
End-to-end representation learning for Correlation Filter based tracking

Jack Valmadre∗ Luca Bertinetto∗ João F. Henriques Andrea Vedaldi Philip H. S. Torr
University of Oxford

{name.surname}@eng.ox.ac.uk

Training image: 255x255x3

Test image: 255x255x3

17x17x32

49x49x32

Correlation
Filter Crop

★

33x33x1

CNN

CNN

49x49x32

Figure 1: Overview of the proposed network architecture, CFNet. It is an asymmetric Siamese network: after applying the
same convolutional feature transform to both input images, the “training image” is used to learn a linear template, which is
then applied to search the “test image” by cross-correlation.

Abstract

The Correlation Filter is an algorithm that trains a linear
template to discriminate between images and their transla-
tions. It is well suited to object tracking because its formu-
lation in the Fourier domain provides a fast solution, en-
abling the detector to be re-trained once per frame. Pre-
vious works that use the Correlation Filter, however, have
adopted features that were either manually designed or
trained for a different task. This work is the first to over-
come this limitation by interpreting the Correlation Filter
learner, which has a closed-form solution, as a differen-
tiable layer in a deep neural network. This enables learning
deep features that are tightly coupled to the Correlation Fil-
ter. Experiments illustrate that our method has the impor-
tant practical benefit of allowing lightweight architectures
to achieve state-of-the-art performance at high framerates.

1. Introduction

Deep neural networks are a powerful tool for learn-
ing image representations in computer vision applications.
However, training deep networks online, in order to capture
previously unseen object classes from one or few examples,

∗Equal first authorship.

is challenging. This problem emerges naturally in appli-
cations such as visual object tracking, where the goal is to
re-detect an object over a video with the sole supervision of
a bounding box at the beginning of the sequence. The main
challenge is the lack of a-priori knowledge of the target ob-
ject, which can be of any class.

The simplest approach is to disregard the lack of a-priori
knowledge and adapt a pre-trained deep convolutional neu-
ral network (CNN) to the target, for example by using
stochastic gradient descent (SGD), the workhorse of deep
network optimization [32, 26, 36]. The extremely limited
training data and large number of parameters make this a
difficult learning problem. Furthermore, SGD is quite ex-
pensive for online adaptation [32, 26].

A possible answer to these shortcomings is to have no
online adaptation of the network. Recent works have fo-
cused on learning deep embeddings that can be used as uni-
versal object descriptors [3, 13, 29, 18, 5]. These methods
use a Siamese CNN, trained offline to discriminate whether
two image patches contain the same object or not. The idea
is that a powerful embedding will allow the detection (and
thus tracking) of objects via similarity, bypassing the online
learning problem. However, using a fixed metric to compare
appearance prevents the learning algorithm from exploiting
any video-specific cues that could be helpful for discrimi-
nation.

An alternative strategy is to use instead an online learn-

ing method such as the Correlation Filter (CF). The CF
is an efficient algorithm that learns to discriminate an
image patch from the surrounding patches by solving a
large ridge regression problem extremely efficiently [4, 14].
It has proved to be highly successful in object tracking
(e.g. [6, 19, 23, 2]), where its efficiency enables a tracker
to adapt its internal model of the object on the fly at ev-
ery frame. It owes its speed to a Fourier domain formula-
tion, which allows the ridge regression problem to be solved
with only a few applications of the Fast Fourier Transform
(FFT) and cheap element-wise operations. Such a solution
is, by design, much more efficient than an iterative solver
like SGD, and still allows the discriminator to be tailored to
a specific video, contrary to the embedding methods.

The challenge, then, is to combine the online learning
efficiency of the CF with the discriminative power of CNN
features trained offline. This has been done in several works
(e.g. [22, 7, 9, 32]), which have shown that CNNs and
CFs are complementary and their combination results in im-
proved performance.

However, in the aforementioned works, the CF is simply
applied on top of pre-trained CNN features, without any
deep integration of the two methods. End-to-end training
of deep architectures is generally preferable to training in-
dividual components separately. The reason is that in this
manner the free parameters in all components can co-adapt
and cooperate to achieve a single objective. Thus it is nat-
ural to ask whether a CNN-CF combination can also be
trained end-to-end with similar benefits.

The key step in achieving such integration is to inter-
pret the CF as a differentiable CNN layer, so that errors can
be propagated through the CF back to the CNN features.
This is challenging, because the CF itself is the solution of
a learning problem. Hence, this requires to differentiate the
solution of a large linear system of equations. This paper
provides a closed-form expression for the derivative of the
Correlation Filter. Moreover, we demonstrate the practical
utility of our approach in training CNN architectures end-
to-end.

We present an extensive investigation into the effect of
incorporating the CF into the fully-convolutional Siamese
framework of Bertinetto et al. [3]. We find that the CF
does not improve results for networks that are sufficiently
deep. However, our method enables ultra-lightweight net-
works of a few thousand parameters to achieve state-of-the-
art performance on multiple benchmarks while running at
high framerates.

Code and results are available online 1.

1www.robots.ox.ac.uk/˜luca/cfnet.html

2. Related work
Since the seminal work of Bolme et al. [4], the Correla-

tion Filter has enjoyed great popularity within the tracking
community. Notable efforts have been devoted to its im-
provement, for example by mitigating the effect of periodic
boundaries [10, 16, 8], incorporating multi-resolution fea-
ture maps [22, 9] and augmenting the objective with a more
robust loss [27]. For the sake of simplicity, in this work we
adopt the basic formulation of the Correlation Filter.

Recently, several methods based on Siamese networks
have been introduced [29, 13, 3], raising interest in the
tracking community for their simplicity and competitive
performance. For our method, we prefer to build upon the
fully-convolutional Siamese architecture [3], as it enforces
the prior that the appearance similarity function should
commute with translation.

At its core, the Correlation Filter layer that we introduce
amounts to computing the solution to a regularized decon-
volution problem, not to be confused with upsampling con-
volution layers that are sometimes referred to as “decon-
volution layers” [21]. Before it became apparent that al-
gorithms such as SGD are sufficient for training deep net-
works, Zeiler et al. [35] introduced a deep architecture in
which each layer solves a convolutional sparse coding prob-
lem. In contrast, our problem has a closed-form solution
since the Correlation Filter employs quadratic regulariza-
tion rather than 1-norm regularization.

The idea of back-propagating gradients through the so-
lution to an optimization problem during training has been
previously investigated. Ionescu et al. [15] and Murray [25]
have presented back-propagation forms for the SVD and
Cholesky decomposition respectively, enabling gradient de-
scent to be applied to a network that computes the solu-
tion to either a system of linear equations or an eigenvalue
problem. Our work can be understood as an efficient back-
propagation procedure through the solution to a system of
linear equations, where the matrix has circulant structure.

When the solution to the optimization problem is ob-
tained iteratively, an alternative is to treat the iterations as a
Recurrent Neural Network, and to explicitly unroll a fixed
number of iterations [37]. Maclaurin et al. [24] go further
and back-propagate gradients through an entire SGD learn-
ing procedure, although this is computationally demanding
and requires judicious bookkeeping. Gould et al. [11] have
recently considered differentiating the solution to general
argmin problems without restricting themselves to itera-
tive procedures. However, these methods are unnecessary
in the case of the Correlation Filter, as it has a closed-form
solution.

