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ABSTRACT

While the basic laws of Newtonian mechanics are well understood, explaining a physical scenario
still requires manually modeling the problem with suitable equations and estimating the associated
parameters. In order to be able to leverage the approximation capabilities of artificial intelligence
techniques in such physics related contexts, researchers have handcrafted relevant states, and then used
neural networks to learn the state transitions using simulation runs as training data. Unfortunately,
such approaches are unsuited for modeling complex real-world scenarios, where manually authoring
relevant state spaces tend to be tedious and challenging. In this work, we investigate if neural networks
can implicitly learn physical states of real-world mechanical processes only based on visual data
while internally modeling non-homogeneous environment and in the process enable long-term physical
extrapolation. We develop a recurrent neural network architecture for this task and also characterize
resultant uncertainties in the form of evolving variance estimates. We evaluate our setup, both on
synthetic and real data, to extrapolate motion of rolling ball(s) on bowls of varying shape and orientation,
and on arbitrary heightfields using only images as input. We report significant improvements over
existing image-based methods both in terms of accuracy of predictions and complexity of scenarios;
and report competitive performance with approaches that, unlike us, assume access to internal physical
states.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Animals can make remarkably accurate and fast predictions
of physical phenomena in order to perform activities such as
navigate, prey, or burrow. However, the nature of the mental
models used to perform such predictions remains unclear and is
still actively researched Hamrick et al. (2016).

In contrast, science has developed an excellent formal under-
standing of physics; for example, mechanics is nearly perfectly
described by Newtonian physics. However, while the constituent
laws are simple and accurate, applying them to the description
of a physical scenario is anything but trivial. First, the scenario
needs to be abstracted (e.g., by segmenting the scene into rigid
objects, deciding which equations to apply, and estimating phys-
ical parameters such as mass, linear and angular velocity, etc.).
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Then, prediction still requires the numerical integration of com-
plex systems of equations. It is unlikely that this is the process
of mental modeling followed by natural intelligences.

In an effort to develop models of physics that are more suitable
for artificial intelligence, in this work, we ask whether a represen-
tation of the physical state of a mechanical system can be learned
implicitly by a neural network, and whether this can be used to
perform accurate predictions efficiently (i.e., extrapolating to
predict future events). To this end, we propose a new learnable
representation with several important properties. First, the rep-
resentation is not handcrafted, but rather automatically induced
from visual observations using supervision from known physical
quantities such as positions and angular velocities. Second, the
representation is distributed and can model physical interactions
of objects with complex surrounding, such as irregularly-shaped
ground. Third, despite its distributed nature, the representation
can model a number of interacting discrete objects such as col-
liding balls, without the need of ad-hoc components such as col-
lision detection subnetworks. Fourth, since physical predictions
integrate errors over time and are thus inherently ambiguous, the
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representation produces robust probabilistic predictions which
model such ambiguity explicitly. Finally, through extensive eval-
uation, we show that the representation performs well for both
extrapolation and interpolation of mechanical phenomena.

Our paper is not the first that looks at learning to predict
mechanical phenomena using deep networks. In particular, in-
ducing a physical representation automatically from visual data
and handling object interactions were explored in (Fragkiadaki
et al., 2016; Watters et al., 2017). However, in this paper we
propose a method that combines these benefits, with the main
technical novelty of a distributed tensor representation for the
physical state. The latter enables us to consider more complex
environments.

Earlier, the recent Neural Physics Engine (NPE) of Chang
et al. (2017) uses a neural network to learn the state transition
function of mechanical systems. Differently from ours, their
state is handcrafted and includes physical parameters such as
positions, velocities, and masses of rigid bodies. While NPE
works well, it still requires to abstract the physical system man-
ually, by identifying the objects and their physical parameters,
and by explicitly integrating such parameters. In practice, this
requires an extensive knowledge of the environment that, in turn,
can bring in more estimation errors (Yu et al., 2016). In contrast,
our abstractions are entirely induced from external observations
of object motions. Hence, our system implicitly discovers any
hidden variable or state required to perform tasks such as long-
term physical extrapolation in an optimal manner. Furthermore,
the integration of physical parameters over time is also implicit
and performed by a recurrent neural network architecture. This
is needed since the nature of the internal state is undetermined;
it also has a major practical benefit as, as we show empirically,
the system can be trained to not only extrapolate physical trajec-
tories, but also to interpolate them. Remarkably, interpolation
is still obtained by computing the trajectory in a feed-forward
manner, from the first to the last time step, using the recurrent
model.

Another significant difference with NPE is in the fact that
our system uses visual observations to perform its predictions.
In this sense, the work closest to ours is the Visual Interaction
Networks (VIN) of Watters et al. (2017), which also use visual
input for prediction. However, our system is significantly more
advanced as it can model the interaction of objects with complex
and irregular terrain. We show empirically that VIN is not very
competitive in our more complex experimental setting.

There are also several aspects that we address for the first
time in this paper. Empirically, we push our model by consid-
ering scenarios beyond the ‘flat’ ones tackled by most recent
papers, such as objects sliding and colliding on planes, and look
for the first time at the case of ball(s) rolling on non-trivial 3D
shapes (e.g., bowls of varying shape and orientation, or terrains
modeled as arbitrary heightfields), where both linear and an-
gular momenta are tightly coupled. Our method is evaluated
on both synthetic and real data using the Roll4Real dataset of
Ehrhardt et al. (2018). We also increased the complexity of the
task by training models that simultaneously estimate positions
and angular velocity. Furthermore, since physical extrapolation
is inherently ambiguous, we allow the model to explicitly esti-

mate its prediction uncertainty by estimating the variance of a
Gaussian observation model. We show that this modification
further improves the quality of long-term predictions. While our
work builds on previous research of Ehrhardt et al. (2017a) and
Ehrhardt et al. (2017b), in this paper we propose a much more
complex set of experiments including the irregularly shaped
heightfield and multiple balls experiment as well as stronger
baselines that highlight the performances of our models. Fur-
thermore, a more careful study of the various results presented
has been conducted and exhaustively discussed.

The rest of the paper is organized as follows. The relation
of our work to the literature is discussed in section 2. The
detailed structure of the proposed neural networks is given and
motivated in section 3. These networks are tested on a large
dataset of simulated physical experiments described in section 4
and extensively evaluated and contrasted against related works
in section 5. We conclude by discussing current limitations and
directions for future investigation in section 6.

2. Related Work

We address the problem of training deep neural networks that
can perform long-term predictions of mechanical phenomena
while learning the required physical laws implicitly, via em-
pirical and visual observation of the motion of objects. This
research is thus related to a number of recent works in various
machine learning sub-areas, discussed next.

