULTANEOUS SELF-LABELINGS

Intuitively, the same data can often be clustered in many equally good ways. For example, visual
objects can be clustered by color, size, typology, viewpoint, and many other attributes. Since our
main objective is to use clustering to learn a good data representation Φ, we consider a multi-task
setting in which the same representation is shared among several different clustering tasks, which can
potentially capture different and complementary clustering axis.

In our formulation, this is easily achieved by considering multiple heads (Ji et al., 2018) h1, . . . , hT ,
one for each of T clustering tasks (which may also have a different number of labels). Then, we
optimize a sum of objective functions of the type eq. (6), one for each task, while sharing the
parameters of the feature extractor Φ among them.

4 EXPERIMENTS

In this section, we evaluate the quality of the representations learned by our Self Labelling (SeLa)
technique. We first test variants of our method, including ablating its components, in order to find
an optimal configuration. Then, we compare our results to the state of the art in self-supervised
representation learning, where we find that our method is the best among clustering-based techniques
and overall state-of-the-art or at least highly competitive in many benchmarks. In the appendix, we
also show qualitatively that the labels identified by our algorithm are usually meaningful and group
visually similar concepts in the same clusters, often even capturing whole ImageNet classes.

4.1 SETUP

Linear probes. In order to quantify if a neural network has learned useful feature representations,
we follow the standard approach of using linear probes (Zhang et al., 2017). This amounts to solving
a difficult task, such as ImageNet classification, by training a linear classifier on top of a pre-trained
feature representation, which is kept fixed. Linear classifiers heavily rely on the quality of the
representation since their discriminative power is low. We apply linear probes to all intermediate
convolutional blocks of representative networks. While linear probes are conceptually straightforward,
there are several technical details that can affect the final accuracy, so we follow the standard protocol
further outlined in the Appendix.

Data. For training data we consider ImageNet LSVRC-12 (Deng et al., 2009) and other smaller
scale datasets. We also test our features by transferring them to MIT Places (Zhou et al., 2014). All
of these are standard benchmarks for evaluation in self-supervised learning.

Architectures. Our base encoder architecture is AlexNet (Krizhevsky et al., 2012), since this is the
most frequently used in other self-supervised learning works for the purpose of benchmarking. We
inject the probes right after the ReLU layer in each of the five blocks, and denote these entry points
conv1 to conv5. Furthermore, since the conv1 and conv2 can be learned effectively from data
augmentations alone (YM. et al., 2020), we focus the analysis on the deeper layers conv2 to conv5
which are more sensitive to the quality of the learning algorithm. In addition to AlexNet, we also test
ResNet-50 (He et al., 2016) models. Further experimental details are given in the Appendix.

4.2 OPTIMAL CONFIGURATION AND ABLATIONS

In tables 1 and 5, we first validate various modelling and configuration choices. Two key hyper-
parameters are the number of clusters K and the number of clustering heads T , which we denote in
the experiments below with the shorthand “SeLa[K × T]”. We run SeLa by alternating steps 1 and 2
as described in section 3.1. Step 1 amounts to standard CE training, which we run for a fixed number
of epochs. Step 2 can be interleaved at any point in the optimization; to amortize its cost, we run it

6

Published as a conference paper at ICLR 2020

Table 1: Ablation: number of
self-labelling steps.
Method #opt. c3 c4 c5

SeLa [3k× 1] 0 20.8 18.3 13.4
SeLa [3k× 1] 40 42.7 43.4 39.2
SeLa [3k× 1] 80 43.0 44.7 40.9
SeLa [3k× 1] 160 42.4 44.6 40.7

Table 2: Number of clusters
K.

Method c3 c4 c5

SeLa [1k× 1] 40.1 42.1 38.8
SeLa [3k× 1] 43.0 44.7 40.9
SeLa [5k× 1] 42.5 43.9 40.2
SeLa [10k× 1] 42.2 43.8 39.7

Table 3: Ablation: number of
heads T . (c4 for AlexNet)
Method Architecture Top-1

SeLa [3k× 1] AlexNet 44.7
SeLa [3k× 10] AlexNet 46.7

SeLa [3k× 1] ResNet-50 51.8
SeLa [3k× 10] ResNet-50 61.5

Table 4: Different architectures.
Method Architecture Top-1

SeLa [3k× 1] AlexNet (small) 41.3
SeLa [3k× 1] AlexNet 44.7
SeLa [3k× 1] ResNet-50 51.8

Table 5: Label transfer.
Method Source (Top-1) Target (Top-1)

SeLa [3k× 10] AlexNet (46.7) AlexNet (46.5)

SeLa [3k× 1] ResNet-50 (51.8) AlexNet (45.0)
SeLa [3k× 10] ResNet-50 (61.5) AlexNet (48.4)

at most once per epoch, and usually less, with a schedule described and validated below. For these
experiments, we train the representation and the linear probes on ImageNet.

Number of clusters K. Table 2, compares different values for K: moving from 1k to 3k improves
the results, but larger numbers decrease the quality slightly.

Ablation: number of heads T . Table 3 shows that increasing the number of heads from T = 1 to
T = 10 yields a large performance gain: +2% for AlexNet and +10% for ResNet. The latter more
expressive model appears to benefit more from a more diverse training signal.

