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Abstract

The goal of self-supervised visual representation learning is to learn strong, trans-
ferable image representations, with the majority of research focusing on object or
scene level. On the other hand, representation learning at part level has received
significantly less attention. In this paper, we propose an unsupervised approach
to object part discovery and segmentation and make three contributions. First, we
construct a proxy task through a set of objectives that encourages the model to learn
a meaningful decomposition of the image into its parts. Secondly, prior work argues
for reconstructing or clustering pre-computed features as a proxy to parts; we show
empirically that this alone is unlikely to find meaningful parts; mainly because of
their low resolution and the tendency of classification networks to spatially smear
out information. We suggest that image reconstruction at the level of pixels can
alleviate this problem, acting as a complementary cue. Lastly, we show that the stan-
dard evaluation based on keypoint regression does not correlate well with segmen-
tation quality and thus introduce different metrics, NMI and ARI, that better char-
acterize the decomposition of objects into parts. Our method yields semantic parts
which are consistent across fine-grained but visually distinct categories, outperform-
ing the state of the art on three benchmark datasets. Code is available at the project
page: https://www.robots.ox.ac.uk/~vgg/research/unsup-parts/.

1 Introduction

Humans perceive the world as a collection of distinct objects. When we interact with an object,
we naturally perceive the different parts it consists of. In visual scene understanding, parts provide
intermediate representations that are more invariant to changes in object pose, orientation, camera
view or lighting than the objects themselves. They are useful in analyzing objects for higher level
tasks, such as fine-grained recognition, manipulation etc. However, supervised learning of parts
requires manual annotations, which are slow, expensive and infeasible to collect for the almost
unlimited variety of objects in the real world. Thus, unsupervised part discovery and segmentation
has recently gained the interest of the community. We thus consider the problem of automatically
discovering the parts of visual object classes: given a collection of images of a certain object category
(e.g., birds) and corresponding object masks, we want to learn to decompose an object into a collection
of repeatable and informative parts.

It is important to define and understand the nature of parts before we begin describing approaches to
part discovery. While there is no universally accepted formal definition for what constitutes a “part”,
the nature of objects and object parts is accepted as different. For example, for Gibson [24], an object
is “detachable”, i.e. something that, at least conceptually, can be picked up and moved to a different
place irrespective of the rest of the scene. Parts, in contrast, are constituent elements of an object, and
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cannot be removed without breaking the object, i.e. they are essential to the object and occur across
most instances of the same object category.

Unsupervised part discovery requires suitable inductive principles and the choice of these principles
defines the nature of the parts that will be discovered. Parts could, for example, be defined based
on motion following the principle of common fate in Gestalt psychology (i.e. what moves together
belongs together) [64, 71], or they could be defined based on visual appearance or function. Here,
we are interested in semantic parts across different instances of an object category (e.g., birds, cars,
etc.) and combine three simple learning principles as “part proxy”: (a) consistency to transformation
(equivariance), (b) visual consistency (or self-similarity), and (c) distinctiveness among different
parts.

Prior work has suggested that useful cues for part discovery can be obtained from pre-trained neural
networks [1, 26]. These networks can in fact be used as a dense feature extractors and the feature
responses can be clustered or otherwise decomposed to identify parts [12, 35]. In particular, [35]
learn part prototypes, and make the latter orthogonal to avoid parts collapsing into a single one.

In this paper, we revisit and improve such concepts. We make the following contributions. First, we
show that contrastive learning can be employed as an effective tool to decompose objects into diverse
and yet consistent parts. In particular, we seek parts whose feature responses are homogeneous within
the same or different occurrences of the same part type, while at the same time being distinctive for
different types of parts. A second contribution is to discuss whether clustering pre-trained features
is indeed sufficient for part discovery. To this end, we show that simply clustering dense features
sometimes captures obviously self-similar structures, such as image edges, rather than meaningful
parts (Section 3.2). This is somewhat intrinsic to using pre-trained feed-forward local features, as
these can only analyze a fixed image neighborhood and thus pick up the pattern which is most obvious
within their aperture. As a complementary cue, we thus suggest to look at the visual consistency of
parts. The idea is that most parts are visually homogeneous, sharing a color or texture. A generative
model of the part appearance may thus be able to detect part membership at the level of individual
pixels. We show, in particular, that even very simple models that assume color consistency are
complementary and beneficial when added to feature-based grouping.