Learning intuitive physics. Battaglia et al. (2013) are one of the
first to consider ‘intuitive’ physical reasoning; their aim is to
answer simple qualitative questions related to rigid body pro-
cesses, such as determining whether a certain tower of blocks
is likely to fall or not. They approach the problem by using
a sophisticated physics engine that incorporates all required
knowledge about Newtonian physics a-priori. More recently,
Mottaghi et al. (2016) used static images and a graphics render-
ing engine (Blender) to predict motion and forces from a single
RGB image. Motivated by the recent success of deep learning
for image analysis (e.g., Krizhevsky et al. (2012)), they trained
a convolutional neural network to predict such quantities and
used it to produce a “most likely motion,” rendering it using a
traditional computer graphics pipeline. With a similar motiva-
tion, Lerer et al. (2016) and Li et al. (2017) also applied deep
networks to predict the stability of towers of blocks purely from
images. These approaches demonstrated that such networks
can not only predict instability, but also pinpoint the source of
such instability, if any. Other approaches such as Agrawal et al.
(2016) or Denil et al. (2016) have attempted to learn intuitive
physics of objects through manipulation; however, their models
did not aim to capture the underlying dynamics of the systems.

Learning physics. The work by Wu et al. (2015) and its ex-
tension Wu et al. (2016) propose methods to learn physical
properties of scenes and objects. Wu et al. (2015) use an MCMC-
sampling based approach that assumes complete knowledge of
the physical equations necessary to estimate physical parameters.
In Wu et al. (2016), a deep learning based approach was used
instead of MCMC, albeit still explicitly encoding physics in a
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simulator. Physical laws were also explicitly incorporated in the
model by Stewart and Ermon (2017) to predict the movement of
a pillow from unlabelled data. Their method was, however, only
applied to a fixed small number of future frames. Work of Yu
et al. (2016) proposing a high fidelity dataset for planar pushing
reveals that what might be thought of as a simple task, to push
an unknown object to a desired position, remains a challenging
task in robotics, and is generally better explained by stochastic
models than by estimating and modelling the physical world.

The research performed by Battaglia et al. (2016) and Chang
et al. (2017) focused on dynamics and attempted to partially
substitute the physics engine with a neural network that captures
a selection of relevant physical laws. Both approaches were
able to use such networks to accurately predict updates for the
physical state of the world. Although results are plausible and
promising, Chang et al. (2017) suggest that long-term predic-
tions remain difficult. Furthermore, in both approaches, their
neural networks only predict instantaneous updates of physical
parameters that are then explicitly integrated. In contrast, in
this work propagation is implicit and applies a recurrent neural
network architecture to an implicit representation of the world.

Closer to our approach, Fragkiadaki et al. (2016) and
Watters et al. (2017) attempted to learn an internal representa-
tion of the physical world from images. In addition to observing
images, it is also possible to generate them as Fragkiadaki et al.
(2016) learn to perform long-term extrapolation more success-
fully. The work of Fragkiadaki et al. (2016) particularly differs
from ours in this last point and the nature of its internal repre-
sentation (vector representation in their work vs tensor in ours)
which, as demonstrated in 5.2, is essential for our method. Simi-
larly Wu et al. (2017) also used a physics engine and a renderer
to make future predictions. In both cases, image generation can
be seen as a constraint that avoids the over time degeneration
of the internal representation of dynamics. However, these ap-
proaches need exhaustive and exact knowledge of every object
and the environment, information generally not accessible in
real life scenarios. The work of Watters et al. (2017) extends the
Interaction Network by Battaglia et al. (2016) to propagate an
implicit representation of the dynamics of objects, obtaining a
Visual Interaction Network (VIN). While their approach is the
closest to ours, it has various limitations including not modeling
the interaction with complex environments and the relatively
small size of the input images. The Predictron by David et al.
(2016) also propagates a tensor state, but suffers from the same
drawbacks. Ehrhardt et al. (2017b) showed, how long-term
extrapolation models can be trained for one object moving on
smooth analytic surfaces, such as ellipsoids.

Approximating physics for plausible simulation. Several authors
focused on learning to perform plausible physical predictions,
for example to generate realistic future frames in a video Tomp-
son et al. (2016); Ladický et al. (2015), or to infer rigid body
collision parameters from monocular videos Monszpart et al.
(2016). In these approaches, physics-based losses are used to
learn plausible yet not necessarily accurate results, which may be
appropriate for tasks such as rendering and animation. Battaglia
et al. (2016) also use a loss that captures the concept of energy
conservation. The latter can be seen as a way to incorporate

knowledge about physics a-priori into the network, which dif-
fers from our goal of learning any required physical knowledge
from empirical observations.

Learning dynamics. Physical extrapolation can be performed
without integrating physical equations explicitly. For example,
LSTMs Hochreiter and Schmidhuber (1997) were used to make
accurate long-term predictions in human pose estimation Ville-
gas et al. (2017) and in simulated environments Oh et al. (2015);
Chiappa et al. (2017). Propagation can also be done using sim-
pler convolutional operators; Xue et al. (2016), in particular,
used these to generate possible future frames given a single
static image and De Brabandere et al. (2016) applied it to the
moving MNIST dataset for long-term prediction. The work
by Ondruska and Posner (2016) and Ehrhardt et al. (2017a) also
showed that an internal representation of dynamics can be prop-
agated through time using a simple deep recurrent architecture.
Greff et al. (2017) demonstrated that information about dynam-
ics can be used to efficiently cluster different observed shapes.
Our work builds on their success, and propagates a tensor-based
state representation instead of a vector-based one. Using spatial
convolutional operators allows for knowledge to be stored and
propagated locally w. r. t. the object locations in the images.

3. Method

In this section, we propose a novel neural network model
to make predictions about the evolution of a mechanical sys-
tem from visual observations of its initial state. In particular,
this network, summarized in Fig. 1, can predict the motion of
one or more rolling objects accounting for variations in the 3D
geometry of the environment.

Formally, let yt be a vector of physical quantities that we
would like to predict at time t, such as the position of one or more
objects. Physical systems satisfy a Markov condition, in the
sense that there exists a state vector ht such that (i) measurements
yt = g(ht) are a function of the state and (ii) the state at the next
time step ht+1 = f (ht) depends only on the current value of the
state ht. Uncertainty in the model can be encoded by means
of observation p(yt |ht) and transition p(ht+1|ht) probabilities,
resulting in a hidden Markov model.