Back-propagating through a learning algorithm invites a
comparison to meta-learning. Recent works [31, 1] have
proposed feed-forward architectures that can be interpreted
as learning algorithms, enabling optimization by gradient

www.robots.ox.ac.uk/~luca/cfnet.html

descent. Rather than adopt an abstract definition of learn-
ing, this paper propagates gradients through a conventional
learning problem that is already widely used.

3. Method
We briefly introduce a framework for learning embed-

dings with Siamese networks (Section 3.1) and the use of
such an embedding for object tracking (Section 3.2) before
presenting the CFNet architecture (Section 3.3). We sub-
sequently derive the expressions for evaluation and back-
propagation of the main new ingredient in our networks,
the Correlation Filter layer, which performs online learning
in the forward pass (Section 3.4).

3.1. Fully-convolutional Siamese networks

Our starting point is a network similar to that of [3],
which we later modify in order to allow the model to
be interpreted as a Correlation Filter tracker. The fully-
convolutional Siamese framework considers pairs (x′, z′)
comprising a training image x′ and a test image z′2. The im-
age x′ represents the object of interest (e.g. an image patch
centered on the target object in the first video frame), while
z′ is typically larger and represents the search area (e.g. the
next video frame).

Both inputs are processed by a CNN fρ with learnable
parameters ρ. This yields two feature maps, which are then
cross-correlated:

gρ(x
′, z′) = fρ(x

′) ? fρ(z
′) . (1)

Eq. 1 amounts to performing an exhaustive search of the
pattern x′ over the test image z′. The goal is for the maxi-
mum value of the response map (left-hand side of eq. 1) to
correspond to the target location.

To achieve this goal, the network is trained offline with
millions of random pairs (x′i, z

′
i) taken from a collection of

videos. Each example has a spatial map of labels ci with
values in {−1, 1}, with the true object location belonging to
the positive class and all others to the negative class. Train-
ing proceeds by minimizing an element-wise logistic loss `
over the training set:

argmin
ρ

∑
i

` (gρ(x
′
i, z
′
i), ci) . (2)

3.2. Tracking algorithm

The network itself only provides a function to measure
the similarity of two image patches. To apply this network
to object tracking, it is necessary to combine this with a
procedure that describes the logic of the tracker. Similar

2Note that this differs from [3], in which the target object and search
area were instead denoted z and x respectively.

to [3], we employ a simplistic tracking algorithm to assess
the utility of the similarity function.

Online tracking is performed by simply evaluating the
network in forward-mode. The feature representation of the
target object is compared to that of the search region, which
is obtained in each new frame by extracting a window cen-
tred at the previously estimated position, with an area that
is four times the size of the object. The new position of the
object is taken to be the location with the highest score.

The original fully-convolutional Siamese network sim-
ply compared every frame to the initial appearance of the
object. In contrast, we compute a new template in each
frame and then combine this with the previous template in
a moving average.

3.3. Correlation Filter networks

We propose to modify the baseline Siamese network of
eq. 1 with a Correlation Filter block between x and the
cross-correlation operator. The resulting architecture is il-
lustrated in Figure 1. This change can be formalized as:

hρ,s,b(x
′, z′) = s ω (fρ(x

′)) ? fρ(z
′) + b (3)

The CF block w = ω(x) computes a standard CF template
w from the training feature map x = fρ(x

′) by solving a
ridge regression problem in the Fourier domain [14]. Its ef-
fect can be understood as crafting a discriminative template
that is robust against translations. It is necessary to intro-
duce scalar parameters s and b (scale and bias) to make the
score range suitable for logistic regression. Offline training
is then performed in the same way as for a Siamese network
(Section 3.1), replacing g with h in eq. 2.

We found that it was important to provide the Correla-
tion Filter with a large region of context in the training im-
age, which is consistent with the findings of Danelljan et
al. [8] and Kiani et al. [16]. To reduce the effect of circular
boundaries, the feature map x is pre-multiplied by a cosine
window [4] and the final template is cropped [30].

Notice that the forward pass of the architecture in Fig-
ure 1 corresponds exactly to the operation of a standard
CF tracker [14, 6, 23, 3] with CNN features, as proposed
in previous work [22, 7]. However, these earlier networks
were not trained end-to-end. The novelty is to compute the
derivative of the CF template with respect to its input so that
a network incorporating a CF can be trained end-to-end.

3.4. Correlation Filter

We now show how to back-propagate gradients through
the Correlation Filter solution efficiently and in closed form
via the Fourier domain.

Formulation. Given a scalar-valued image x ∈ Rm×m,
the Correlation Filter is the template w ∈ Rm×m whose in-
ner product with each circular shift of the image x ∗ δ−u is

as close as possible to a desired response y[u] [14], mini-
mizing∑

u∈U
(〈x ∗ δ−u, w〉 − y[u])2 = ‖w ? x− y‖2 . (4)

Here, U = {0, . . . ,m − 1}2 is the domain of the image,
y ∈ Rm×m is a signal whose u-th element is y[u], and δτ
is the translated Dirac delta function δτ [t] = δ[t − τ]. In
this section, we use ∗ to denote circular convolution and
? to denote circular cross-correlation. Recall that convolu-
tion with the translated δ function is equivalent to transla-
tion (x ∗ δτ)[t] = x[t− τ mod m]. Incorporating quadratic
regularization to prevent overfitting, the problem is to find

argmin
w

1

2n
‖w ? x− y‖2 + λ

2
‖w‖2 (5)

where n = |U| is the effective number of examples.
The optimal template w must satisfy the system of equa-

tions (obtained via the Lagrangian dual, see Appendix C,
supplementary material)

k = 1
n (x ? x) + λδ

k ∗ α = 1
ny

w = α ? x

(6)

where k can be interpreted as the signal that defines a circu-
lant linear kernel matrix, and α is a signal comprised of the
Lagrange multipliers of a constrained optimization problem
that is equivalent to eq. 5. The solution to eq. 6 can be com-
puted efficiently in the Fourier domain [14],

k̂ = 1
n (x̂
∗ ◦ x̂) + λ1

α̂ = 1
n k̂
−1 ◦ ŷ

ŵ = α̂∗ ◦ x̂

(7a)

(7b)
(7c)

where we use x̂ = Fx to denote the Discrete Fourier Trans-
form of a variable, x∗ to denote the complex conjugate, ◦ to
denote element-wise multiplication and 1 to denote a sig-
nal of ones. The inverse of element-wise multiplication is
element-wise scalar inversion. Notice that the operations in
eq. 7 are more efficiently computed in the Fourier domain,
since they involve element-wise operations instead of more
expensive convolutions or matrix operators (eq. 6). More-
over, the inverse convolution problem (to find α such that
k ∗ α = 1

ny) is the solution to a diagonal system of equa-
tions in the Fourier domain (eq. 7b).

Back-propagation. We adopt the notation that if x ∈
X = Rn is a variable in a computational graph that com-
putes a final scalar loss ` ∈ R, then ∇x` ∈ X denotes
the vector of partial derivatives (∇x`)i = ∂`/∂xi. If
y ∈ Y = Rm is another variable in the graph, which is

Figure 2: Internal computational graph for the Correlation
Filter. The boxes denote functions, which are defined in
eq. 7, and the circles denote variables.

computed directly from x according to y = f(x), then the
so-called back-propagation map for the function f is a lin-
ear map from∇y` ∈ Y to∇x` ∈ X .