Finally, we consider the problem of assessing automated part discovery. An issue is the relative
scarcity of data labelled with part segmentation. Another one, technically more challenging, is the
fact that parts that are discovered without supervision may not necessarily correspond to the parts
that a human annotator would assign to an image. This makes the use of manual part annotations for
evaluation tricky. Prior work in the area has thus assessed the discovered parts via proxy tasks, such
as learning keypoint predictors, using supervision. The idea is that, if parts are consistent, they should
be good predictors of other geometric primitives. Unfortunately, as we show empirically, transferring
parts to keypoints is unlikely to provide a meaningful metric for the quality of the part segments. We
show, for instance, that knowledge of a single keypoint provides a better predictor of other keypoints
than any of the previous unsupervised models.

To address this issue, we propose a new evaluation protocol. We still use keypoints as they are readily
available, or ground-truth part segmentation when possible; however, instead of learning to regress
such ground truth annotations, we simply measure the co-occurrence statistics of the predicted parts
and these annotations using Normalized Mutual Information and Adjusted Rand Index. The latter
require the learned parts to be geometrically consistent and distinctive regardless of whether they
are in one-to-one correspondence with manually provided labels and results in a more meaningful
measure for this task.

Empirically, we demonstrate that these improvements lead to stronger automated part discovery than
prior work on standard benchmarks.

2 Related work

There exists a vast amount of literature that studies the problem of decomposing a scene into objects
and objects into parts, with or without supervision. Next, we discuss these lines of work with a focus
on unsupervised approaches.

Unsupervised scene decomposition. Unsupervised scene decomposition methods aim to spatially
decompose a scene into a variable number of components (segments), e.g., individual objects and
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background. This is typically achieved by encoding scenes into object-centric representations
which are then decoded against a reconstruction objective, often in a variational framework [42].
Representative methods leverage sequential attention [4, 18], iterative inference [17, 27, 53], spatial
attention [14, 50] and physical properties [2], or extend towards temporal sequences [2, 15, 38, 39, 44].
Discriminative approaches [43] also exist, using an object-level contrastive objective. It has been
shown that, currently, most of these models perform well on simple, synthetic scenes but struggle
with higher visual complexity [41].

There are key conceptual differences between decomposing a scene into objects and decomposing an
object into its parts. First, the objects of a scene typically appear in an arbitrary arrangement, whereas
the presence and the layout of object parts is generally constrained (e.g., the arms of a human connect
to the torso). As such, parts are constituent elements of an object and they occur consistently across
most instances of an object category. Moreover, the segments obtained by the systems described
above are orderless and do not have a “type” assigned to them, in contrast to parts which usually refer
to specific, nameable entities (e.g., head vs. beak). These differences lead to sufficiently different
statistics and technical constraints, which make it difficult to envision methods that can do well both
at scene-level and object-level.

Part discovery and segmentation. Prior to deep learning, part-based models [13, 19–21] played
a major role in problems such as object detection and recognition. In the deep learning era, part
discovery remains an integral part of fine-grained recognition, where it acts as an intermediary step
with or without part-level supervision [7, 23, 34, 46, 47, 49, 65, 75, 77, 79–81, 83, 87, 88]. However,
all these methods require joint training with image labels and focus mostly on discovering the most
informative (discriminative) regions to ultimately help with the classification task.