Ablation: number of self-labelling iterations. First, in table 1, we show that self-labelling (step 2)
is essential for good performance, as opposed to only relying on the initial random label assignments
and the data augmentations. For this, we vary the number of times the self-labelling algorithm (step
2) is run during training (#opts), from zero to once per step 1 epoch. We see that self-labelling is
essential, with the best value around 80 (for 160 step 1 epochs in total).

Architectures. Table 4 compares a smaller variant of AlexNet which uses (64, 192) filters in its
first two convolutional layers (Krizhevsky, 2014), to the standard variant with (96, 256) (Krizhevsky
et al., 2012), all the way to a ResNet-50. SeLa works well in all cases, for large models such as
ResNet but also smaller ones such as AlexNet, for which methods such as BigBiGAN (Donahue &
Simonyan, 2019) or CPC (Hénaff et al., 2019) are unsuitable.

4.3 LABEL TRANSFER

An appealing property of SeLa is that the label it assigns to the images can be used to train another
model from scratch, using standard supervised training. For instance, table 5 shows that, given the
labels assigned by applying SeLa to AlexNet, we can re-train AlexNet from scratch using a shorter
90-epochs schedule with achieving the same final accuracy. This shows that the quality of the learned
representation depends only the final label assignment, not on the fact that the representation is learned
jointly with the labels. More interestingly, we can transfer labels between different architectures. For
example, the labels obtained by applying SeLa [3k× 1] and SeLa [3k× 10] to ResNet-50 can be used
to train a better AlexNet model than applying SeLa to the latter directly. For this reason, we publish
on our website the self-labels for the ImageNet dataset in addition to the code and trained models.

4.4 SMALL-SCALE DATASETS

Here, we evaluate our method on relatively simple and small datasets, namely
CIFAR-10/100 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011). For this, we fol-
low the experimental and evaluation protocol from the current state of the art in self-supervised
learning in these datasets, AND (Huang et al., 2019). In table 6, we compare our method with the
settings [128 × 10] for CIFAR-10, [512 × 10] for CIFAR-100 and [128 × 1] for SVHN to other
published methods; details on the evaluation method are provided in the appendix. We observe that
our proposed method outperforms the best previous method by 5.8% for CIFAR-10, by 9.5% for
CIFAR-100 and by 0.8% for SVHN when training a linear classifier on top of the frozen network.
The relatively minor gains on SVHN can be explained by the fact that the gap between the supervised

7

Published as a conference paper at ICLR 2020

Table 6: Nearest Neighbour and linear classification
evaluation on small datasets using AlexNet. Results
of previous methods are taken from (Huang et al.,
2019).

Dataset
Method CIFAR-10 CIFAR-100 SVHN

Classifier/Feature Linear Classifier / conv5
Supervised 91.8 71.0 96.1
Counting 50.9 18.2 63.4
DeepCluster 77.9 41.9 92.0
Instance 70.1 39.4 89.3
AND 77.6 47.9 93.7

SL 83.4 57.4 94.5

Classifier/Feature Weighted kNN / FC
Supervised 91.9 69.7 96.5
Counting 41.7 15.9 43.4
DeepCluster 62.3 22.7 84.9
Instance 60.3 32.7 79.8
AND 74.8 41.5 90.9

SL 77.6 44.2 92.8

Table 7: PASCAL VOC finetun-
ing. VOC07-Classification %mAP,
VOC07-Detection %mAP and VOC12-
Segmentation %mIU. ∗ denotes a larger
AlexNet variant.

PASCAL VOC Task
Method Cls. Det. Seg.

fc6-8 all all all

ImageNet labels 78.9 79.9 59.1 48.0
Random − 53.3 43.4 −
Random Rescaled − 56.6 45.6 32.6

BiGAN 52.3 60.1 46.9 35.2
Context∗ 55.1 65.3 51.1 −
Context 2 − 69.6 55.8 41.4
CC+VGG − 72.5 56.5 42.6
RotNet 70.9 73.0 54.4 39.1
DeepCluster∗ 72.0 73.4 55.4 45.1
RotNet+retrieval∗ 72.5 74.7 58.0 45.9

SeLa∗ [3k× 10] 73.1 75.3 55.9 43.7
SeLa∗ [3k× 10]− 74.4 75.9 57.8 44.7
SeLa∗ [3k× 10]−+Rot 75.6 77.2 59.2 45.7

Table 8: Nearest Neighbour and linear classification evaluation using imbalanced CIFAR-10 training
data. We evaluate on the normal CIFAR-10 test set and on CIFAR-100 to analyze the transferability
of the features. Difference to the supervised baseline in parentheses. See section 4.5 for details.

kNN Linear/conv5

Training data/Method CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

CIFAR-10, full
Supervised 92.1 24.0 90.2 54.2
ours (K-means) [128× 1] 64.7 (−17.4) 19.3 (−4.7) 77.5 (−12.7) 45.6 (−8.8)
ours (SK) [128× 1] 72.9 (−9.2) 28.9 (+4.9) 79.8 (−9.4) 49.4 (−4.8)

CIFAR-10, light imbalance
Supervised 92.0 24.0 90.4 53.6
ours (K-means) [128× 1] 64.2 (−17.8) 18.1 (−5.9) 77.0 (−13.4) 44.8 (−8.8)
ours (SK) [128× 1] 71.7 (−10.3) 28.2 (+4.2) 79.5 (−10.9) 48.6 (−5.0)

CIFAR-10, heavy imbalance
Supervised 86.7 22.6 86.8 51.4
ours (K-means) [128× 1] 60.7 (−16.0) 17.8 (−4.8) 75.2 (−11.6) 44.3 (−7.1)
ours (SK) [128× 1] 67.6 (−9.1) 26.7 (+3.9) 77.2 (−9.6) 47.5 (−2.9)

baseline and the self-supervised results is already very small (<3%). We also evaluate our method
using weighted kNN using an embedding of size 128. We find that the proposed method consistently
outperforms the previous state of the art by around 2% across these datasets, even though AND is
based on explicitly learning local neighbourhoods.