Appendix D gives a tutorial review of the mathemati-
cal background. In short, the back-propagation map is the
linear map which is the adjoint of the differential. This
property was used by Ionescu et al. [15] to compute back-
propagation maps using matrix differential calculus. While
they used the matrix inner product 〈X,Y 〉 = tr(XTY) to
find the adjoint, we use Parseval’s theorem, which states
that the Fourier transform is unitary (except for a scale fac-
tor) and therefore preserves inner products 〈x, y〉 ∝ 〈x̂, ŷ〉.

To find the linear map for back-propagation through the
Correlation Filter, we first take the differentials of the sys-
tem of equations in eq. 6 that defines the template w

dk = 1
n (dx ? x+ x ? dx)

dk ∗ α+ k ∗ dα = 1
ndy

dw = dα ? x+ α ? dx

(8)

and then take the Fourier transform of each equation and re-
arrange to give the differential of each dependent variable in
Figure 2 as a linear function (in the Fourier domain) of the
differentials of its input variables

d̂k = 1
n (d̂x

∗
◦ x̂+ x̂∗ ◦ d̂x)

d̂α = k̂−1 ◦
[
1
n d̂y − d̂k ◦ α̂

]
d̂w = d̂α

∗
◦ x̂+ α̂∗ ◦ d̂x .

(9a)

(9b)

(9c)

Note that while these are complex equations, that is simply
because they are the Fourier transforms of real equations.
The derivatives themselves are all computed with respect to
real variables.

The adjoints of these linear maps define the overall back-
propagation map from ∇w` to ∇x` and ∇y`. We defer the
derivation to Appendix B and present here the final result,

∇̂α` = x̂ ◦ (∇̂w`)∗

∇̂y` = 1
n k̂
−∗ ◦ ∇̂α`

∇̂k` = −k̂−∗ ◦ α̂∗ ◦ ∇̂α`

∇̂x` = α̂ ◦ ∇̂w`+ 2
n x̂ ◦ Re{∇̂k`} .

(10)

It is necessary to compute forward Fourier transforms at
the start and inverse transforms at the end. The extension
to multi-channel images is trivial and given in Appendix E
(supplementary material).

As an interesting aside, we remark that, since we have
the gradient of the loss with respect to the “desired” re-
sponse y, it is actually possible to optimize for this parame-
ter rather than specify it manually. However, in practice we
did not find learning this parameter to improve the track-
ing accuracy compared to the conventional choice of a fixed
Gaussian response [4, 14].

4. Experiments

The principal aim of our experiments is to investigate the
effect of incorporating the Correlation Filter during train-
ing. We first compare against the symmetric Siamese archi-
tecture of Bertinetto et al. [3]. We then compare the end-
to-end trained CFNet to a variant where the features are re-
placed with features that were trained for a different task.
Finally, we demonstrate that our method achieves state-of-
the-art results.

4.1. Evaluation criteria

Popular tracking benchmarks like VOT [17] and
OTB [33, 34] have made all ground truth annotations avail-
able and do not enforce a validation/test split. However, in
order to avoid overfitting to the test set in design choices and
hyperparameter selection, we consider OTB-2013, OTB-50
and OTB-100 as our test set and 129 videos from VOT-
2014, VOT-2016 and Temple-Color [20] as our validation
set, excluding any videos which were already assigned to
the test set. We perform all of our tracking experiments in
Sections 4.2, 4.3 and 4.4 on the validation set with the same
set of “natural” hyperparameters, which are reasonable for
all methods and not tuned for any particular method.

As in the OTB benchmark [33, 34], we quantify the per-
formance of the tracker on a sequence in terms of the av-
erage overlap (intersection over union) of the predicted and
ground truth rectangles in all frames. The success rate of
a tracker at a given threshold τ corresponds to the fraction
of frames in which the overlap with the ground truth is at
least τ . This is computed for a uniform range of 100 thresh-
olds between 0 and 1, effectively constructing the cumula-
tive distribution function. Trackers are compared using the
area under this curve.

Mimicking the TRE (Temporal Robustness Evaluation)
mode of OTB, we choose three equispaced points per se-
quence and run the tracker from each until the end. Differ-
ently from the OTB evaluation, when the target is lost (i.e.
the overlap with the ground truth becomes zero) the tracker
is terminated and an overlap of zero is reported for all re-
maining frames.

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 1 2 3 4 5

A
v
e
ra

g
e
 o

v
e
rl
a

p
 (

%
 I

O
U

)

Network depth (layers)

Baseline
CFNet

Figure 3: Tracker accuracy for different network depths, on
the 129 videos of the validation set. Error bars indicate two
standard deviations. Refer to section 4.2 for more details.
All figures best viewed in colour.

Despite the large number of videos, we still find that the
performance of similarity networks varies considerably as
training progresses. To mitigate this effect, we average the
final tracking results that are obtained using the parame-
ters of the network at epochs 55, 60, . . . , 95, 100 (the final
epoch) to reduce the variance. These ten results are used to
estimate the standard deviation of the distribution of results,
providing error bars for most figures in this section. While
it would be preferable to train all networks to convergence
multiple times with different random seeds, this would re-
quire significantly more resources.

4.2. Comparison to Siamese baseline

Figures 3 and 4 compare the accuracy of both methods
on the validation set for networks of varying depth. The
feature extraction network of depth n is terminated after the
n-th linear layer, including the following ReLU but not the
following pooling layer (if any).

Our baseline diverges slightly from [3] in two ways.
Firstly, we reduce the total stride of the network from 8 to
4 (2 at conv1, 2 at pool1) to avoid training Correlation Fil-
ters with small feature maps. Secondly, we always restrict
the final layer to 32 output channels in order to preserve the
high speed of the method with larger feature maps. These
changes did not have a negative effect on the tracking per-
formance of SiamFC.

The results show that CFNet is significantly better than
the baseline when shallow networks are used to compute
features. Specifically, it brings a relative improvement of
31% and 13% for networks of depth one and two respec-
tively. At depths three, four and five, the difference is much
less meaningful. CFNet is relatively unaffected by the depth
of the network, whereas the performance of the baseline in-
creases steadily and significantly with depth. It seems that
the ability of the Correlation Filter to adapt the distance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

Overlap threshold

CFNet - conv1
Baseline - conv1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

Overlap threshold

CFNet - conv2
Baseline - conv2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

Overlap threshold

CFNet - conv5
Baseline - conv5

Figure 4: Success rates of rectangle overlap for individual trackers on the validation set. Solid and dotted lines represent
methods that update the template with a running average learning rate of 0.01 and 0, respectively.

 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 1 2 3 4 5

A
v
e
ra

g
e
 o

v
e
rl
a

p
 (

%
 I

O
U

)

Network depth (layers)

Baseline+CF
ImageNet+CF

Baseline
CFNet

Figure 5: Accuracy of a Correlation Filter tracker when us-
ing features obtained via different methods. Error bars in-
dicate two standard deviations. Refer to Section 4.3 for de-
tails.

metric to the content of the training image is less important
given a sufficiently expressive embedding function.