Unlike previous methods as well as existing supervised methods that learn from annotated part
segments [36, 48, 68, 73], our goal is to discover independent and semantically consistent parts
without image-level or part-level labels . Bau et al. [1] and Gonzalez-Garcia et al. [26] inspect the
hidden units of convolutional neural networks (CNNs) trained with image-level supervision (e.g.,
on ImageNet [59]) to understand whether part detectors emerge in them systematically. This is
done by measuring the alignment between each unit and a set of dense part labels, and as such, the
availability of manual annotations is required for interpretation. Most related to our work, however,
are approaches for unsupervised part segmentation [3, 12, 35, 45, 62]. Based on the observation
of [1, 26] that semantic parts do indeed emerge in deep features, Collins et al. [12] propose to use
non-negative matrix factorization to decompose a pre-trained CNN’s activations into parts. Similar
observations had been previously discussed in [62] for constructing part constellations models and
in [74] for part detection via feature clustering. To learn part segmentations in an unsupervised manner,
Braun et al. [3] propose a probabilistic generative model to disentangle shape and appearance, but
focus mostly on human body parts. Lastly, closest to our work is SCOPS by Hung et al. [35]; SCOPS
is a self-supervised approach for object part segmentation from an image collection of the same
coarse category, e.g., birds. The authors propose a set of loss functions to train a model to output part
segments that adhere to semantic, geometric and equivariance constraints.

Other recent methods [67, 85] use generative adversarial networks for few-shot part segmentation,
while [22] discover parts without supervision by interacting with articulated objects, and [51, 60, 61,
78] from motion in videos.

Self-supervised and contrastive learning. In self-supervised learning, one typically aims to
design pretext tasks [16, 25, 56, 57, 82] for pre-training neural networks; these tasks are constructed
such that the model has to capture useful information about the data that leads to learning useful
features. Contrastive learning has recently emerged as a promising paradigm in self-supervised
learning in computer vision, with several methods [6, 9, 30–33, 40, 55, 69, 76] learning strong image
representations that transfer to downstream tasks. The key idea in contrastive learning is to encode
two similar data points with similar embeddings, while pushing the embeddings of dissimilar data
further apart [28]. In absence of labels, most contrastive methods use heavy data augmentations to
create different views of the same image to use as a positive pair and are trained to minimize different
variants of the InfoNCE loss [69].

We instead follow an approach to contrastive learning that is more tailored to semantic part seg-
mentation, i.e. taking into consideration the dense nature of this problem. Our method is thus also
related to self-supervised learning of dense representations [37, 58, 70, 86]. As these methods learn
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(a) Feature loss

(batch)

(b) Contrastive loss (c) Equivariance loss (d) Visual consistency

Figure 1: Training objectives. We train our model with a set of loss functions that enforce several
forms of consistency between the discovered parts. The feature loss a) ensures that parts are
consistent within themselves. The contrastive loss b) discovers the same part in different images.
The equivariance loss c) makes use of the fact that image transformations should not change part
segmentations, and the visual consistency d) reconstructs a simplified version of the image from the
parts to encourage visual consistency.

an embedding for every pixel, they cannot be directly applied for part segmentation and need either
fine-tuning or a clustering step to produce part masks.

3 Method

Given a collection of images centered around a given type of objects (e.g., birds), we wish to
automatically learn a part detector, assigning each pixel of the objects to one of K semantic parts.
Formally, we model the part segmentation task as predicting a mask M ∈ {0, 1}K×H×W for an
image I ∈ R3×H×W , where

∑K
k=1Mu = 1 for all pixels u ∈ {0, . . . ,H − 1} × {0, . . . ,W − 1}.

The mask thus assigns each pixel u to one of K parts and the part segmenter is a function f : I 7→M ,
implemented as a deep neural network, that maps an image I to its part mask M . The mask is relaxed
and computed in a differentiable manner, by applying the softmax operator at each pixel.

Since we are tackling this task without supervision, we have to construct a proxy task that will
enforce f to learn a meaningful decomposition of the image into its parts without the need for labelled
examples. The rest of the section defines this task.

3.1 Contrastive feature discovery

Following prior work [12, 35], our primary cue for discovering parts is a deep feature extractor φ,
obtained as a neural network pre-trained on an off-the-shelf benchmark such as ImageNet, with
or without supervision. In order to obtain repeatable and distinctive parts from these features, we
propose to use a contrastive formulation [33, 69].

To this end, let [φ(I)]u ∈ Rd be the feature vector associated by the network to pixel location u in
the image. The idea is that, if pixel v belongs to the same part type as u, then their feature vectors
should be very similar when contrasted to the case in which v belongs to a different part type. Since
parts should be consistent irrespective of the particular object instance, comparisons extend within
each image I , but also across different images. Thus, a naïve application of this idea would require
a number of comparison proportional to the square of the number of pixels in the dataset, which is
impractical.