4.5 IMBALANCED DATA EXPERIMENTS

In order to understand if our equipartition regularization is affected by the underlying class distribution
of a dataset, we perform multiple ablation experiments on artificially imbalanced datasets in table 8.
We consider three training datasets based on CIFAR-10. The first is the original dataset with 5000
images for each class (full in table 8). Second, we remove 50% of the images of one class (truck) while
the rest remains untouched (light imbalance) and finally we remove 10% of one class, 20% of the
second class and so on (heavy imbalance). On each of the three datasets we compare the performance
of our method “ours (SK)” with a baseline that replaces our Sinkhorn-Knopp optimization with
K-means clustering “ours (K-means)”. We also compare the performance to training a network
under full supervision. The evaluation follows Huang et al. (2019) and is based on linear probing and
kNN classification — both on CIFAR-10 and, to understand feature generalization, on CIFAR-100.

8

Published as a conference paper at ICLR 2020

Table 9: Linear probing evaluation – AlexNet. A linear classifier is trained on the (downsampled)
activations of each layer in the pretrained model. We bold the best result in each layer and underline
the second best. The best layer is highlighted in blue. ∗ denotes a larger AlexNet variant. − refers to
AlexNets trained with self-label transfer from a corresponding ResNet-50. "+Rot" refers to retraining
using labels and an additional RotNet loss, "+ more aug." includes further augmentation during
retraining. See Table A.2 in the Appendix for a full version of this table and details.

ILSVRC-12 Places
Method c1 c2 c3 c4 c5 c1 c2 c3 c4 c5

ImageNet supervised, (Zhang et al., 2017) 19.3 36.3 44.2 48.3 50.5 22.7 34.8 38.4 39.4 38.7
Places supervised, (Zhang et al., 2017) - - - - - 22.1 35.1 40.2 43.3 44.6
Random, (Zhang et al., 2017) 11.6 17.1 16.9 16.3 14.1 15.7 20.3 19.8 19.1 17.5

Inpainting, (Pathak et al., 2016) 14.1 20.7 21.0 19.8 15.5 18.2 23.2 23.4 21.9 18.4
BiGAN, (Donahue et al., 2017) 17.7 24.5 31.0 29.9 28.0 22.0 28.7 31.8 31.3 29.7

1-
cr

op
ev

al
ua

tio
n Instance retrieval, (Wu et al., 2018) 16.8 26.5 31.8 34.1 35.6 18.8 24.3 31.9 34.5 33.6

RotNet, (Gidaris et al., 2018) 18.8 31.7 38.7 38.2 36.5 21.5 31.0 35.1 34.6 33.7
AND∗,(Huang et al., 2019) 15.6 27.0 35.9 39.7 37.9 - - - - -
CMC∗,(Tian et al., 2019) 18.4 33.5 38.1 40.4 42.6 - - - - -
AET∗,(Zhang et al., 2019) 19.3 35.4 44.0 43.6 42.4 22.1 32.9 37.1 36.2 34.7
RotNet+retrieval∗, (Feng et al., 2019) 20.8 35.2 41.8 44.3 44.4 24.0 33.8 37.5 39.3 38.9

SeLa [3k× 10]∗ 20.3 32.2 38.6 41.4 39.6 24.5 31.9 36.7 38.0 37.0
SeLa [3k× 10]−+Rot∗ 20.6 32.3 40.4 43.1 42.3 24.0 31.7 37.1 39.0 37.6
SeLa [3k× 10]−+Rot∗+more aug. 19.2 32.6 40.8 44.4 44.7 21.1 30.4 36.5 37.9 37.3

10
-c

ro
p

ev
al

ua
tio

n ImageNet supervised∗ 21.6 37.2 46.9 52.9 54.4 22.6 33.2 39.0 41.3 39.7

DeepCluster∗, (Caron et al., 2018) 13.4 32.3 41.0 39.6 38.2 23.8 32.8 37.3 36.0 31.0
Local Agg.∗, (Zhuang et al., 2019) 18.7 32.7 38.1 42.3 42.4 18.7 32.7 38.2 40.3 39.5
RotNet+retrieval∗, (Feng et al., 2019) 22.2 38.2 45.7 48.7 48.3 25.5 36.0 40.1 42.2 41.3

SeLa [3k× 10]∗ 22.5 37.4 44.7 47.1 44.1 26.7 34.9 39.9 41.8 39.7
SeLa [3k× 10]−+Rot∗ 22.8 37.8 46.7 49.7 48.4 26.8 35.5 41.0 43.0 41.3
SeLa [3k× 10]−+Rot∗+more aug. 21.9 37.1 46.0 50.0 50.0 23.4 33.0 39.4 41.4 39.9

To our surprise, we find that our method generalizes better to CIFAR-100 than the supervised baseline
during kNN evaluation, potentially due to overfitting when training with labels. We also find that
using SK optmization for obtaining pseudo-labels is always better than K-means on all metrics and
datasets. When comparing the imbalance settings, we find that under the light imbalance scenario,
the methods’ performances are ranked the same and no method is strongly affected by the imbalance.
Under the heavy imbalance scenario, all methods drop in performance. However, compared to full
data and light imbalance, the gap between supervised and self-supervised even decreases slightly for
both K-means and our method, indicating stronger robustness of self-supervised methods compared
to a supervised one.