The CF layer can be understood to encode prior knowl-
edge of the test-time procedure. This prior may become
redundant or even overly restrictive when enough model ca-
pacity and data are available. We believe this explains the
saturation of CFNet performance when more than two con-
volutional layers are used.

Figure 4 additionally shows that updating the template is
always helpful, for both Baseline and CFNet architectures,
at any depth.

4.3. Feature transfer experiment

The motivation for this work was the hypothesis that in-
corporating the CF during training will result in features that
are better suited to tracking with a CF. We now compare our
end-to-end trained CFNet to variants that use features from
alternative sources: Baseline+CF and ImageNet+CF. The
results are presented in Figure 5.

To obtain the curve Baseline+CF we trained a baseline
Siamese network of the desired depth and then combined

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 1 2 3 4 5

A
v
e
ra

g
e
 o

v
e
rl
a

p
 (

%
 I

O
U

)

Network depth (layers)

CFNet-const
Baseline

CFNet

Figure 6: Comparison of CFNet to a “constant” variant of
the architecture, in which the Lagrange multipliers do not
depend on the image (section 4.4). Error bars indicate two
standard deviations.

those features with a CF during tracking. Results show that
taking the CF into account during offline training is critical
at depth one and two. However, it seems redundant when
more convolutional layers are added, since using features
from the Baseline in conjunction with the CF achieves sim-
ilar performance.

The ImageNet+CF variant employs features taken from
a network trained to solve the ImageNet classification chal-
lenge [28]. The results show that these features, which are
often the first choice for combining CFs with CNNs [7, 9,
22, 26, 32, 36], are significantly worse than those learned by
CFNet and the Baseline experiment. The particularly poor
performance of these features at deeper layers is somewhat
unsurprising, since these layers are expected to have greater
invariance to position when trained for classification.

4.4. Importance of adaptation

For a multi-channel CF, each channel p of the templatew
can be obtained as wp = α?xp, where α is itself a function
of the exemplar x (Appendix C, supplementary material).
To verify the importance of the online adaptation that solv-

OTB-2013 OTB-50 OTB-100
OPE TRE OPE TRE OPE TRE

Method speed (fps.) IoU prec. IoU prec. IoU prec. IoU prec. IoU prec. IoU prec.

CFNet-conv1 83 57.8 77.6 58.6 77.6 48.8 65.3 51.0 67.9 53.6 71.3 55.9 72.6
CFNet-conv2 75 61.1 80.7 64.0 84.8 53.0 70.2 56.5 75.3 56.8 74.8 60.6 79.1
Baseline+CF-conv3 67 61.0 82.2 63.1 83.9 53.8 72.3 57.4 76.7 58.9 77.7 61.1 79.8
CFNet-conv5 43 61.1 80.3 62.6 82.5 53.9 73.2 56.6 75.9 58.6 77.7 60.8 78.8
Baseline-conv5 52 61.8 80.6 64.0 83.7 51.7 68.3 56.1 74.2 58.8 76.9 61.6 79.7

SiamFC-3s [3] 60.7 81.0 61.8 82.2 51.6 69.2 55.5 75.2 58.2 77.0 60.5 79.5
Staple [2] 60.0 79.3 61.7 80.3 50.9 68.1 54.1 72.6 58.1 78.4 60.4 78.9
LCT [23] 61.2 86.2 59.4 81.3 49.2 69.1 49.5 67.4 56.2 76.2 56.9 74.5
SAMF [19] – – – – 46.2 63.9 51.4 70.9 53.9 74.6 57.7 77.6
DSST [6] 55.4 74.0 56.6 73.8 45.2 60.4 48.4 64.1 51.3 68.0 – –

Table 1: Perfomance as overlap (IoU) and precision produced by the OTB toolkit for the OTB-2013, OTB-50 and OTB-100
datasets. The first and second best results are highlighted in each column. For details refer to Section 4.5.

ing a ridge regression problem at test time should provide,
we propose a “constant” version of the Correlation Filter
(CFNet-const) where the vector of Lagrange multipliers α
is instead a parameter of the network that is learned offline
and remains fixed at test time.

Figure 6 compares CFNet to its constant variant. CFNet
is consistently better, demonstrating that in order to improve
over the baseline Siamese network it is paramount to back-
propagate through the solution to the inverse convolution
problem that defines the Lagrange multipliers.

4.5. Comparison with the state-of-the-art

We use the OTB-2013/50/100 benchmarks to con-
firm that our results are on par with the state-of-the-
art. All numbers in this section are obtained using the
OTB toolkit [33]. We report the results for the three
best instantiations of CFNet from Figure 5 (CFNet-conv2,
CFNet-conv5, Baseline+CF-conv3), the best variant of the
baseline (Baseline-conv5) and the most promising single-
layer network (CFNet-conv1). We compare our methods
against state-of-the-art trackers that can operate in real-
time: SiamFC-3s [3], Staple [2] and LCT [23]. We also
include the recent SAMF [19] and DSST [6] for reference.

For the evaluation of this section, we use a different set of
tracking hyperparameters per architecture, chosen to maxi-
mize the performance on the validation set after a random
search of 300 iterations. More details are provided in the
supplementary material. For the few greyscale sequences
present in OTB, we re-train each architecture using exclu-
sively greyscale images.

Both overlap (IoU) and precision scores [34] are reported
for OPE (one pass) and TRE (temporal robustness) evalu-
ations. For OPE, the tracker is simply run once on each
sequence, from the start to the end. For TRE, the tracker
is instead started from twenty different starting points, and
run until the end from each. We observed that this ensures
more robust and reliable results compared to OPE.

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 40 50 60 70 80 90 100 110

5 4 3
2

1

5
4

3

2

1

A
v
e

ra
g
e

 o
v
e

rl
a

p
 (

%
 I

O
U

)

Frames per second

Baseline
CFNet

Figure 7: Tracker accuracy versus speed for CFNet and
Siamese baseline. Labels indicate network depth. CFNet
enables better accuracy to be obtained at higher speeds us-
ing shallower networks. Error bars indicate two standard
deviations. Refer to section 4.6 for details.

Similarly to the analysis on the validation set, CFNet-
conv2 is among the top performers and its accuracy rivals
that of Baseline-conv5, which possesses approximately 30×
as many parameters. In general, our best proposed CFNet
variants are superior (albeit modestly) to the state-of-the-
art. In order to focus on the impact of our contribution, we
decided to avoid including orthogonal improvements which
can often be found in the tracking literature (e.g. bounding
box regression [26], ensembling of multiple cues [23, 2],
optical flow [29]).

4.6. Speed and practical benefits

The previous sections have demonstrated that there is a
clear benefit to integrating Correlation Filters into Siamese
networks when the feature extraction network is relatively

shallow. Shallow networks are practically advantageous in
that they require fewer operations and less memory to eval-
uate and store. To understand the trade-off, Figure 7 reports
the speed and accuracy of both CFNet and the baseline for
varying network depth3.