Instead, we approach this issue by noting that contrastive learning would encourage features that
belong to the same part type to be similar. This is even more true for features that belong to the same
part occurrence in a specific image. We can thus summarize the code for part k in image I via an
average part descriptor zk ∈ Rd:

zk(I) =
1

|Mk|
∑
u∈Ω

Mku [φ(I)]u, |Mk| =
∑
u∈Ω

Mku, (1)

where Ω represents all foreground pixels in the image. We can then directly enforce that pixels within
the same part occurrence respond with similar features by minimizing the variance of descriptors
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within the part:

Lf (M) =

K∑
k=1

∑
u∈Ω

Mku ‖zk(I)− [φ(I)]u‖22. (2)

By doing so, we gain two advantages. First, pixels are assigned to the same part occurrence if they
have similar feature vectors, as contrastive learning would do. Second, the part occurrence is now
summarized by a single average descriptor vector zk(I) which has a differentiable dependency on
the mask. Next, we show how we can express the rest of the contrastive learning loss as a function of
these differentiable part occurrence summaries.

To this end, we use a random set (e.g., the mini-batch) of other images. Intuitively, we would like to
maximize the semantic similarity between all the k-th parts across images and analogously minimize
the semantic similarity between all other parts. This score is computed over a batch of N images,
each with K descriptors z(n)

k , where n indexes the image. To reduce the number of comparisons, for
each part k we randomly choose a target ẑ(n)

k ∈ {z(i)
k }i 6=n out of the N − 1 other part k occurrences

in the batch.1 With this, the contrastive loss can be written as usual:

Lc = −
N∑

n=1

K∑
k=1

log
exp(z

(n)
k · ẑ(n)

k /τ)

exp(z
(n)
k · ẑ(n)

k /τ) +
∑

j 6=k

∑
i 6=n exp(z

(n)
k · z(i)

j /τ)
, (3)

where τ is a temperature hyper-parameter that controls the “peakyness” of the similarity metric.

Note that, while this score function resembles the typical contrastive formulation in current self-
supervised approaches, instead of generating the target ẑ(n)

k as an augmentation of the original image,
here we can actually use a different image, since part k has the same semantic meaning in both images.
This formulation implicitly encourages two properties. On one hand, it maximizes the similarity of
the same part type across images, and on the other hand, it maximizes the dissimilarity of different
part types in the same and other images.

3.2 Visual consistency

While semantic consistency of part features is an important learning signal, these feature maps
are of low spatial resolution and do not accurately align to image boundaries. We suggest that an
effective remedy is to look for the visual consistency of the part itself. We can in fact expect most part
occurrences to be characterized by a homogeneous texture. Generative modelling can then be used to
assign individual pixels to different part regions based on how well they fit each part appearance.

relu3_2 relu4_3 relu5_2 relu5_4

Image VGG-19 layers

Figure 2: K-means clustering (K = 4) on fore-
ground pixels for features extracted at different
layers of a VGG-19 [63].

This signal is in part complementary to feature-
based grouping. As shown in Figure 2, cluster-
ing features from successive layers of a VGG-
19 network [63] (pre-trained on ImageNet),
when the receptive field of the features strad-
dles two or more parts, grouping may some-
times highlight self-similar structures such as
region boundaries instead of parts. On the other
hand, image pixels can almost always uniquely
be attributed to a single part.

In our experiments, we show that even the simplest possible generative model, which assumes that
pixels are i.i.d. samples from identical Gaussians, helps improving the consistency of the discovered
parts. The negative log likelihood of parts under this simple model is given by the loss:

Lv(M) =

K∑
k=1

∑
u∈Ω

Mku

∥∥∥Iu − 1

|Mk|
∑
v∈Ω

Mkv Iv

∥∥∥2

2
. (4)

This encodes the inductive bias that parts are roughly uniformly colored. Encouraging the model to
learn parts that align with image boundaries. While more complex generative models can be used
here, in our experiments (Table 2), this simple assumption already improved the results considerably.