State-only methods, such as the Neural Physics Engine (NPE)
by Chang et al. (2017) start from an handcrafted definition of
the state ht. For instance, in order to model a scenario with two
balls colliding, one may choose ht to contain the position and
velocity of each ball. In this case, the observation function g
may be as simple as extracting the position components from
the state vector. It is then possible to use a neural network φ to
approximate the transition function f . In particular, Chang et al.
(2017) suggest that it is often easier for a network to predict a
rate of change ∆t = φ(ht) for some of the physical parameters
(e.g., the balls’ velocities), which can be used to update the state
using a hand-crafted integrator ht+1 = f̃ (ht,∆t).

While this approach works well, there are several limitations.
First, even if the transition function is learned, the state ht is
defined by hand. Even in the simple case of the colliding balls,
the choice of state is ambiguous; for example, one could in-
clude in the state not only the position and velocity of the balls,
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Fig. 1: Overview of our proposed pipeline. The first four images of a sequence
first pass through a partially pre-trained feature encoder network to build the
concept of physical state. It then recursively passes through a transition layer
to produce long-term predictions about the future states of the objects. It is
then decoded to produce state estimates. While our DispNet and PosNet models
are trained to regress the next states, the ProbNet model trained with the log-
likelihood loss is also able to handle the notion of uncertainty thanks to its
extended state space. Note here that only one object is considered, extension for
multiple objects is discussed in section 3.4.

but also their radius, mass, elasticity, friction coefficients, etc.
Learning the state as well has the significant benefit of making
such choices automatic. Second, training a transition function
requires knowledge of the state values, which may be difficult to
obtain except in the case of simulated data. Third, in order to use
such a system to perform predictions, one must know the initial
value of the state h0 of the system, whereas in many applications
one would like to start instead from sensory inputs xt such as
images Fragkiadaki et al. (2016).

We propose here an approach to address these difficulties. We
assume that the state ht is a hidden variable, to be determined as
part of the learning process. Since the ht cannot be observed, the
transition function ht+1 = f (ht) cannot be learned directly as in
the NPE. Instead, state and transitions must be inferred jointly
as a good explanation of the observed physical measurements
yt. Any integrator involved in the computation of the transition
function is implicitly moved inside the network, which is a recur-
rent neural network architecture. In our experiments (section 5),
we show that the added flexibility of learning an internal state
representation and its evolution automatically allows the system
to scale well to the complexity of the physical scenario.

Since the evolution of the state ht cannot be learned by observ-
ing measurements yt in isolation, the system is supervised using
sequences y[0,T ) = (y0, . . . , yT−1) of observations. This is analo-
gous to a Hidden Markov Model (HMM), which is often learned
by maximizing the likelihood of the observation sequences af-
ter marginalizing the hidden state.1 As an alternative learning
formulation, we propose instead to consider the problem of long-
term predictions starting from an initial set of observations. Not
only this is more directly related to applications, but it has the
important benefit that predictions can be performed equally well
from initial observations of the physical quantities yt or of some
other sensor reading xt, such as images.

Our system is thus based on learning three modules: (i) an en-
coder function that estimates the state ht = φenc(x(t−T0,t]) from the
T0 most recent sensor readings (alternatively ht = φenc(y(t−T0,t])
can use the T0 most recent physical observations); (ii) a tran-
sition function ht+1 = φtrans(ht) that evolves the state through
time; and (iii) a decoder function that maps the state ht to a
physical observation yt = φdec(ht), and in some case an uncer-
tainty associated. The rest of the section discusses the three
modules, encoder, transition, and decoder maps, as well as the
loss function used for training. Further technical details can be
found in section 5.

3.1. Encoder Map: from images to state
The goal of the encoder map is to take T0 consecutive video

frames observing the initial part of the object motion and to
produce an estimate h0 = φenc(x(−T0,0]) of the initial state of
the physical system. In order to build this encoder, we fol-
low Fragkiadaki et al. (2016) and concatenate the RGB chan-
nels of the T0 images in a single Hi × Wi × 3T0 tensor. The
latter is passed to a convolutional neural network φenc outputting
a feature tensor s0 ∈ RH×W×C , used as internal representation
of the system’s state. Note that this representation is spatially
distributed and differs from the concentrated vector representa-
tion of the VIN of Watters et al. (2017). In the experiments, we
will show the advantage of using a tensorial representation in
modeling complex environments. We also augment our tensor
representation with a state vector pt ∈ Rn, so that the state is
the pair ht = (st, pt). In deterministic cases, n = 2 and pt is the
2D projection of the object’s location on the image plane. For
multiple objects (see section 3.4) this state is computed for each
object independently.

3.2. Transition Map: evolving the state
The state ht is evolved through time by learning the transition

function φtrans : ht 7→ ht+1. Since the initial state h0 is obtained
from the encoder map, the state at time t can be written as,
ht = φt

trans(φenc(x(−T0,0])).
More in detail, the distributed state component st is updated by

using a convolutional network st+1 = φs(st). The concentrated

1 Formally, a Markov model is given by p(y[0,T )],h[0,T )) =

p(h0)p(y0 |h0)
∏T−2

t=0 p(ht+1 |ht)p(yt+1 |ht+1); traditionally, p can be learned as the
maximizer of the log-likelihood maxp Ey[log Eh[p(y,h)]], where we dropped
the subscripts for compactness. Learning to interpolate/extrapolate can be done
by considering subsets ȳ ⊂ y of the measurements as given and optimizing the
likelihood of the conditional probability maxp Ey[log Eh[p(y,h|ȳ)]].
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component pt is updated incrementally as pt+1 = pt + φp(st),
where φp(st) is estimated using a single layer perceptron regres-
sor from the distributed representation. Combined, the state
update can be written as,

(st+1, pt+1) = φtrans(st, pt) = (φs(st), pt + φp(st)).

Inspired by the work of Watters et al. (2017), we also consider
an alternative architecture where pt is estimated directly from
st rather than incrementally. In order to do so, the location x
and y of each pixel is appended as feature channels C + 1 and
C + 2 of the distributed state tensor st, obtaining an augmented
tensor augxy(st). Then the object’s position pt is estimated by a
two-layer perceptron pt = φp(augxy(st)).

3.3. Decoder Map: from state to probabilistic predictions

For deterministic models, the projected object position pt

is part of the neural network state, the decoder map ŷt =

φdec(st, pt) = pt simply extracts and returns that part of the state.
Training optimizes the average L2 distance between ground truth
yt and predicted ŷt positions 1

T
∑T−1

t=0 ‖ŷt − yt‖
2.