This plot suggests that the two-layer CFNet could be the
most interesting variant for practitioners requiring an accu-
rate tracking algorithm that operates at high framerates. It
runs at 75 frames per second and has less than 4% of the pa-
rameters of the five-layer baseline, requiring only 600kB to
store. This may be of particular interest for embedded de-
vices with limited memory. In contrast, methods like Deep-
SRDCF [7] and C-COT [9], which use out-of-the-box deep
features for the Correlation Filter, run orders of magnitude
slower. Even the one-layer CFNet remains competitive de-
spite having less than 1% of the parameters of the five-layer
baseline and requiring under 100kB to store.

5. Conclusion
This work proposes the Correlation Filter network,

an asymmetric architecture that back-propagates gradients
through an online learning algorithm to optimize the under-
lying feature representation. This is made feasible by estab-
lishing an efficient back-propagation map for the solution to
a system of circulant equations.

Our empirical investigation reveals that, for a sufficiently
deep Siamese network, adding a Correlation Filter layer
does not significantly improve the tracking accuracy. We
believe this is testament to the power of deep learning given
sufficient training data. However, incorporating the Corre-
lation Filter into a similarity network during training does
enable shallow networks to rival their slower, deeper coun-
terparts.

Future research may include extensions to account
for adaptation over time, and back-propagating gradients
through learning problems for related tasks such as one-shot
learning and domain adaptation.

A. Implementation details
We follow the procedure of [3] to minimize the loss

(equation 2) through SGD, with the Xavier-improved pa-
rameters initialization and using mini-batches of size 8. We
use all the 3862 training videos of ImageNet Video [28],
containing more than 1 million annotated frames, with mul-
tiple objects per frame. Training is conducted for 100
epochs, each sampling approximately 12 pairs (x′i, z

′
i) from

each video, randomly extracted so that they are at most 100
frames apart.

During tracking, a spatial cosine window is multiplied
with the score map to penalize large displacements. Track-

3The speed was measured using a 4.0GHz Intel i7 CPU and an NVIDIA
Titan X GPU.

ing in scale space is achieved by evaluating the network at
the scale of the previous object and at one adjacent scale
on either side, with a geometric step of 1.04. Updating
the scale is discouraged by multiplying the responses of the
scaled object by 0.97. To avoid abrupt transitions of object
size, scale is updated using a rolling average with learning
rate 0.6.

B. Back-propagation for the Correlation Filter
As described in Appendix D (supplementary material),

the back-propagation map is the adjoint of the linear maps
that is the differential. These linear maps for the Correlation
Filter are presented in eq. 9. We are free to obtain these
adjoint maps in the Fourier domain since Parseval’s theorem
provides the preservation of inner products. Let J1 denote
the map dx 7→ dk in eq. 9a. Hence manipulation of the
inner product

〈Fdk, FJ1(dx)〉 =
〈
d̂k, 1

n (d̂x
∗
◦ x̂+ x̂∗ ◦ d̂x)

〉
= 1

n

[
〈d̂x, d̂k

∗
◦ x̂〉+ 〈d̂k ◦ x̂, d̂x〉

]
=
〈
d̂x, 2

n Re{d̂k} ◦ x̂
〉

(11)

gives the back-propagation map

∇̂x` = 2
n x̂ ◦ Re{∇̂k`} . (12)

Similarly, for the linear map dk, dy 7→ dα in eq. 9b,

〈Fdα, FJ2(dk, dy)〉 =
〈
d̂α, k̂−1[1n d̂y − d̂k ◦ α̂]

〉
=
〈

1
n k̂
−∗ ◦ d̂α, d̂y

〉
+
〈
−k̂−∗ ◦ α̂∗ ◦ d̂α, d̂k

〉
, (13)

the back-propagation maps are

∇̂y` = 1
n k̂
−∗ ◦ ∇̂α` (14)

∇̂k` = −k̂−∗ ◦ α̂∗ ◦ ∇̂α` , (15)

and for the linear map dx, dα 7→ dw in eq. 9c,

〈Fdw, FJ3(dx, dα)〉 = 〈d̂w, d̂α
∗
◦ x̂+ α̂∗ ◦ d̂x〉

= 〈d̂α, d̂w
∗
◦ x̂〉+ 〈d̂w ◦ α̂, d̂x〉 , (16)

the back-propagation maps are

∇̂α` = x̂ ◦ (∇̂w`)∗ , (17)

∇̂x` = α̂ ◦ ∇̂w` . (18)

The two expressions for ∇x` above are combined to give
the back-propagation map for the entire Correlation Filter
block in eq. 10.

C. Correlation Filter formulation
C.1. Kernel linear regression

First, consider the general linear regression problem of
learning the weight vector w that best maps each of n ex-
ample input vectors xi ∈ Rd to their target yi ∈ R. The
squared error can be expressed

1

2n

n∑
i=1

(xTi w − yi)2 =
1

2n
‖XTw − y‖2 (19)

where X ∈ Rd×n is a matrix whose columns are the exam-
ple vectors and y ∈ Rn is a vector of the targets. Incorpo-
rating regularization, the problem is

argmin
w

1
2n‖X

Tw − y‖2 + λ
2 ‖w‖

2 . (20)

Kernel linear regression can be developed by writing this as
a constrained optimization problem

argmin
w,r

1
2n‖r‖

2 + λ
2 ‖w‖

2

subject to r = XTw − y
(21)

and then finding a saddle point of the Lagrangian

L(w, r, υ) = 1
2n‖r‖

2+ λ
2 ‖w‖

2+υT (r−XTw+y) . (22)

The final solution can be obtained from the dual variable

w = 1
λXυ (23)

and the solution to the dual problem is

υ = λ
nK
−1y (24)

where K = 1
nX

TX + λI is the regularized kernel matrix.
It is standard to introduce a scaled dual variable α = 1

λv
that defines w as a weighted combination of examples

w = Xα =

n∑
i=1

αixi with α =
1

n
K−1y . (25)

The kernel matrix is n × n and therefore the dual solution
is more efficient than the primal solution, which requires
inversion of a d × d matrix, when the number of features d
exceeds the number of examples n.

C.2. Single-channel Correlation Filter

Given a scalar-valued example signal x with domain U
and corresponding target signal y, the Correlation Filter w
is the scalar-valued signal

argmin
w

1

2n
‖w ? x− y‖2 + λ

2
‖w‖2 (26)

where signals are treated as vectors in RU and the circular
cross-correlation of two signals w ? x is defined

(w ? x)[u] =
∑
t∈U

w[t]x[u+ t mod m] ∀u ∈ U . (27)

The solution from the previous section can then be used by
defining X to be the matrix in RU×U such that XTw =
w ? x. It follows that the kernel matrix K belongs to RU×U
and the dual variable α is a signal in RU .

The key to the correlation filter is that the circulant
structure of X enables the solution to be computed effi-
ciently in the Fourier domain. The matrix X has elements
X[u, t] = x[u+ t mod m]. Since the matrix X is symmet-
ric, the template w is obtained as cross-correlation

w = Xα = α ? x . (28)

The linear map defined by the kernel matrixK is equivalent
to convolution with a signal k

Kz = k ∗ z ∀z (29)

which is defined k = 1
nx ? x+ λδ, since

∀z : FXTXz = F ((z ? x) ? x)

= ẑ ◦ x̂∗ ◦ x̂ = F (z ∗ (x ? x)) . (30)

Therefore the solution is defined by the equations
k = 1

nx ? x+ λδ

k ∗ α = 1
ny

w = α ? x

(31)

and the template can be computed efficiently in the Fourier
domain

k̂ = 1
n x̂
∗ ◦ x̂+ λ1

α̂ = 1
n k̂
−1 ◦ ŷ

ŵ = α̂∗ ◦ x̂ .