1Note that samples are taken with respect to part occurrences, which are fixed, not with respect to the
assignment of pixels to the parts (which are learned as the mask M ). As a consequence, we do not need to
differentiate through this sampler.
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3.3 Transformation equivariance

Finally, we make use of the fact that an image transformation should not change the assignment of
pixels to parts. We thus sample a random image transformation T and minimize the symmetrized
Kullback-Leibler divergence KL between the original mask and the mask predicted from the trans-
formed image

Le(I, T (I)) =
∑
u∈Ω

KL (Tu(f(I)), fu(T (I))) +KL (fu(T (I)), Tu(f(I))) . (5)

Here the KL divergence is computed per pixel, using the fact that the model predicts, via the
softmax operator, a probability distribution over possible parts at each image location. This objective
encourages commutativity of the function f with respect to the transformation as it is minimized if
T (f(I)) = f(T (I)), in other words, on equivariance under image transformations.

Note that, for equivariance, we need to define the action of T on both the input image I and the output
f(I). We consider simple random geometric warps (affine), which are applicable to any image-like
tensor (thus even the pixels-wise predictions f(I)). We also consider photometric augmentations
(e.g., color jitter), whose corresponding action in output space is the identity, because we wish the
network to learn to be invariant to these effects (they do not change the part identity or location).

Overall objective. We learn f by minimizing the weighted sum of the prior losses: λfLf +λcLc +
λvLv + λeLe.

4 Experiments

In the following we validate our approach on three benchmark datasets, the Caltech-UCSD Birds-200
dataset (CUB-200-2011) [72], the large-scale fashion database (DeepFashion) [52] and PASCAL-
Part [10]. Details regarding the datasets are given in the appendix. We carry out ablation experiments
to study (a) the importance of the proposed objective functions, and (b) the role of supervised
vs. unsupervised pre-training for the different components of our model. Lastly, we show that our
method compares favorably to prior work both quantitatively and qualitatively.

Implementation details. We model f as a deep neural network, specifically a DeepLab-v2 [8]
with ResNet-50 [29] as backbone, as it is a standard architecture for semantic image segmentation.
Following SCOPS [35] we choose VGG19 [63] as the perceptual network φ and use ground truth
foreground masks during training. Unless otherwise specified the backbone and perceptual network
are pre-trained on ImageNet with image-level supervision. The perceptual network is kept fixed,
i.e. its parameters are not further updated during training for part segmentation.

We use the same set of hyper-parameters for both, CUB-200 and Deep-Fashion, whereas some small
changes are necessary for PASCAL-Part since the images are in a different resolution which typically
impacts the magnitude of feature-based losses. We provide all implementation details in the appendix.

4.1 Evaluation Metrics

Prior work on unsupervised part segmentation [35] compares against unsupervised landmark re-
gression methods [66, 84], due to the similarity between the two tasks and the limited availability
of annotations. To do so, landmarks are obtained from part segmentations by taking the center of
each mask, followed by fitting a linear regression model to map the predicted to the ground truth
landmarks. We begin by taking a critical look at this evaluation metric.

We evaluate several baselines on CUB-200-2011 — namely, using the image midpoint, the center
of ground truth keypoints and a single selected ground truth keypoint — and find that the landmark
regression error does not correlate well with segmentation performance. For example, if we assume
a model can accurately predict one single keypoint and nothing else (in this case the “throat”), the
keypoint regression error is already lower than the previous state of the art. This means that a model
that predicts one good part and K − 1 random parts would already outperform all previous methods.
Thus, the metric does not sufficiently measure the segmentation aspect of the task, which is the main
goal of our method, as well as that of [12, 34, 35].

Instead, we propose to measure the information overlap between the predicted labelling and the
ground truth with Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) as we find
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Table 1: Comparison to prior work on CUB-200-2011 [72]. We report keypoint regression error as
the normalized L2 distance (%), as well as (FG-)NMI and (FG-)ARI metrics. All methods predict
K = 4 parts. † uses image-level supervision.