In addition to this simple scheme, we also consider a more
robust variant based on probabilistic predictions. In fact, the
extrapolation error accumulates and increases over time, and the
L2-based loss may be dominated by outliers, unbalancing learn-
ing. Hence, we modify the model to explicitly and dynamically
express its own prediction uncertainty by outputting the mean
and variance (µt,Σt) of a bivariate Gaussian observation model.
The L2 loss is thus replaced with the negative log likelihood
− 1

T
∑T−1

t=0 logN(yt; µt,Σt) under this model.
In order to estimate the Gaussian parameters µt and Σt,

we extend the state component pt = (µt, λ1,t, λ2,t, θt) to in-
clude both the mean as well as the eigenvalues and rotation
of the covariance matrix Σt = R(θt)ᵀ diag(λ1,t, λ2,t)R(θt). In or-
der to ensure numerical stability, eigenvalues are constrained
to be in the range [0.01, 100] by setting them as the output
of a scaled and translated sigmoid λi,t = σλ,α(βi,t), where
σλ,α(z) = λ/(1 + exp(−z)) + α. In the following, we will refer
to this method as ProbNet, whereas the other method estimated
displacement without uncertainty will be referred to as DispNet.
Table 1 summarize the different methods and their specificity.

3.4. Extension to multiple objects

We now consider how the model described above can be
extended to handle multiple interacting objects. This is more
challenging as it requires to handle complex object interactions
such as collisions.

In order to do so, for each object oi, i = 1, . . . ,Nobjects we
consider a separate copy of the distributed state tensor soi

t (hence
the overall state is st = (so1

t , . . . , s
oNobjects
t )). The encoder network

Table 1: Neural network variants.

Name pt regression pt+1 output and loss
DispNet incremental pt + φp(st) deterministic
ProbNet incremental pt + φp(st) probabilistic
PosNet direct φp(st) deterministic

φenc is thus modified to output a H × W × NobjectsC tensor. It
is then split along the third dimension to produce H ×W × C
tensor for each of the Nob jects. We order objects w. r. t. their
color so that each feature is always responsible for the same
object identified by its color. We recall here that this extension
studies the ability of handling collisions of our model without
any explicit module. We aim in the future to build more object
agnostic representation.

The input of the transition module is also modified to take
into account the interaction between objects. Focusing on an
object o f with state so f

t , the update is written as

so f

t+1 = φs

so f
t ,
∑
i, f

soi
t


where the second argument is the sum of the state subtensors for
all other objects. Since the function φs is the same for all objects
o f , this ensures that object interactions are symmetric and com-
mutative. Note that, as opposed to methods such as Chang et al.
(2017), no explicit collision detection module is implemented
here. Instead, handling collisions is left to the discretion of the
network.

With this modification, the transition subnetwork is illustrated
in Fig. 2. The rest of the pipeline is essentially the same as
before and is applied independently to each object. The same
network parameters are used for each application of a module
regardless of the specific object.

4. Experimental Setup

Experiments were conducted on both real and synthetic
datasets. In the synthetic experiments (Fig. 3), we consider two
physical scenarios: spheres rolling on a 3D surface, which can be
either a semi-ellipsoid with random parameters or a continuous
randomized heightfield. When the semi-ellipsoid is isotropic (i.e.
a hemisphere) we refer to it as ‘Hemispherical bowl’, and in the
more general case as ‘Ellipsoidal bowl’ (see Table 2), whereas
the heightfield scenario is referred to as ‘Heightfield.’

4.1. Hemispherical bowl and Ellipsoidal bowl scenarios
The symbol p = (px, py, pz) ∈ R3 denotes a point in 3D space

or a vector (direction). The camera center is placed at location
(0, 0, cz), cz > 0 and looks downward along vector (0, 0,−1)

Σ

s2
t

s1
t

s3
t

s2
t+1

φs

Fig. 2: Multiple object extension. For each object (here object 2) we concate-
nate the state of this object with the addition of the other objects features. We
then give this tensor to the module φs to obtain our new state s2

t+1
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using orthographic projection, such that the point (px, py, pz)
projects to pixel (px, py) in the image.

(0, 1, 1)

(0, 0, cz )

(0, 0, 0) (a, 0, 1)

(a) (b) (c)

Fig. 3: Problem setup. We consider the problem of understanding and extrapo-
lating mechanical phenomena with recurrent deep networks. (a) Experimental
setup: an orthographic camera looks at a ball rolling in a 3D bowl. (b) Example
of a 3D trajectory in the 3D bowl simulated using Blender 2.78’s OpenGL ren-
derer. (c) An example of a rendered frame in the ‘Ellipsoidal bowl’ experiment
that is fed to our model as input.

Thus, the ‘Ellipsoidal bowl’ is the bottom half of an ellipsoid
of equation x2/a2 + y2 + (z − 1)2 = 1 with its axes aligned
to the xyz axes and its lowest point corresponding to the ori-
gin. For the ‘Ellipsoidal bowl’ scenario, the ellipsoid shape is
further varied by sampling a ∈ U[0.5, 1] for the (a = 1 for
the ‘Hemispherical bowl’ scenario) and by rotating the resulting
shape randomly around the z-axis. Both ‘Hemispherical bowl’
and ‘Ellipsoidal bowl’ are rendered by mapping a checker board
pattern to their 3D surface (to make it visible to the network).

The rolling object is a ball of radius ρ ∈ {0.04, 0.225}. The
ball’s center of mass at time t is denoted as qt = (qt

x, q
t
y, q

t
z),

which, due to the orthographic projection, is imaged at pixel
(qt

x, q
t
y). The ball has a fixed multi-color texture attached to

its surface, so it appears as a painted object. The texture is
used to observe the object rotation. We study the impact of
being able to visually observe rotation by re-rendering the single
ball experiments with a uniform white color (see Table 3). In
the multi-object experiments, instead, each ball has a constant,
distinctive diffuse color (intensity 0.8) with Phong specular com-
ponent (intensity 0.5). We initially position the ball at angles
(θ, φ) with respect to the the bowl center, where the elevation
θ is uniformly sampled in the range θ ∈ U[−9π/10,−π/2] and
the azimuth φ ∈ U[−π, π]. The minimum elevation is set to
−9π/10 to avoid starting the ball at the bottom of the bowl. Due
to friction, at the end of each experiment the ball rests at the
bottom of the bowl.

The initial orientation of the ball (relevant for the multi-
colored texture) is obtained by uniformly sampling its xyz Euler
angles in [−π, π]. The ball’s initial velocity v is obtained by first
sampling vx, vy uniformly in the range U[5, 10], assigning each
of vx, vy a random sign (∼ 2B (0.5) − 1), and then by projecting
the vector (vx, vy, 0) to be tangential to the bowl’s surface. In
the multi-object ‘Ellipsoidal bowl’ scenario, in order to achieve
more interesting motion patterns, the magnitude of the initial
velocities is set uniformly in the range U[10, 15]; if, after simula-
tion, a ball leaves the bowl due to a collision or excessive initial
velocity, the scene is discarded. Sequences are recorded until all
objects stop moving. Short sequences (less than 250 frames) are
discarded as well. The average angular velocity computed over
all ‘Bowl’ scenes was 5.94 radian/s.