(32)

C.3. Multi-channel Correlation Filter

There is little advantage to the dual solution when train-
ing a single-channel Correlation Filter from the circular
shifts of a single base example. However, the dual formula-
tion is much more efficient in the multi-channel case [14].

For signals with k channels, each multi-channel signal is
a collection of scalar-valued signals x = (x1, . . . , xk), and
the data term becomes

‖
∑
p wp ? xp − y‖

2 = ‖
∑
pX

T
p wp − y‖2 (33)

and each channel of the template is obtained from the dual
variables

wp = Xpα = α ? xp (34)

The solution to the dual problem is still α = 1
nK
−1y, how-

ever the kernel matrix is now given

K = 1
n

∑
pX

T
p Xp + λI (35)

and the linear map defined by this matrix is equivalent to
convolution with the signal

k = 1
n

∑
p xp ? xp + λδ . (36)

Therefore the solution is defined by the equations
k = 1

n

∑
p xp ? xp + λδ

k ∗ α = 1
ny

wp = α ? xp ∀p
(37)

and the template can be computed efficiently in the Fourier
domain

k̂ = 1
n

∑
p x̂
∗
p ◦ x̂p + λ1

α̂ = 1
n k̂
−1 ◦ ŷ

ŵp = α̂∗ ◦ x̂p ∀p .

(38)

It is critical that the computation scales only linearly with
the number of channels.

D. Adjoint of the differential
Consider a computational graph that computes a scalar

loss ` ∈ R. Within this network, consider an intermediate
function that computes y = f(x) where x ∈ X = Rm and
y ∈ Y = Rn. Back-propagation computes the gradient with
respect to the input∇x` ∈ X from the gradient with respect
to the output∇y` ∈ Y .

The derivative ∂f(x)/∂x is a matrix in Rn×m whose ij-
th element is the partial derivative ∂fi(x)/∂xj . This matrix
relates the gradients according to

(∇x`)T =
∂`

∂x
=
∂`

∂y

∂y

∂x
= (∇y`)T

∂f(x)

∂x
(39)

From this it is evident that the back-propagation map is the
linear map which is the adjoint of that defined by the deriva-
tive. That is, if the derivative defines the linear map

J(u) =
∂f(x)

∂x
u (40)

then the back-propagation map is the unique linear map J∗

that satisfies

〈J∗(v), u〉 = 〈v, J(u)〉 ∀u ∈ X , v ∈ Y (41)

and the gradient with respect to the input is obtained∇x` =
J∗(∇y`). This is the core of reverse-mode differentia-
tion [12].

An alternative way to obtain the linear map defined by
the derivative is to use differential calculus. Whereas the

derivative represents this linear map as a matrix with respect
to the standard bases, the differential represents the linear
map as an expression df(x; dx). This is valuable for work-
ing with variables that possess more interesting structure
than simple vectors. This technique has previously been
used for matrix structured back-propagation [15]. In this
paper, we use it for circulant structured back-propagation.

E. Back-propagation for multi-channel case
The differentials of the equations that define the multi-

channel CF in eq. 37 are
dk = 1

n

∑
p(dxp ? xp + xp ? dxp)

dk ∗ α+ k ∗ dα = 1
ndy

dwp = dα ? xp + α ? dxp ∀p ,

(42)

and taking the Fourier transforms of these equations gives
d̂k = 1

n

∑
p

(
d̂x
∗
p ◦ x̂p + x̂∗p ◦ d̂xp

)
d̂α = k̂−1 ◦

[
1
n d̂y − d̂k ◦ α̂

]
d̂wp = d̂α

∗
◦ x̂p + α̂∗ ◦ d̂xp ∀p .

(43)

Now, to find the adjoint of the map dx 7→ dk, we re-
arrange the inner product

〈Fdk, FJ1(dx)〉 =
〈
d̂k, 1

n

∑
p

(
d̂x
∗
p ◦ x̂p + x̂∗p ◦ d̂xp

)〉
= 1

n

∑
p

[
〈d̂xp, d̂k

∗
◦ x̂p〉+ 〈d̂k ◦ x̂p, d̂xp〉

]
=
∑
p〈d̂xp,

2
n Re{d̂k} ◦ x̂p〉 (44)

to give the back-propagation map

∇̂xp` =
2
n x̂p ◦ Re{∇̂k`} ∀p . (45)

The linear map dk, dy 7→ dα is identical to the single-
channel case. To find the adjoint of the map dx, dα 7→ dw,
we examine the inner-product

〈dw, J3(dx, dα)〉 =
∑
p〈d̂wp, d̂α

∗
◦ x̂p + α̂∗ ◦ d̂xp〉

=
〈
d̂α,

∑
p d̂w

∗
p ◦ x̂p

〉
+
∑
p〈d̂wp ◦ α̂, d̂xp〉 , (46)

giving the back-propagation maps

∇̂α` =
∑
p x̂p ◦ (∇̂wp

`)∗ , (47)

∇̂xp
` = α̂ ◦ ∇̂wp

` ∀p . (48)

Finally, combining these results gives the procedure for
back-propagation in the multi-channel case

∇̂α` =
∑
p x̂p ◦ (∇̂wp

`)∗

∇̂y` = 1
n k̂
−∗ ◦ ∇̂α`

∇̂k` = −k̂−∗ ◦ α̂∗ ◦ ∇̂α`

∇̂xp` = α̂ ◦ ∇̂wp`+
2
n x̂p ◦ Re{∇̂k`} ∀p .

(49)

 0

 5

 10

 15

 20

 25

 30

 35

 40 41 42 43 44 45 46 47 48 49 50

D
e

n
s
it
y
 (

%
)

Average overlap

CFNet-conv1
CFNet-conv2

Baseline+CF-conv3
CFNet-conv5

Baseline-conv5

Figure 8: Empirical distribution of the average overlap for
the hyperparameter search.

Again, it is important that the computation scales only lin-
early with the number of channels.

F. Hyperparameter optimization

The hyperparameters that define the simplistic tracking
algorithm have a significant impact on the tracking accu-
racy. These include parameters such as the penalty for
changes in scale and position and the learning rate of the
template average. Choosing hyperparameters is a difficult
optimization problem: we cannot use gradient descent be-
cause the function is highly discontinuous, and each func-
tion evaluation is expensive because it involves running a
tracker on every sequence from multiple starting points.

For the experiments of the main paper, where we sought
to make a fair comparison of different architectures, we
therefore used a natural choice of hyperparameters that
were not optimized for any particular architecture. Ideally,
we would use the optimal hyperparameters for each vari-
ant, except it would have been computationally prohibitive
to perform this optimization for every point in every graph
in the main paper (multiple times for the points with error
bars).

To achieve results that are competitive with the state-of-
the-art, however, it is necessary to optimize the parameters
of the tracking algorithm (on a held-out validation set).