In conclusion, our proposed method does not rely on the data to contain the same number of images
for every class and outperforms a K-means baseline even in very strong imbalance settings. This
confirms the intuition that the equipartioning constraint acts as a regularizer and does not exploit the
class distribution of the dataset.

4.6 LARGE SCALE BENCHMARKS

To compare to the state of the art and concurrent work, we evaluate several architectures using linear
probes on public benchmark datasets.

AlexNet. The main benchmark for feature learning methods is linear probing of an AlexNet trained
on ImageNet. In table 9 we compare the performance across layers also on the Places dataset. We
find that across both datasets our method outperforms DeepCluster and local Aggregation at every
layer. From our ablation studies in tables 1-5 we also note that even our single head variant [3k× 1]
outperforms both methods. Given that our method provides labels for a dataset that can be used for
retraining a network quickly, we find that we can improve upon this initial performance. And by
adopting a hybrid approach, similar to (Feng et al., 2019), of training an AlexNet with 10 heads and
one additional head for computing the RotNet loss, we find further improvement. This result (SeLa

9

Published as a conference paper at ICLR 2020

Table 10: Linear evaluation - ResNet. A linear layer is trained on top of the global average pooled
features of ResNets. All evaluations use a single centred crop. We have separated much larger
architectures such as RevNet-50×4 and ResNet-161. Methods in brackets use a augmentation
policy learned from supervised training and methods with ∗ are not explicit about which further
augmentations they use. See Table A.3 in the Appendix for a full version of this table.

Method Architecture Top-1 Top-5

Supervised, (Donahue & Simonyan, 2019) ResNet-50 76.3 93.1

Jigsaw, (Kolesnikov et al., 2019) ResNet-50 38.4 −
Rotation, (Kolesnikov et al., 2019) ResNet-50 43.8 −
CPC, (Oord et al., 2018) ResNet-101 48.7 73.6
BigBiGAN, (Donahue & Simonyan, 2019) ResNet-50 55.4 77.4
LocalAggregation, (Zhuang et al., 2019) ResNet-50 60.2 −
Efficient CPC v2.1, (Hénaff et al., 2019) ResNet-50 (63.8) (85.3)
CMC, (Tian et al., 2019) ResNet-50 (64.1) (85.4)
MoCo, (He et al., 2019) ResNet-50 60.6 −
PIRL, (Misra & van der Maaten, 2019)∗ ResNet-50 63.6 −
SeLa [3k× 10] ResNet-50 61.5 84.0

other architectures
MoCo, (He et al., 2019) RevNet-50×4 68.6 −
Efficient CPC v2.1, (Hénaff et al., 2019) ResNet-161 71.5 90.1

[3k× 10]−+Rot) achieves state of the art in unsupervised representation learning for AlexNet, with
a gap of 1.3% to the previous best performance on ImageNet and surpasses the ImageNet supervised
baseline transferred to Places by 1.7%.

ResNet. Training better models than AlexNets is not yet standardized in the feature learning
community. In Table 10 we compare a ResNet-50 trained with our method to other works. With top-1
accuracy of 61.5, we outperform than all other methods including Local Aggregation, CPCv1 and
MoCo that use the same level of data augmentation. We even outperform larger architectures such as
BigBiGAN’s RevNet-50x4 and reach close to the performance of models using AutoAugment-style
transformations.

4.7 FINE-TUNING: CLASSIFICATION, OBJECT DETECTION AND SEMANTIC SEGMENTATION

Finally, since pre-training is usually aimed at improving down-stream tasks, we evaluate the quality of
the learned features by fine-tuning the model for three distinct tasks on the PASCAL VOC benchmark.
In Table 7 we compare results with regard to multi-label classification, object detection and semantic
segmentation on PASCAL VOC (Everingham et al., 2010).

As in the linear probe experiments, we find our method better than the current state of the art in
detection and classification with both fine-tuning only the last fully connected layers and when
fine-tuning the whole network (“all”. Notably, our fine-tuned AlexNet outperforms its supervised
ImageNet baseline on the VOC detection task. Also for segmentation the method is very close (0.2%)
to the best performing method. This shows that our trained network does not only learn useful feature
representations but is also able to perform well when fine-tuned on actual down-stream tasks.

5 CONCLUSION

We present a self-supervised feature learning method that is based on clustering. In contrast to other
methods, ours optimizes the same objective during feature learning and during clustering. This
becomes possible through a weak assumption that the number of samples should be equal across
clusters. This constraint is explicitly encoded in the label assignment step and can be solved for
efficiently using a modified Sinkhorn-Knopp algorithm. Our method outperforms all other feature
learning approaches and achieves SOTA on SVHN, CIFAR-10/100 and ImageNet for AlexNet and
ResNet-50. By virtue of the method, the resulting self-labels can be used to quickly learn features for
new architectures using simple cross-entropy training.