Note that, while some physical parameters of the ball’s state
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Fig. 4: Experimental setups. (a) ‘Ellipsoidal bowl’ experiment setup, depth
map on the top, network input with isocontours at the bottom. We create the
dataset by varying the ellipsoid’s main axis ratio and orientation, and the starting
position and velocity of the balls. (b-c) ‘Heightfield’ rendering setup. Each
sequence is generated using a random translation and rotation of the fixed
heightfield geometry. Walls ensure the automatically generated sequences are
long enough. A randomly positioned area light presents additional generalization
challenges to the network.

are included in the observation vector yα[−T0,T ), these are not part
of the state h of the neural network, which is inferred automati-
cally. The network itself is tasked with predicting part of these
measurements, but their meaning is not hardcoded.

Simulation details
For efficiency, we extract multiple sub-sequences xα[−T0,T )

form a single longer simulation (training, test, and valida-
tion sets are however completely independent). The simula-
tor runs at 120fps for accuracy, but the data is subsampled
to 40fps. We use Blender 2.78’s OpenGL renderer and the
Blender Game Engine (relying on Bullet 2 as physics en-
gine). The ball is a textured sphere with unit mass. The
simulation parameters were set as: max physics steps = 5,
physics substeps = 3, max logic steps = 5, fps = 120. Render-
ing used white environment lighting (energy = 0.7) and no other
light source in the ‘Hemispherical bowl’ case, environment en-
ergy = 0.2, and a spotlight at the location of the camera in
the ‘Ellipsoidal bowl’ case. We used 70% the data for training,
15% for validation, and 15% for test, 12500 sequences in the
‘Hemispherical bowl’/‘Ellipsoidal bowl’ experiments and 6400
in the ‘Heightfield’ case. During training, we start observation
at a random time while it is fixed for test. The output images
were stored as 256 × 256 color JPEG files. For multiple objects
in the ellipsoid experiment, we set the elasticity parameter of
the balls to 0.7 in order to get a couple of collisions before they
settle in the middle of the scene.

4.2. Heightfield scenario

An important part of our experiments involve randomly gen-
erated continuous heightfields. Long-term motion prediction
on random heightfields represent a tougher challenge, since
solely observing the motion of the object at the beginning of
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the sequence does not contain enough information for success-
ful mechanical predictions. In contrast to the ‘Ellipsoidal bowl’
cases, where the 2D shape that the container occupies in the
image is theoretically enough to infer the analytical shape of the
local surface at any future 3D point of interest, in the ‘Height-
field’ case the illumination conditions of the surface have to be
parsed. Furthermore, a more elaborate understanding about the
interaction between surface and 3D rolling motion has to be
developed.

Similar to the ellipsoid cases, we generate randomized se-
quences of a ball rolling on a random (heightfield) surface. We
approximate random heightfields by generating a large (8 ×
8) Improved Perlin noise texture and applying it as a displace-
ment map to a highly tessellated plane. For each scene, we
uniform randomly rotate and translate the plane so that a dif-
ferent part (2.5 × 2.5) of the heightfield is visible under the
static camera. In order to generate motion sequences of enough
length for long-term extrapolation, we also surround the camera
frustum with perfectly elastic walls (see Fig. 4c). The noise
texture has a scale parameter, which we vary between 0.7 (fairly
planar) and 0.2 resulting in high curvature surfaces that have
holes comparable with the ball diameter. We set the surface
elasticity to 0 in order to encourage the balls to roll and not
bounce. The initial placement of the ball, similarly to the bowl
case, is drawn from a 2D uniform distribution. Then, we use
sphere tracing to push the ball onto the surface from the cam-
era plane. We add a small random initial velocity (U[2, 4]),
and similarly to the ‘Hemispherical bowl’ case, we project the
initial velocity onto the local surface normal. The average an-
gular velocity computed over all ‘Heightfield’ scenes was 2.8
radian/s. The surface is lit with a small (0.1 × 0.1) area light
from a random location. We draw the 2D position of the light as
x, y ∼ (2B (0.5) − 1) (U [1, 1.5] × U [1, 1.5]), with a fixed cam-
era height z = 2.

4.3. Real data

Additonally, we experimented on real data. We evaluated
our methods on the Roll4real dataset by Ehrhardt et al. (2018).
The dataset consists of 1118 short 256 × 256 videos containing
one or two balls rolling on three types of terrains: a flat pool
table PoolR, a large ellipsoidal ‘bowl’ BowlR, and an irregular
height-field HeightR. More specifically, there are 151 videos
(avg. 99 frames/video) for the PoolR dataset with one ball; 216
videos (522 frames/video). For the BowlR dataset with one ball;
543 videos (avg. 356 frames/video) for the HeightR dataset
with one ball; and 208 videos (avg. 206 frames/video) for the
HeightR dataset with two balls. More details about the dataset
and the way to obtain ground-truth annotations can be found in
Ehrhardt et al. (2018).

5. Results and Discussions

5.1. Baselines

(i) Least squares fit. We compare the performance of our meth-
ods to two simple least squares baselines: Linear and Quadratic.
In both cases, we fit least squares polynomials to the screen-
space coordinates of the first T = 10 frames, which are not

computed but given as inputs. The polynomials are of first and
second degree(s), respectively. Note, that being able to observe
the first 10 frames is a large advantage compared to the networks,
which only see the first T0 = 4 frames.

(ii) NPE. The NPE method and its variants were trained using
available online code. We used the same training procedure as
reported in Chang et al. (2017). Additionally, we added angular
velocities as input and regressed type of parameter. In the case
of the Ellipsoidal bowl, both scaling and bowl rotation angle are
also given as input to the networks. In this case NPE’s method
carries forward the estimated states via the network.

(iii) V-LSTM model. Inspired by the models of Fragkiadaki et al.
(2016), we developed an LSTM architecture as a baseline. The
architecture is similar to the one in Fragkiadaki et al. (2016), as
it reuses the exact same truncated pre-trained AlexNet encoder,
and the same LSTM and decoder architecture with the following
two differences: First, we do not regenerate images to produce
a new input for the LSTMs, we rather used the last output of
the LSTM. Second, the decoder only produces the next state
estimate and not the 20 next ones to make it a fair comparison
to our models. As the multiple ball version in the original paper
required centering the frame of each independent object and
regenerating images at every time step, we considered a simple
reimplementation with one V-LSTM network for each of the
individual objects. Thus we can take into account the entire
frame without any need to regenerate images.