To find optimal hyperparameters, we use random search
with a uniform distribution on a reasonable range for each
parameter. Specifically, we sample 300 random vectors of
hyperparameters and run the evaluation described in Sec-
tion 4.1 on the 129 videos of our validation set. Each
method is then evaluated once on the test sets (OTB-2013,
OTB-50 and OTB-100) using the hyperparameter vector
which gave the best results on the validation set (specified in
Table 2). We emphasize that, even though the ground-truth
labels are available for the videos in the benchmarks, we do
not choose hyperparameters to optimize the results on the

benchmarks, as this would not give a meaningful estimate
of the generalization ability of the method.

Note that this random search is performed after training
and is only used to choose parameters for the online track-
ing algorithm. The same network is used for all random
samples. The training epoch with the best tracking results
on the validation set (with natural tracking parameters) is
chosen.

Figure 8 shows, for each method, the empirical distribu-
tion of results (in terms of average overlap) that is induced
by the distribution of tracking parameters in random search.

G. Detailed results on the OTB benchmarks

Figures 9 to 14 show the curves produced by the OTB
toolkit4 for OTB-2013/50/100, of which we presented a
summary in the main paper.

Acknowledgements. This research was supported by
Apical Ltd., EPSRC grant Seebibyte EP/M013774/1 and
ERC grants ERC-2012-AdG 321162-HELIOS, HELIOS-
DFR00200, “Integrated and Detailed Image Understand-
ing” (EP/L024683/1) and ERC 677195-IDIU.

References
[1] L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr,

and A. Vedaldi. Learning feed-forward one-shot learners.
In NIPS, pages 523–531, 2016. 2

[2] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and
P. H. S. Torr. Staple: Complementary learners for real-time
tracking. In CVPR, pages 1401–1409, 2016. 2, 7

[3] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and
P. H. S. Torr. Fully-convolutional Siamese networks for ob-
ject tracking. In ECCV Workshops, pages 850–865, 2016. 1,
2, 3, 5, 7, 8

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.
Visual object tracking using adaptive correlation filters. In
CVPR, 2010. 2, 3, 5

[5] K. Chen and W. Tao. Once for all: A two-flow convolu-
tional neural network for visual tracking. arXiv preprint
arXiv:1604.07507, 2016. 1

[6] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate
scale estimation for robust visual tracking. In BMVC, 2014.
2, 3, 7

[7] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Fels-
berg. Convolutional features for correlation filter based vi-
sual tracking. In ICCV Workshops, pages 58–66, 2015. 2, 3,
6, 8

4 The precision plots in this version of the paper are slightly different
to those in the version submitted to CVPR. Whereas in the CVPR version,
we adopted the “area under curve” precision metric, here we have used the
standard precision metric with a single threshold of 20 pixels. This has
little effect on the ordering of the trackers and all observations remained
valid.

avg. overlap best overlap scale step scale penalty scale l.r. win. weight template l.r.

CFNet-conv1 44.8 46.5 1.0355 0.9825 0.700 0.2375 0.0058
CFNet-conv2 47.8 49.5 1.0575 0.9780 0.520 0.2625 0.0050

Baseline+CF-conv3 47.7 49.9 1.0340 0.9820 0.660 0.2700 0.0080
CFNet-conv5 46.9 48.5 1.0310 0.9815 0.525 0.2000 0.0110

Baseline-conv5 47.8 49.2 1.0470 0.9825 0.680 0.1750 0.0102

Table 2: Average and best overlap scores over 300 random sets of hyperparameters. Values of hyperparameters associated to
the best performance are also reported. These parameters describe: the geometric step to use in scale search, the multiplicative
penalty to apply for changing scale, the learning rate for updating the scale, the weight of an additive cosine window that
penalizes translation, and the learning rate for the template average.

[8] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.
Learning spatially regularized correlation filters for visual
tracking. In ICCV, pages 4310–4318, 2015. 2, 3

[9] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg.
Beyond correlation filters: Learning continuous convolution
operators for visual tracking. In ECCV, pages 472–488,
2016. 2, 6, 8

[10] J. A. Fernandez and B. Vijayakumar. Zero-aliasing correla-
tion filters. In International Symposium on Image and Signal
Processing and Analysis 2013, pages 101–106, 2013. 2

[11] S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz,
and E. Guo. On differentiating parameterized argmin and
argmax problems with application to bi-level optimization.
arXiv preprint arXiv:1607.05447, 2016. 2

[12] A. Griewank and A. Walther. Evaluating derivatives: Prin-
ciples and techniques of algorithmic differentiation. SIAM,
2008. 10

[13] D. Held, S. Thrun, and S. Savarese. Learning to track at 100
fps with deep regression networks. In ECCV, pages 749–765.
Springer, 2016. 1, 2

[14] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-
speed tracking with kernelized correlation filters. IEEE
TPAMI, 37(3):583–596, 2015. 2, 3, 4, 5, 9

[15] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-
propagation for deep networks with structured layers. In
ICCV, pages 2965–2973, 2015. 2, 4, 10

[16] H. Kiani Galoogahi, T. Sim, and S. Lucey. Correlation filters
with limited boundaries. In CVPR, pages 4630–4638, 2015.
2, 3

[17] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,
R. Pflugfelder, L. Čehovin, T. Vojı́r, G. Häger, A. Lukežič,
G. Fernández, et al. The Visual Object Tracking VOT2016
challenge results. In ECCV Workshops. Springer, 2016. 5

[18] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler. Learning
by tracking: Siamese CNN for robust target association. In
CVPR Workshops, pages 33–40, 2016. 1

[19] Y. Li and J. Zhu. A scale adaptive kernel correlation filter
tracker with feature integration. In ECCV, pages 254–265,
2014. 2, 7

[20] P. Liang, E. Blasch, and H. Ling. Encoding color information
for visual tracking: Algorithms and benchmark. IEEE Trans-
actions on Image Processing, 24(12):5630–5644, 2015. 5

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, pages 3431–
3440, 2015. 2

[22] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical
convolutional features for visual tracking. In ICCV, pages
3074–3082, 2015. 2, 3, 6

[23] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term
correlation tracking. In CVPR, pages 5388–5396, 2015. 2,
3, 7

[24] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-
based hyperparameter optimization through reversible learn-
ing. In ICML, 2015. 2

[25] I. Murray. Differentiation of the Cholesky decomposition.
arXiv preprint arXiv:1602.07527, 2016. 2

[26] H. Nam and B. Han. Learning multi-domain convolutional
neural networks for visual tracking. In CVPR 2016, pages
4293–4302, 2016. 1, 6, 7

[27] A. Rodriguez, V. N. Boddeti, B. V. K. V. Kumar, and A. Ma-
halanobis. Maximum margin correlation filter: A new ap-
proach for localization and classification. IEEE Transactions
on Image Processing, 22(2):631–643, 2013. 2

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. 6, 8

[29] R. Tao, E. Gavves, and A. W. M. Smeulders. Siamese in-
stance search for tracking. In CVPR, pages 1420–1429,
2016. 1, 2, 7

[30] J. Valmadre, S. Sridharan, and S. Lucey. Learning detectors
quickly with stationary statistics. In ACCV, pages 99–114.
Springer, 2014. 3

[31] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al.
Matching networks for one shot learning. In NIPS, pages
3630–3638, 2016. 2

[32] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung. Transferring rich
feature hierarchies for robust visual tracking. arXiv preprint
arXiv:1501.04587, 2015. 1, 2, 6