10

Published as a conference paper at ICLR 2020

ACKNOWLEDGMENTS

Yuki Asano gratefully acknowledges support from the EPSRC Centre for Doctoral Training in
Autonomous Intelligent Machines & Systems (EP/L015897/1). We are also grateful to ERC IDIU-
638009, AWS Machine Learning Research Awards (MLRA) and the use of the University of Oxford
Advanced Research Computing (ARC).

REFERENCES

Francis R. Bach and Zaïd Harchaoui. Diffrac: a discriminative and flexible framework for clustering.
In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (eds.), Advances in Neural Information
Processing Systems 20, pp. 49–56. Curran Associates, Inc., 2008. 2

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. arXiv preprint arXiv:1906.00910, 2019. 18

Miguel A Bautista, Artsiom Sanakoyeu, Ekaterina Tikhoncheva, and Björn Ommer. Cliquecnn:
Deep unsupervised exemplar learning. In Proceedings of the Conference on Advances in Neural
Information Processing Systems (NIPS), pp. 3846–3854, 2016. 2

Piotr Bojanowski and Armand Joulin. Unsupervised learning by predicting noise. In Proc. ICML, pp.
517–526. PMLR, 2017. 2

M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of
visual features. In Proc. ECCV, 2018. 1, 2, 5, 9, 14, 15, 16, 17

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
neural information processing systems, pp. 2292–2300, 2013. 3, 4, 14

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proc. CVPR, 2009. 1, 6

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In Proc. ICCV,
2017. 2, 18

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proc. ICCV, pp. 1422–1430, 2015. 2, 17

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning, 2019. 2, 7, 10,
18

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. Proc. ICLR,
2017. 2, 9, 17

A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsuper-
vised feature learning with exemplar convolutional neural networks. IEEE PAMI, 38(9):1734–1747,
Sept 2016. ISSN 0162-8828. doi: 10.1109/TPAMI.2015.2496141. 2

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010. 10

Zeyu Feng, Chang Xu, and Dacheng Tao. Self-supervised representation learning by rotation feature
decoupling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 10364–10374, 2019. 2, 9, 17

Spyros Gidaris, Praveen Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In Proc. ICLR, 2018. 2, 9, 17

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016. 6

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2019. 2, 10, 18

11

Published as a conference paper at ICLR 2020

Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient
image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272v2, 2019. 2,
6, 7, 10, 18

Jiabo Huang, Q Dong, Shaogang Gong, and Xiatian Zhu. Unsupervised deep learning by neighbour-
hood discovery. In Proceedings of the International Conference on machine learning (ICML),
2019. 2, 7, 8, 9, 14, 17

Simon Jenni and Paolo Favaro. Self-supervised feature learning by learning to spot artifacts. In Proc.
CVPR, 2018. 2, 17

Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information distillation for unsupervised
image segmentation and clustering. arXiv preprint arXiv:1807.06653, 2018. 2, 5, 6

Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual representa-
tion learning. arXiv preprint arXiv:1901.09005, 2019. 10, 18

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In NIPS, pp. 1106–1114, 2012. 6, 7

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014. 7

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009. 7

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Colorization as a proxy task for visual
understanding. In Proc. CVPR, 2017. 2

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations,
2019. 2, 6, 10, 18

T Mundhenk, Daniel Ho, and Barry Y. Chen. Improvements to context based self-supervised learning.
In Proc. CVPR, 2017. 2

T. Nathan Mundhenk, Daniel Ho, and Barry Y. Chen. Improvements to context based self-supervised
learning. pp. 9339–9348, 2018. 17

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Ng. Reading
digits in natural images with unsupervised feature learning. NIPS, 01 2011. 7

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In Proc. ECCV, pp. 69–84. Springer, 2016. 2, 17

Mehdi Noroozi, Hamed Pirsiavash, and Paolo Favaro. Representation learning by learning to count.
In Proc. ICCV, 2017. 2, 17

Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed Pirsiavash. Boosting self-supervised
learning via knowledge transfer. In Proc. CVPR, 2018. 2, 17

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018. 2, 10, 18

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proc. CVPR, pp. 2536–2544, 2016. 2, 9, 17

Zhongzheng Ren and Yong Jae Lee. Cross-domain self-supervised multi-task feature learning using
synthetic imagery. In Proc. CVPR, 2018. 2

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding, 2019. 2, 6, 9, 10, 17,
18

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal of Machine
Learning Research, 11(Oct):2837–2854, 2010. 14

12

Published as a conference paper at ICLR 2020

Huy V Vo, Francis Bach, Minsu Cho, Kai Han, Yann LeCun, Patrick Pérez, and Jean Ponce.
Unsupervised image matching and object discovery as optimization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8287–8296, 2019. 2

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3733–3742, 2018. 2, 9, 14, 17

Asano YM., Rupprecht C., and Vedaldi A. A critical analysis of self-supervision, or what we can
learn from a single image. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=B1esx6EYvr. 6