(iv) VIN and IN From State (IFS). Finally, we used VIN network
and its state variant IN From State from Watters et al. (2017). IFS
is essentially a version of VIN where the propagation mechanism
is the same but the first state vector is not deduced from visual
observation but given as ground truth position and velocity as
in the NPE. The VIN network uses downscaled 32 × 32 images.
Both networks use training procedures as reported in Watters
et al. (2017) with the exceptions that for IFS the learning rate
was updated using our method (see section 5.2) and we rely on
the first 4 states and 16 rolled out steps. As with NPE, angular
velocity was also added to IFS input and regressed parameters.
Scaling and rotation angle of the bowl were also given as input
to the network in Ellipsoidal bowl experiment. Note that VIN
and our models work with images as direct observation of the
world rather than perfect states, which represents a much more
difficult problem whilst yielding a more general applicability.
Physical properties are then deduced from the observations and
integrated through our Markov model. Thus, these methods
do not need a simulator to estimate parameters of the physical
worlds (such as scaling and rotation angle) and can be trained
on changing environments without requiring additional external
measurements of the underlying 3D spaces.

5.2. Results

Implementation details. The encoder network φenc is obtained
by taking the ImageNet-pretrained VGG16 network of Simonyan
and Zisserman (2015) and retaining the layers up to conv5 (for
an input image of size (Hi,Wi) = (128, 128, 3) this results in a
(8, 8,N f = 512) state tensor st). In the 3 balls experiments, we
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Fig. 5: Errors in bowls. Pixel errors and angular velocity RMSE in radian/s (first two columns of Table 2). Our method performs comparably to state based methods,
which use ground truth state information for initialization compared to ours, which operates with visual input. Hatched denotes non-visual input (i.e. direct access to
physical states).

replaced the last conv5 layer with a convolutional layer of output
256 × 3 channels. Object features are thus obtained by splitting
this last tensor along the channel dimension into (8, 8,N f = 256)
state tensor per object. The filter weights of all layers except
conv1 are retained for fine-tuning on our problem. The conv1 is
reinitialized as filters must operate on images with 3T0 channels.
The transition network φs(st) uses a simple chain of two convo-
lution layers2with 256 and N f filters respectively, of size 3 × 3,
stride 1, and padding 1 interleaved by a ReLU layer.Network
weights are initialized by sampling from a Gaussian distribution.
Additionally, angular velocity is always regressed from the state
st using a single layer perceptron.

Training uses a batch size of 50 using the first Ttrain positions
and angular velocity (or only position when explicitly men-
tioned) of each video sequence using RMSProp by Tieleman
and Hinton (2012). We start with a learning rate of 10−4 and
decrease it by a factor of 10 when no improvements of the loss
have been found after 100 consecutive epochs. Training is halted
when the loss has not decreased after 200 successive epochs;
2,000 epochs were found to be usually sufficient for convergence.
In every case the loss is the sum of the L2 angular velocity loss
and either L2 position errors (PosNet, DispNet) or likelihood
loss (ProbNet) (see section 3.3). We omit the angular loss, when
angular velocity is not regressed (labelled as “* w/o ang. vel.” in
the tables).

Since during the initial phases of training the network is very
uncertain, the model using the Gaussian log-likelihood loss was
found to get stuck on solutions with very high variance Σ(t).
To address this, we added a regularizer λ

∑
t det Σ(t) to the loss,

with λ = 0.01.
In all our experiments we used Tensorflow (Abadi et al.

(2015)) r1.3 on a single NVIDIA Titan X GPU.

5.2.1. Extrapolation
(i) Experiments using a single ball. Table 2 compares the base-
line predictors and the eight networks on the task of long term
prediction of the object trajectory. All methods observed only

2We did not see the need to use an architecture incorporating a gating mech-
anism, such as a Conv-LSTM Xingjian et al. (2015), because in our case the
transition function φs(st) does not observe new evidence after the first T0 frames
rendering the use of gating less useful.

the first T0 = 4 inputs (either object states or simply image
frames) except for the linear and quadratic baselines, and aimed
to extrapolate the trajectory to Tgen = 40 time steps. Predictions
are “long term” relative to the number of inputs T0 � Tgen.
Note also that during training networks only observe sequences
of up to Ttrain ≤ Tgen frames; hence, the challenge is not only
to extrapolate physics, but to generalize beyond extrapolations
observed during training.

Quantitative evaluation. Table 2 reports the average errors at
time Ttrain = 20 and Tgen = 40 for the different estimated pa-
rameters. Our methods outperform state-only approaches for
predictions of up-to Ttrain steps. For example, PosNet has a pixel
error of 1.0/1.2/6.8 in the Hemispherical/Ellipsoidal/Heightfield
scenarios vs 3.3/2.7/10.9 of NPE, 1.6/3.1/8.7 of IFS. This is
non-trivial as our networks know nothing about physical laws
a-priori, and observe the world through images rather than being
given the initial ground-truth state values. On the other hand,
our methods can, through images, better observe and hence
model the underlying environments. The gap in the heightfield
results, in particular, shows the value in observing the environ-
ments in this manner as we constantly out-perform state-only
methods. Our methods also shown to make significantly better
predictions compared to the other visual competitors. For in-
stance, V-LSTM was unable to match the strong performance
of our networks (pixel errors are 5.7/4.0/8.8 in the Hemispheri-
cal/Ellipsoidal/Heightfield scenarios respectively) highlighting
the advantage of a spatially distributed tensor state representa-
tion as opposed to a vector one. As for the VIN network, it
failed to be able to model interactions between the object and
its environment and performed poorly even on training regimes
(40.4/24.0/42.6 respectively).

All methods can perform arbitrary long predictions. Our net-
works, which are only trained to predict the first Ttrain positions,
are still competitive with state-only methods (which only predict
a transition function and hence implicitly generalize to arbitrarily
lengths) even when predictions are generalized to Tgen steps. In
particular, while performances around Tgen deteriorates, PosNet
provides very promising results, reaching nearly state-only mod-
els performances on the ‘Ellipsoidal bowl’ experiments (11.8
pixel prediction error vs 6.1 of NPE). Fig. 6 shows the error
evolution through time. This plot shows that in the long term our
predictions seems to degenerate quicker than state-only methods
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Table 2: Long term predictions. All of our models (below thick line) observed the T0 = 4 first frames as input. All networks have been trained to predict the
Ttrain = 20 first positions, except for the NPEs which were given T0 = 4 states as input and train to predict state at time T0 + 1. We report here results for time
Ttrain = 20 and Tgen = 40. Unless noted, reported models are trained to predict position and angular velocity. For each time we report on the left average pixel error
and root squared L2 angular velocity loss on the right. Perplexity (loge values shown in the table) is defined as 2−E[log2(p(x))] where p is the estimated posterior
distribution. This value is shown in bracket.