[33] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In CVPR, pages 2411–2418, 2013. 5, 7

[34] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.
TPAMI, 37(9):1834–1848, 2015. 5, 7

[35] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. De-
convolutional networks. In CVPR, pages 2528–2535, 2010.
2

[36] M. Zhai, M. J. Roshtkhari, and G. Mori. Deep learning of
appearance models for online object tracking. arXiv preprint
arXiv:1607.02568, 2016. 1, 6

[37] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional
random fields as recurrent neural networks. In ICCV, pages
1529–1537, 2015. 2

Overlap threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

ra
te

0

10

20

30

40

50

60

70

80

90

100
Success plots of TRE for OTB-2013

 Baseline-conv5 (ours) [64.0]
 CFNet-conv2 (ours) [64.0]
Baseline+CF-conv3 (ours) [63.1]
 CFNet-conv5 (ours) [62.6]
 SiamFC-3s (2016) [61.8]
 Staple (2016) [61.7]
 LCT (2015) [59.4]
 CFNet-conv1 (ours) [58.6]
 DSST (2014) [56.6]

Overlap threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

ra
te

0

10

20

30

40

50

60

70

80

90

100
Success plots of OPE for OTB-2013

 Baseline-conv5 (ours) [61.8]
 LCT (2015) [61.2]
 CFNet-conv2 (ours) [61.1]
 CFNet-conv5 (ours) [61.1]
Baseline+CF-conv3 (ours) [61.0]
 SiamFC-3s (2016) [60.7]
 Staple (2016) [60.0]
 CFNet-conv1 (ours) [57.8]
 DSST (2014) [55.4]

Figure 9: OTB-2013 success rate.

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

0

10

20

30

40

50

60

70

80

90

100
Precision plots of TRE for OTB-2013

 CFNet-conv2 (ours) [84.8]

Baseline+CF-conv3 (ours) [83.9]

 Baseline-conv5 (ours) [83.7]

 CFNet-conv5 (ours) [82.5]

 SiamFC-3s (2016) [82.2]

 LCT (2015) [81.3]

 Staple (2016) [80.3]

 CFNet-conv1 (ours) [77.6]

 DSST (2014) [73.8]

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

0

10

20

30

40

50

60

70

80

90

100
Precision plots of OPE for OTB-2013

 LCT (2015) [86.2]

Baseline+CF-conv3 (ours) [82.2]

 SiamFC-3s (2016) [81.0]

 CFNet-conv2 (ours) [80.7]

 Baseline-conv5 (ours) [80.6]

 CFNet-conv5 (ours) [80.3]

 Staple (2016) [79.3]

 CFNet-conv1 (ours) [77.6]

 DSST (2014) [74.0]

Figure 10: OTB-2013 precision.

Overlap threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

ra
te

0

10

20

30

40

50

60

70

80

90
Success plots of TRE for OTB-50

Baseline+CF-conv3 (ours) [57.4]
 CFNet-conv5 (ours) [56.6]
 CFNet-conv2 (ours) [56.5]
 Baseline-conv5 (ours) [56.1]
 SiamFC-3s (2016) [55.5]
 Staple (2016) [54.1]
 SAMF (2014) [51.4]
 CFNet-conv1 (ours) [51.0]
 LCT (2015) [49.5]
 DSST (2014) [48.4]

Overlap threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

ra
te

0

10

20

30

40

50

60

70

80

90
Success plots of OPE for OTB-50

 CFNet-conv5 (ours) [53.9]
Baseline+CF-conv3 (ours) [53.8]
 CFNet-conv2 (ours) [53.0]
 Baseline-conv5 (ours) [51.7]
 SiamFC-3s (2016) [51.6]
 Staple (2016) [50.9]
 LCT (2015) [49.2]
 CFNet-conv1 (ours) [48.8]
 SAMF (2014) [46.2]
 DSST (2014) [45.2]

Figure 11: OTB-50 success rate.

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

0

10

20

30

40

50

60

70

80

90
Precision plots of TRE for OTB-50

Baseline+CF-conv3 (ours) [76.7]
 CFNet-conv5 (ours) [75.9]
 CFNet-conv2 (ours) [75.3]
 SiamFC-3s (2016) [75.2]
 Baseline-conv5 (ours) [74.2]
 Staple (2016) [72.6]
 SAMF (2014) [70.9]
 CFNet-conv1 (ours) [67.9]
 LCT (2015) [67.4]
 DSST (2014) [64.1]

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

0

10

20

30

40

50

60

70

80
Precision plots of OPE for OTB-50

 CFNet-conv5 (ours) [73.2]
Baseline+CF-conv3 (ours) [72.3]
 CFNet-conv2 (ours) [70.2]
 SiamFC-3s (2016) [69.2]
 LCT (2015) [69.1]
 Baseline-conv5 (ours) [68.3]
 Staple (2016) [68.1]
 CFNet-conv1 (ours) [65.3]
 SAMF (2014) [63.9]
 DSST (2014) [60.4]

Figure 12: OTB-50 precision.

Overlap threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

ra
te

0

10

20

30

40

50

60

70

80

90
Success plots of TRE for OTB-100

 Baseline-conv5 (ours) [61.6]
Baseline+CF-conv3 (ours) [61.1]
 CFNet-conv5 (ours) [60.8]
 CFNet-conv2 (ours) [60.6]
 SiamFC-3s (2016) [60.5]
 Staple (2016) [60.4]
 SAMF (2014) [57.7]
 LCT (2015) [56.9]
 CFNet-conv1 (ours) [55.9]

Overlap threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

ra
te

0

10

20

30

40

50

60

70

80

90
Success plots of OPE for OTB-100

Baseline+CF-conv3 (ours) [58.9]
 Baseline-conv5 (ours) [58.8]
 CFNet-conv5 (ours) [58.6]
 SiamFC-3s (2016) [58.2]
 Staple (2016) [58.1]
 CFNet-conv2 (ours) [56.8]
 LCT (2015) [56.2]
 SAMF (2014) [53.9]
 CFNet-conv1 (ours) [53.6]
 DSST (2014) [51.3]

Figure 13: OTB-100 success rate.

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

0

10

20

30

40

50

60

70

80

90
Precision plots of TRE for OTB-100

Baseline+CF-conv3 (ours) [79.8]

 Baseline-conv5 (ours) [79.7]

 SiamFC-3s (2016) [79.5]

 CFNet-conv2 (ours) [79.1]

 Staple (2016) [78.9]

 CFNet-conv5 (ours) [78.8]

 SAMF (2014) [77.6]

 LCT (2015) [74.5]

 CFNet-conv1 (ours) [72.6]

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

0

10

20

30

40

50

60

70

80

90
Precision plots of OPE for OTB-100

 Staple (2016) [78.4]
Baseline+CF-conv3 (ours) [77.7]
 CFNet-conv5 (ours) [77.7]
 SiamFC-3s (2016) [77.0]
 Baseline-conv5 (ours) [76.9]
 LCT (2015) [76.2]
 CFNet-conv2 (ours) [74.8]
 SAMF (2014) [74.6]
 CFNet-conv1 (ours) [71.3]
 DSST (2014) [68.0]

Figure 14: OTB-100 precision.