Liheng Zhang, Guo-Jun Qi, Liqiang Wang, and Jiebo Luo. Aet vs. aed: Unsupervised representation
learning by auto-encoding transformations rather than data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2547–2555, 2019. 2, 9, 17

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In Proc. ECCV, pp.
649–666. Springer, 2016. 2, 17

Richard Zhang, Phillip Isola, and Alexei A. Efros. Split-brain autoencoders: Unsupervised learning
by cross-channel prediction. In Proc. CVPR, 2017. 6, 9, 14, 17

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep
features for scene recognition using places database. In Advances in neural information processing
systems, pp. 487–495, 2014. 6

Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised learning of
visual embeddings. In Proceedings of the IEEE International Conference on Computer Vision, pp.
6002–6012, 2019. 2, 9, 10, 17, 18

13

https://openreview.net/forum?id=B1esx6EYvr

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Learning Details Unless otherwise noted, we train all our self-supervised models with SGD and
intial learning rate 0.05 for 400 epochs with two learning rate drops where we divide the rate
by ten at 150 and 300 and 350 epochs. We spread our pseudo-label optimizations throughout
the whole training process in a logarithmic distribution. We optimize the label assignment at

ti =
(

i
M−1

)2
, i ∈ {1, . . . ,M}, where M is the user-defined number of optimizations and ti is

expressed as a fraction of total training epochs. For the Sinkhorn-Knopp optimization we set λ = 25
as in (Cuturi, 2013). We use standard data augmentations during training that consist of randomly
resized crops, horizontal flipping and adding noise, as in (Wu et al., 2018).

Quantitative Evaluation – Technical Details. Unfortunately, prior work has used several slightly
different setups, so that comparing results between different publications must be done with caution.

In our ImageNet implementation, we follow the original proposal (Zhang et al., 2017) in pooling
each representation to a vector with 9600, 9216, 9600, 9600, 9216 dimensions for conv1-5 using
adaptive max-pooling, and absorb the batch normalization weights into the preceding convolutions.
For evaluation on ImageNet we follow RotNet to train linear probes: images are resized such that
the shorter edge has a length of 256 pixels, random crops of 224×224 are computed and flipped
horizontally with 50% probability. Learning lasts for 36 epochs and the learning rate schedule
starts from 0.01 and is divided by five at epochs 5, 15 and 25. The top-1 accuracy of the linear
classifier is then measured on the ImageNet validation subset by optionally extracting 10 crops for
each validation image (four at the corners and one at the center along with their horizontal flips)
and averaging the prediction scores before the accuracy is computed or just taking the a centred
crop. For CIFAR-10/100 and SVHN we train AlexNet architectures on the resized images with
batchsize 128, learning rate 0.03 and also the same image augmentations (random resized crops,
color jitter and random grayscale) as is used in prior work (Huang et al., 2019). We use the same
linear probing protocol as for our ImageNet experiments but without using 10 crops. For the weighted
kNN experiments we use k = 50, σ = 0.1 and we use an embedding of size 128 as done in previous
works.

In Table 9, when retraining an AlexNet using ResNet generated labels, we can apply heavier
augmentation strategies as the labels are kept constant. Hence for the experiments denoted by "+
more aug.", in addition to the usual augmentations, we further randomly apply one of equalize,
autoconstrast and sharpening. We find that this raises the performance for ImageNet but lowers
the performance on Places by a small amount, hence illuminating the need to always also report
performance on both datasets.

A.2 FURTHER DETAILS

NMI over time In fig. A.1 we find that most learning takes place in the early epochs, and we reach
a final NMI value of around 66%. Similarly, we find that due to the updating of the pseudo-labels at
regular intervals and our data augmentation, the pseudo-label accuracies keep continuously rising
without overfitting to these labels.

Clustering metrics In table A.1, we report standard clustering metrics (see (Vinh et al., 2010)
for detailed definitions) of our trained models with regards to the ImageNet validation set ground-
truth labels. These metrics include chance-corrected metrics which are the adjusted normalized
mutual information (NMI) and the adjusted Rand-Index, as well as the default NMI, also reported in
DeepCluster (Caron et al., 2018).

Conv1 filters In fig. A.3 we show the first convolutional filters of two of our trained models. We
can find the typical Gabor-like edge detectors as well as color blops and dot-detectors.

Entropy over time In fig. A.4, we show how the distribution of entropy with regards to the true
ImageNet labels changes with training time. We find that while at first, all 3000 pseudo-labels contain
random real ImageNet labels, yielding high entropy of around 6 ≈ ln(400) = ln(1.2 · 106/3000).
Towards the end of training we arrive at a broad spectrum of entropies with some as low as

14

Published as a conference paper at ICLR 2020

0 100 200 300 400
epochs

0.5

0.6

0.7

0.8

0.9

NM
I t

-1
 /

t

Figure A.1: Left: Normalized Mutual Information (NMI) against validation set ImageNet labels.
This measure is not used for training but indicates how good a clustering is. Right: Similarities of
consecutive labellings using NMI. Both plots use the [10k× 1] AlexNet for comparability with the
DeepCluster paper (Caron et al., 2018).

Table A.1: Clustering metrics that compare with ground-truth labels of the ImageNet validation set
(with 1-crop). For reference, we provide the best Top-1 error on ImageNet linear probing (as reported
in the main part).∗: for the multi-head variants, we simply use predictions of a randomly picked,
single head.