Hemispherical bowl Ellipsoidal bowl Heightfield
Method State Errors (Perplexity) Errors (Perplexity) Errors (Perplexity)

Ttrain Tgen Ttrain Tgen Ttrain Tgen

pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel.
Linear GT 39.2 7.5 127.5 17.9 61.9 23.3 20.1 80.0 21.3 9.4 61.9 19.3

Quadratic GT 164.3 18.4 120.1 861.2 11.7 14.8 93.1 70.6 26.7 27.4 126.0 122.2
NPE w/o ang. vel. GT 2.6 – 6.0 – 3.2 – 6.1 – 12.0 – 38.5 –

NPE GT 3.3 0.8 9.6 1.7 2.7 1.4 7.6 2.9 10.9 3.7 32.9 4.6
V-LSTM w/o ang. vel. Visual 6.3 – 57.5 – 3.2 – 30.4 – 8.8 – 26.7 –

V-LSTM Visual 5.7 1.3 35.0 2.5 4.0 0.8 39.9 6.0 8.8 2.2 26.1 2.9
IFS w/o ang. vel. GT 1.3 – 2.9 – 3.3 – 8.9 – 10.4 – 27.6 –

IFS GT 1.6 0.3 2.2 0.4 3.1 1.0 6.9 1.4 8.7 2.5 26.1 2.8
VIN w/o ang. vel. Visual 40.4 – 37.8 – 24.0 – 30.2 – 42.6 – 42.7 –

PosNet w/o ang. vel. Visual 1.0 – 18.1 – 1.6 – 24.4 – 7.2 – 24.6 –
PosNet Visual 1.0 0.4 13.8 3.0 1.2 0.5 11.8 3.0 6.8 2.1 23.2 4.2

DispNet w/o ang. vel. Visual 3.0 – 29.7 – 2.5 – 20.6 – 7.7 – 25.8 –
DispNet Visual 3.5 1.2 15.9 4.3 2.1 1.0 16.1 4.4 7.2 2.0 21.6 3.3

ProbNet w/o ang. vel. Visual 2.9 – 24.2 – 2.9 – 21.8 – 6.4 – 22.5 –
(4.5) (21.9) (32.1) (54.0) (9.5 ) (12.7)

ProbNet Visual 3.4 1.2 15.3 3.4 4.0 1.8 16.7 3.8 6.8 2.1 20.5 2.7
(4.7) ( 9.2) (4.5) (9.3) (10.8) (12.3 )
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Fig. 6: Errors evolution on Ellipsoidal Bowl Position errors (left) and angular
velocity error (right). We see that position and angular velocity errors degenerate
outside training regimes (t=20) for all non state-only methods with an effect more
tempered for our method. The impact is more moderate on angular velocity since
its range is smaller than positions. Error bar shows 25th and 75th percentiles.

outside training regimes but still remains more moderate than
the other baselines.

We also note that learning to regress angular velocity gen-
erally improve the ability of our models to predict position, in
particular when generalizing to Tgen steps. For example, PosNet
in the Ellipsoidal bowl reduces its position error from 24.4 to
11.8 at Tgen when it is required to predict angular velocity during
training. For further comparisons, see the similarly colored, ad-
jacent bars in Fig. 5 (left) and Fig. 8 (left)). This is remarkable
as angular velocity as such remains very challenging to predict.

An interesting question is whether the model learns or not to
measure angular velocity from images, or whether predicting this
quantity during simply induces a better internal understanding
of physics. To tease this effect out, we prevent the network
from observing the ball spin by removing the texture on the
ball. Table 3 shows that this results approximately in the same
accuracy as the textured cases, indicating that angular velocity
is not estimated visually. Our hypothesis is that angular velocity
is estimated by exploiting the strong correlation between linear

and angular velocities due to conservation of momentum.
Finally, introducing the probability-based loss in DispNet re-

sults in the ProbNet network. As shown in Table 2, This change
significantly outperforms the deterministic DispNet results in
most cases.

(ii) Experiments using multiple balls. We also trained our mod-
els with two and three balls in the ‘Ellipsoidal bowl’ environ-
ment to study the ability of our models to handle object interac-
tions without explicit collision modules. The aforementioned
training setups are maintained in these experiments. Quanti-
tatively, Table 4 shows that our models were able to get com-
petitive results w. r. t. state-only methods containing explicit
collision modules, e.g., NPE. Probabilistic model shows an in-
crease in uncertainty at Ttrain, which reveals that the task to solve
were harder due to the chaotic nature of the system. In addition,
angular velocity seems to be very challenging to estimate in this
case. Qualitatively, Section 5.2.1 shows that collisions are well
handled by our model despite not being explicitly encoded.

(iii) Ablation study. To better assess the performance of our
model with and without the summation module of Fig. 2 we
conducted an ablation study. We trained the DispNet network
on both the Ellipsoidal bowl 2 balls and the Ellipsoidal bowl 3

Table 3: Impact of ball texturing on prediction. We compare the impact of
ball texturing on predictions. Table layout and measures are same as Table 2.
Results show that ball texture is rather ignored to make predictions.

Ellipsoidal bowl Ellipsoidal bowl (no ball texture)
Method Errors (Perplexity) Errors (Perplexity)

Ttrain Tgen Ttrain Tgen

pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel.
PosNet w/o ang. vel. 1.6 – 24.4 – 1.6 – 23.7 –

PosNet 1.2 0.5 11.8 3.0 1.1 0.6 12.7 3.5
DispNet w/o ang. vel. 2.5 – 20.6 – 1.7 – 26.3 –

DispNet 2.1 1.0 16.1 4.4 1.6 1.0 16.2 3.8
ProbNet w/o ang. vel. 2.9 – 21.8 – 3.1 – 24.0 –

(32.1) (54.0) (5.0) (12.7)
ProbNet 4.0 1.8 16.7 3.8 4.3 1.3 15.0 3.5

(4.5) (9.3) (4.5) (8.2)
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Table 4: Multiple balls experiment. We extend the ‘Ellipsoidal bowl’ setup
adding more balls. We show that in this case our networks get comparable
performances to state-only methods. Table layout and measures are the same as
Table 2 except that Ttrain = 15 and Tgen = 30.