Keypoint Regression Error ↓ FG-NMI↑ FG-ARI↑ NMI↑ ARI↑
Method CUB-001 CUB-002 CUB-003 CUB-all

Image midpoint 27.3 26.7 27.2 23.5 0.0 0.0 0.0 0.0
GT keypoint avg 20.9 22.4 19.9 17.9 0.0 0.0 0.0 0.0
“throat” kpt only 16.4 14.9 15.2 12.1 11.6 -16.2 4.6 -8.3

ULD [66, 84] 30.1 29.4 28.2 - - - - -
DFF [12] 22.4 21.6 22.0 - 32.4 14.3 25.9 12.4
SCOPS [35] (paper) 18.5 18.8 21.1 - - - - -
SCOPS [35] (model) 18.3 17.7 17.0 12.6 39.1 17.9 24.4 7.1
Huang and Li [34]† 15.1 17.1 15.7 11.6 - - 26.1 13.2

Ours 11.3 15.0 10.6 9.2 46.0 21.0 43.5 19.6

this does not suffer from this drawback. Comparing to Intersection-over-Union (IoU) — which is
commonly used to evaluate segmentation and detection performance — in an unsupervised setting,
NMI and ARI have the advantage that they do not require the ground truth annotation to align exactly
with the discovered parts and do not impose a constraint in the value of K, i.e. it does not need to be
the same as the number of annotated categories. We propose to compute NMI and ARI not only on
the full image, but also on foreground pixels only (FG-NMI, FG-ARI). The latter are stricter metrics
that place the focus on part quality, dampening the influence of the background, which can be usually
predicted with high accuracy using state-of-the-art segmentation or saliency methods. Importantly,
these metrics can be computed even if a subset of the pixels are annotated in the dataset, and in
particular even if only keypoint annotations are available, as in the case of CUB-200-2011.

4.2 Ablation Experiments

In Table 2 we evaluate the different objectives used to train our model. We first deactivate each loss
and measure the impact it has on performance in two datasets, CUB-200-2011 and DeepFashion.
Interestingly, we find that the different components differ in importance across the two datasets,
even though we use the same hyper-parameters for both. On CUB-200-2011, the most important
component is to enforce consistency within parts, whereas on DeepFashion visual consistency appears
to have the largest impact. This likely comes from the different nature of “parts” in these two datasets.
For birds, the parts are conceptually defined by shape, function and deformation (which is captured
by features), whereas for the fashion dataset, parts such as T-shirts and trousers can be identified by
their consistent color and texture (which is better captured by the image). Nonetheless, to achieve
maximum performance both components are necessary in both datasets, as well as the equivariance
and contrastive terms. To better understand the importance of the contrastive formulation, we replace
it with a simple L2 loss, i.e. comparing part feature vectors zk across samples in the batch. We refer
to this variant as “L2 instead of contrastive” and note that it performs significantly worse than the full
model with the contrastive loss. To analyze the effect of using different images, we also train a model
where we use parts in differently augmented versions (as is common in representation learning) of the
same image instead (“Lc w/ different views”). Exploiting the information in different images leads
to better performance. Finally, we establish a simple baseline by clustering perceptual features of
concatenated layers relu5_2, relu5_4 from a VGG19 (same layers as used in [35]) with K-means
(K = 4). This simple clustering baseline performs quite well and almost reaches the performance of
previous methods (Table 1), but the proposed approach is clearly stronger. Notably, feature clustering
results in weaker performance for DeepFashion, which intuitively also explains why within-part
consistency (Lf ) is not the most critical component for this dataset.

4.3 Eliminating Supervision

The method we have presented is unsupervised with respect to part annotations. However, similar to
previous work [34, 35], we still rely on backbones pre-trained with ImageNet supervision (IN-1lk),
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Table 2: Ablation. We remove various parts of our model and measure the decrease in performance.
Additionally, we evaluate a baseline where we cluster VGG19 features unsing k-means.