Metrics
adjusted

Variant NMI adjusted NMI Rand-Index Top-1 Acc.

SeLa [1k× 1] AlexNet 50.5% 12.2% 2.7% 42.1%
SeLa [3k× 1] AlexNet 59.1% 9.8% 2.5% 44.7%
SeLa [5k× 1] AlexNet 66.2% 7.4% 1.8% 43.9%
SeLa [10k× 1] AlexNet 66.4% 4.7% 1.0% 43.8%
SeLa [3k× 1] ResNet-50 60.0% 13.5% 3.8% 51.8%
SeLa [3k× 10]∗ ResNet-50 66.3% 26.4% 10.3% 61.5%

Figure A.2: Pseudo-label accuracies for the training data versus training time for the [10k × 1]
AlexNet.

Figure A.3: Visualization of the first convolutional layers of our [3k × 10] AlexNet (left) and the
[1k× 1] ResNet-50 (right). The filters are scaled to lie between (0,1) for visualization.

0.07 ≈ ln(1.07) (see Fig. A.5 and A.6 for low entropy label visualizations) and the mean around
4.2 ≈ ln(66) (see Fig. A.7 and A.8 for randomly chosen labels’ visualizations).

15

Published as a conference paper at ICLR 2020

0123456
Entropy

0.0

0.5

1.0

1.5

2.0

2.5

3.0
start
during
after training

Figure A.4: Cross-entropy of the pseudo-labels with the true ImageNet training set labels. This
measure is not used for training but indicates how good a clustering is. This plot uses the [10k× 1]
AlexNet to compare to the equivalent plot in (Caron et al., 2018).

A.3 COMPLETE TABLES

In the following, we report the unabridged tables with all related work.

16

Published as a conference paper at ICLR 2020

Table A.2: Linear probing evaluation – AlexNet. A linear classifier is trained on the (downsampled)
activations of each layer in the pretrained model. We bold the best result in each layer and underline
the second best. The best layer is highlighted in blue. ∗ denotes a larger AlexNet variant. − refers to
AlexNets trained with self-label transfer from a corresponding ResNet-50. "+Rot" refers to retraining
using labels and an additional RotNet loss, "+ more aug." includes further augmentation during
retraining.

ILSVRC-12 Places
Method c1 c2 c3 c4 c5 c1 c2 c3 c4 c5

ImageNet supervised, (Zhang et al., 2017) 19.3 36.3 44.2 48.3 50.5 22.7 34.8 38.4 39.4 38.7
Places supervised, (Zhang et al., 2017) - - - - - 22.1 35.1 40.2 43.3 44.6
Random, (Zhang et al., 2017) 11.6 17.1 16.9 16.3 14.1 15.7 20.3 19.8 19.1 17.5
Random∗ 15.6 16.8 17.4 15.6 10.6 16.5 17.6 18.6 18.1 16.3

Inpainting, (Pathak et al., 2016) 14.1 20.7 21.0 19.8 15.5 18.2 23.2 23.4 21.9 18.4
BiGAN, (Donahue et al., 2017) 17.7 24.5 31.0 29.9 28.0 22.0 28.7 31.8 31.3 29.7
Context∗, (Doersch et al., 2015) 16.2 23.3 30.2 31.7 29.6 19.7 26.7 31.9 32.7 30.9
Colorization, (Zhang et al., 2016) 13.1 24.8 31.0 32.6 31.8 16.0 25.7 29.6 30.3 29.7
Jigsaw, (Noroozi & Favaro, 2016) 18.2 28.8 34.0 33.9 27.1 23.0 31.9 35.0 34.2 29.3
Counting, (Noroozi et al., 2017) 18.0 30.6 34.3 32.5 25.7 23.3 33.9 36.3 34.7 29.6
SplitBrain, (Zhang et al., 2017) 17.7 29.3 35.4 35.2 32.8 21.3 30.7 34.0 34.1 32.5

1-
cr

op
ev

al
ua

tio
n Instance retrieval, (Wu et al., 2018) 16.8 26.5 31.8 34.1 35.6 18.8 24.3 31.9 34.5 33.6

CC+VGG-, (Noroozi et al., 2018) 19.2 32.0 37.3 37.1 34.6 22.9 34.2 37.5 37.1 34.4
Context 2 (Mundhenk et al., 2018) 19.6 31.8 37.6 37.8 33.7 23.7 34.2 37.2 37.2 34.9
RotNet, (Gidaris et al., 2018) 18.8 31.7 38.7 38.2 36.5 21.5 31.0 35.1 34.6 33.7
Artifacts, (Jenni & Favaro, 2018) 19.5 33.3 37.9 38.9 34.9 23.3 34.3 36.9 37.3 34.4
AND∗,(Huang et al., 2019) 15.6 27.0 35.9 39.7 37.9 - - - - -
CMC∗,(Tian et al., 2019) 18.4 33.5 38.1 40.4 42.6 - - - - -
AET∗,(Zhang et al., 2019) 19.3 35.4 44.0 43.6 42.4 22.1 32.9 37.1 36.2 34.7
RotNet+retrieval∗, (Feng et al., 2019) 20.8 35.2 41.8 44.3 44.4 24.0 33.8 37.5 39.3 38.9