CUB-200-2011 (kp) DeepFashion (fg)

Variant FG-NMI FG-ARI FG-NMI FG-ARI

k-means cluster (VGG19) [relu5_2, relu5_4] 34.9 14.7 30.3 21.4

w/o consistency within parts (λf = 0) 29.7 11.7 40.3 40.0
w/o consistency across parts (λc = 0) 41.3 19.0 39.0 40.1
w/o visual consistency (λv = 0) 38.5 17.9 31.3 25.2
w/o equivariance (λe = 0) 29.3 11.2 41.5 42.7

L2 instead of contrastive Lc = ‖z(n)
k − ẑ(n)

k ‖
2
2 34.0 13.4 36.7 32.0

Lc w/ different views 44.4 20.2 36.4 33.4

Ours (full model) 46.0 21.0 44.8 46.6

Table 3: Elimination of supervision. While our model is unsupervised with respect to part an-
notations of any form, we analyze its performance when moving from weight initialization with
supervised models to weights from unsupervised models. The ablation is shown for K = 4 parts on
CUB-200-2011 [72].

Backbone of f Perceptual Network φ FG Mask FG-NMI FG-ARI

ResNet50 (IN-1k supervised) VGG19 (IN-1k supervised) GT 46.0 21.0

ResNet50 (IN-1k supervised) VGG16 (IN-1k supervised) GT 39.7 19.1
ResNet50 (SwAV[6]) VGG16 (IN-1k supervised) GT 35.4 16.4
ResNet50 (SwAV[6]) VGG16 (DeepCluster-v1 [5]) GT 32.3 14.0
ResNet50 (SwAV[6]) VGG16 (DeepCluster-v1 [5]) [54] 31.9 14.9

and foreground-background segmentation masks. In Table 3 we remove these remaining, weakly
supervised components step by step and replace them with unsupervised models. We notice, that none
of the recent self-supervised methods provides models based on VGG architectures [63], although
VGG is considered a much better architecture for perceptual-type losses than ResNet [29]. We thus
use a VGG16 from DeepCluster-v1 [5]. For a fair comparison we directly compare to a supervised
VGG16 and not our final model that uses VGG19. We find that the performance is indeed impacted by
changing from supervised to unsupervised visual features (−6 NMI) and by replacing the supervised
backbone (−5 NMI). But the final performance is still competitive with previous methods such as
DFF [12] that use ImageNet supervision and masks. Using an unsupervised saliency method [54] for
segmentation instead of ground truth foreground masks only causes a negligible drop in performance.

4.4 Comparisons with the State of the Art

CUB-200. On CUB-200 (Table 1 and Figure 3), we evaluate keypoint regression performance to
be directly comparable to previous work. Due to the aforementioned limitations of this metric, we
also evaluate NMI and ARI on both the foreground object (denoted with FG) and the whole image.
We use the publicly available checkpoint of SCOPS [35] to compute these new metrics for their
method. Additionally, we run DFF [12] using their publicly available code. Finally, we are even able
to improve over [34] who use class labels for fine-grained recognition during training.

Table 4: DeepFashion dataset.We compute (FG-
)NMI and (FG-)ARI for K = 4 parts.

FG-NMI FG-ARI NMI ARI
SCOPS [35] 30.7 27.6 56.6 81.4
Ours 44.8 46.6 68.1 90.6

DeepFashion. Finally, in Table 4 and in Fig-
ure 4 we evaluate our method on the DeepFashion
dataset, reporting (FG-)NMI and (FG-)ARI scores
for K = 4 predicted parts. Our model is able to
identify more meaningful parts (namely: hair, skin,
upper-grament, lower-garment) than SCOPS.

PASCAL-Part. To understand the applicability of the method to a wide variety of objects and
animals, we also evaluate on the PASCAL-Part dataset in Table 5 and Figure 5. We train one model per
object class, as in [35]. However, we note that Hung et al. [35] only evaluate foreground-background
segmentation performance in their paper. We thus train their method on each class and report NMI
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Figure 3: CUB-200 dataset. Qualitative examples for SCOPS [35] and our method show that our
model is able to find clearer part boundaries even in difficult poses, e.g., open wings.
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Figure 4: DeepFashion dataset. Our model is able to separate the hair from the rest of the head and
correctly finds the boundary between upper and lower garments.

Table 5: PASCAL-Part dataset. We show NMI and ARI scores on individual classes in pascal
parts [11]. All methods predict K = 4 parts.

NMI ARI
sheep horse cow mbike plane bus car bike dog cat sheep horse cow mbike plane bus car bike dog cat

DFF [12] 12.2 14.4 12.7 19.1 16.4 13.5 9.0 17.8 14.8 18.0 21.6 32.3 23.3 37.2 38.3 28.5 24.1 39.1 32.3 37.5
SCOPS [35] 26.5 29.4 28.8 35.4 35.1 35.7 33.6 28.9 30.1 33.7 46.3 55.7 51.2 59.2 68.0 66.0 67.1 52.4 52.2 46.6
K-means 34.5 33.3 33.0 38.9 42.8 37.5 38.4 35.2 40.4 44.2 58.3 66.8 59.0 63.1 76.8 66.4 70.6 63.2 70.2 71.9

Ours 35.0 37.4 35.3 40.5 45.1 38.8 36.8 34.8 46.6 47.9 59.8 68.9 59.7 64.7 79.6 67.6 72.7 64.7 73.6 75.4

and ARI for quantitative comparisons. For DFF we perform non-negative matrix factorization on
the set of features of each class separately. Finally, we consider an interestingly strong baseline,
i.e. K-means clustering on foreground pixels trained for each class separately. We find that this
baseline even outperforms prior work [12, 35] by a significant margin. However, our method strikes
a balance between feature similarity and visual consistency, achieving superior part segmentation to
K-means as well as previous methods. One possible explanation for the disadvantage of SCOPS and
DFF to simple K-means clustering is that they learn foreground-background separation and discover
semantic parts in the foreground simultaneously, which appears to be sub-optimal for either task,
i.e. it harms both the foreground and the part segmentation, as also seen in Figure 5.
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Figure 5: PASCAL-Part dataset. We train one model per class for both, our model and SCOPS [35].
For animals we find are able to separate different body parts. (More examples in the appendix.)

5 Discussion

Limitations. One possible drawback of our approach is that there is no underlying reason why
parts of an object should have uniform appearance, as enforced by our visual consistency objective
(e.g., the wheels of a car or a striped garment). However, our main assumption is that different
occurrences of the same part (e.g., the mouth for two people) are more similar to each other than
two different parts (e.g., an eye and a mouth). While this assumption is of course not universally
applicable it is true often enough to be helpful and, complemented by the other objectives, it leads to
a considerable performance improvement over prior work that does not use this concept. Although
we experimented with more complex visual modelling (e.g., higher level statistics or textures), this
did not yield meaningful improvements and is thus left for future investigation. Another limitation is
that parts discovered in a self-supervised manner might not necessarily agree with expected labels
or human intuition. A critical control parameter for this is the number of parts K. It controls the
granularity of the part segmentation and is left as a hyper-parameter since it is up to the user to
decide the level of decomposition. For example, for humans one could segment arms, legs, torso and
head (five parts) or decompose arms into hands, fingers, etc. In the appendix we show results of our
method for different K. Finally, the main failure mode of the current model is failing to separate the
foreground from the background which leads to messy segmentations and scrambled masks (see the
appendix qualitative examples).

Broader Impact. Supervised learning often requires highly-curated datasets with expensive, time-
consuming, manual annotations. This is especially true for pixel-level tasks (e.g., segmentation)
or tasks that require expert knowledge (e.g., fine-grained recognition). As a result, increasing
attention is being placed on improving image understanding using little or no supervision. Since
part segmentation datasets are limited in number and size, a direct positive impact of our approach
is that discovering semantic object parts in a self-supervised manner can significantly increase the
amount of data that can be leveraged to train such models. Finally, as with all methods that learn
from data — and especially in the case of self-supervised learning — it is likely that underlying biases
in the data affect the learning process and consequently predictions made by the model.

6 Conclusion

We have proposed a self-supervised method for discovering and segmenting object parts. We start
from the observation, also discussed in prior work [1, 12], that deep CNN layers respond to semantic
concepts or parts and thus clustering activations across an image collection amounts to discovering
dense correspondences among them. We further expand upon this idea by introducing a contrastive
formulation, as well as equivariance and visual consistency constraints. Our method relies only on
the availability of foreground/background masks to separate an object of interest from its background.
However, as we show experimentally, it is possible to leverage unsupervised saliency models to
acquire such masks, which allows for a model that has no supervised components at all.
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