SeLa [3k× 10]∗ 20.3 32.2 38.6 41.4 39.6 24.5 31.9 36.7 38.0 37.0
SeLa [3k× 10]−+Rot∗ 20.6 32.3 40.4 43.1 42.3 24.0 31.7 37.1 39.0 37.6
SeLa [3k× 10]−+Rot∗+more aug. 19.2 32.6 40.8 44.4 44.7 21.1 30.4 36.5 37.9 37.3

10
-c

ro
p

ev
al

ua
tio

n ImageNet supervised∗ 21.6 37.2 46.9 52.9 54.4 22.6 33.2 39.0 41.3 39.7
Random∗ 17.6 20.3 20.6 17.8 11.0 19.2 20.7 21.8 21.3 19.0

DeepCluster (RGB)∗, (Caron et al., 2018) 18.0 32.5 39.2 37.2 30.6 - - - - -
DeepCluster∗, (Caron et al., 2018) 13.4 32.3 41.0 39.6 38.2 23.8 32.8 37.3 36.0 31.0
Local Agg.∗, (Zhuang et al., 2019) 18.7 32.7 38.1 42.3 42.4 18.7 32.7 38.2 40.3 39.5
RotNet+retrieval∗, (Feng et al., 2019) 22.2 38.2 45.7 48.7 48.3 25.5 36.0 40.1 42.2 41.3

SeLa [3k× 10]∗ 22.5 37.4 44.7 47.1 44.1 26.7 34.9 39.9 41.8 39.7
SeLa [3k× 10]−+Rot∗ 22.8 37.8 46.7 49.7 48.4 26.8 35.5 41.0 43.0 41.3
SeLa [3k× 10]−+Rot∗+more aug. 21.9 37.1 46.0 50.0 50.0 23.4 33.0 39.4 41.4 39.9

17

Published as a conference paper at ICLR 2020

Table A.3: Linear evaluation - ResNet. A linear layer is trained on top of the global average
pooled features of ResNets. All evaluations use a single centred crop. We have separated much
larger architectures such as RevNet-50×4 and ResNet-161. Methods in brackets use a augmentation
policy learned from supervised training and methods with ∗ are not explicit about which further
augmentations they use.

Method Architecture Top-1 Top-5

Supervised, (Donahue & Simonyan, 2019) ResNet-50 76.3 93.1
Supervised, (Donahue & Simonyan, 2019) ResNet-101 77.8 93.8

Jigsaw, (Kolesnikov et al., 2019) ResNet-50 38.4 −
RelPathLoc, (Kolesnikov et al., 2019) ResNet-50 42.2 −
Exemplar, (Kolesnikov et al., 2019) ResNet-50 43.0 −
Rotation, (Kolesnikov et al., 2019) ResNet-50 43.8 −
Multi-task, (Doersch & Zisserman, 2017) ResNet-101 − 69.3
CPC, (Oord et al., 2018) ResNet-101 48.7 73.6
BigBiGAN, (Donahue & Simonyan, 2019) ResNet-50 55.4 77.4
LocalAggregation, (Zhuang et al., 2019) ResNet-50 60.2 −
Efficient CPC v2.1, (Hénaff et al., 2019) ResNet-50 (63.8) (85.3)
CMC, (Tian et al., 2019) ResNet-50 (64.1) (85.4)
MoCo, (He et al., 2019) ResNet-50 60.6 −
PIRL, (Misra & van der Maaten, 2019)∗ ResNet-50 63.6 −
SeLa [3k× 10] ResNet-50 61.5 84.0

other architectures
Rotation, (Kolesnikov et al., 2019) RevNet-50×4 53.7 −
BigBiGAN, (Donahue & Simonyan, 2019) RevNet-50×4 60.8 81.4
AMDIM, (Bachman et al., 2019) Custom-103 (67.4) (81.8)
CMC, (Tian et al., 2019) RevNet-50×4 68.4 88.2
MoCo, (He et al., 2019) RevNet-50×4 68.6 −
Efficient CPC v2.1, (Hénaff et al., 2019) ResNet-161 71.5 90.1

18

Published as a conference paper at ICLR 2020

A.4 LOW ENTROPY PSEUDOCLASSES

Figure A.5: Here we show a random sample of images associated to the lowest entropy pseudoclasses.
The entropy is given by true image labels which are also shown as a frame around each picture with a
random color. This visualization uses ResNet-50 [3k × 1]. The entropy varies from 0.07−−0.83

19

Published as a conference paper at ICLR 2020

Figure A.6: Visualization of pseudoclasses on the validation set. Here we show random samples
of validation set images associated to the lowest entropy pseudoclasses of training set. For further
details, see Figure A.5. Classes with less than 9 images are sampled with repetition.

20

Published as a conference paper at ICLR 2020

A.5 RANDOM PSEUDOCLASSES

Figure A.7: Here we show a random sample of Imagenet training set images associated to the random
pseudoclasses. The entropy is given by true image labels which are also shown as a frame around
each picture with a random color. This visualization uses ResNet-50 [3k × 1].

21

Published as a conference paper at ICLR 2020

Figure A.8: Here we show a random sample of valdation set images associated to random pseudo-
classes. The entropy is given by true image labels which are also shown as a frame around each
picture with a random color. This visualization uses ResNet-50 [3k × 1]. Classes with less than 9
images are sampled with repetition.

22