Ellipsoidal bowl 2 balls Ellipsoidal bowl 3 balls
Method States Errors (Perplexity) Errors (Perplexity)

Ttrain Tgen Ttrain Tgen

pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel.
NPE GT 5.3 1.5 13.4 2.0 5.0 1.6 13.3 2.0

V-LSTM Visual 5.5 2.5 24.1 3.6 6.6 3.9 22.1 4.5
IFS GT 4.1 1.3 9.6 1.5 4.3 1.5 10.0 1.6

PosNet Visual 4.2 2.4 11.7 2.8 5.7 4.0 15.6 4.5
DispNet Visual 3.6 2.2 16.8 4.1 5.1 3.7 15.9 4.9
ProbNet Visual 5.3 2.5 19.8 3.6 6.5 3.9 17.1 4.1

(7.0) (14.0) (7.5) (12.6)

balls dataset with and without the extension (with an ablation
of the yellow part in Fig. 2). We first evaluated its performance
on long-term predictions. Then we studied how both of these
models are handling collisions.

Table 5: Effect of multiple-ball module on extrapolation. We study the impact
of our multiple objects module of Fig. 2on the quality of extrapolation in a
multiple-ball scenario. We report results for DispNet trained with and without
the module on long-term prediction tasks. Table layout and measures are the
same as Table 2 except that Ttrain = 15 and Tgen = 30.

Ellipsoidal bowl 2 balls Ellipsoidal bowl 3 balls
Fig. 2 Module Errors Errors

Ttrain Tgen Ttrain Tgen

pix. ang. vel. pix. ang. vel. pix. ang. vel. pix. ang. vel.
× 3.6 2.2 17.6 3.7 5.2 3.9 18.2 4.8
X 3.6 2.2 16.8 4.1 5.1 3.7 15.9 4.9

We show in Table 5 that the model performs similarly on
training regimes (same errors for two balls, 5.2/5.1 and 3.9/3.7
for 3 balls). The module seems to have a clear advantage on long-
term predictions where pixel errors are respectively 17.6/16.8
for two balls and 18.2/15.9 for three balls. Angular velocity
errors is marginally better without the module, however, both
errors remain very close (3.7/4.1 and 4.8/4.9).

Furthermore, we study the impact of our module on collisions.
To this end, we created a new dataset extracted from the test
data of the multiple balls experiment. In this dataset, we run a
collision detector and clipped the experiment at 10 time steps
prior to the first observed collision between the balls. In Table 6
we report error numbers at T = 5 and T = 10 after the collision.
We see that our module enables our pipeline to better handle
collisions between objects.

Table 6: Effect of multiple-ball module on collision estimation. We study the
impact of our multiple objects module of Fig. 2 on collision estimation. All
experiments start at T0 = Tfirst collision − 10 for the two multiple balls dataset. We
report results for DispNet trained with and without the module trained on the
extrapolation task in section 5.2.1 with Ttrain = 15 and Tgen = 30. Table layout
and measures are the same as Table 2. We report error at different time T after
collision occur.

Ellipsoidal bowl 2 balls Ellipsoidal bowl 3 balls
Fig. 2 Module Errors Errors

T = 5 T = 10 T = 5 T = 10

pix. ang. vel. pix. ang. vel. pix. ang. vel. pix. ang. vel.
× 3.3 2.9 6.6 2.7 4.5 4.1 8.3 3.9
X 2.6 2.3 5.3 2.5 3.9 3.5 6.7 3.7

(iv) Real data. We also investigate extrapolation on real data
using the Roll4Real dataset by Ehrhardt et al. (2018). In our

Table 7: Long term predictions using real data. All models are trained using
the unsupervised tracker output of Ehrhardt et al. (2018), with the same name
for every dataset. Reported number are pixel errors for every time. State are
the same as Table 2. First three dataset use one ball while last one uses two balls.
In all experiment Tgen=2×Ttrain.

PoolR1b HeightR1b BowlR1b HeightR2b
Method pix. err, Ttrain = 15 pix. err, Ttrain = 20 pix. err, Ttrain = 20 pix. err, Ttrain = 15

Ttrain Tgen Ttrain Tgen Ttrain Tgen Ttrain Tgen

V-LSTM 6.5 30.4 6.1 31.3 10.9 58.8 19.0 38.2
IFS 26.0 37.5 48.0 58.1 26.2 39.1 15.6 26.6
VIN 50.9 40.8 40.2 47.3 33.9 33.0 45.9 39.8

PosNet 4.6 21.4 5.6 29.0 5.6 23.0 5.4 12.5
DispNet 3.8 23.6 5.6 28.5 6.5 22.6 6.2 15.4
ProbNet 4.7(6.) 16.3(11.) 5.7(6.) 30.0(22.) 6.8(7.) 23.5(14.) 6.8(8.) 16.9(12.)

setting, we are only interested in using their unsupervised signal
as ground truth position to train our models. We do not address
the complex problem of obtaining this signal from unsupervised
data. We report the results in Table 7, where all models were
trained to predict position only. In each scenario, our models
were able to handle the transition to real data as opposed to the
baselines. For instance for an ellipsoidal bowl (Ellipsoidal bowl
dataset in Table 2 and BowlR1b in Table 7), errors at Ttrain
for models trained without angular velocity, went from 1.6 in
Table 2 to 5.6 in Table 7 for PosNet whereas the error went from
3.3 to 26.2 for IFS. The errors at Tgen in this case being generally
large (> 23) for models trained without angular velocity.

5.2.2. Interpolation
So far, we have consider the problem of extrapolating tra-

jectories without any information on the possible final state of
the system. We aim here to study the impact of injecting such
knowledge in our networks.

In order to do so, in this experiment we concatenate to the
first T0 = 4 input frames the last observed frame at time Tfinal
and give the resulting stack as input to the encoder network
h0 = φenc(x(−T0,0], xTfinal ) to estimate the first state h0. In this
setting, the model performs “interpolation” as it sees images at
the beginning as well as the end of the sequence. The rest of the
model works as before with the exception that the first state h0 is
decoded in a prediction (y0, yTfinal ) = φdec(h0) of both the first and
the last position yTfinal ; in this manner, the loss encourages state
h0 to encode information about the last observed frame xTfinal .

Table 8 indicates that the ability of observing an image of the
final state enables our models to provide far better estimations.
Even in the more complex scenarios with 2 and 3 balls and the
heightfield experiments, the errors are significantly lower than
for extrapolation. As expected, for InterpNet the highest errors
are always found in the middle of the estimate as these points
are less predictable from the available information; by contrast,
for DispNet the highest errors are at the end.

Still, we note that harder scenarios result in larger errors even
for interpolation, and particularly for colliding balls due to the
chaotic nature of this dynamics. This also shows the current
limitation of our system in modeling collisions and complex
variable environments.

5.3. Discussion
In addition to the various results we presented, we discuss

our conclusions regarding the main sources of prediction error
in the conducted experiments.
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Fig. 7: Ellipsoidal bowl and Heightfield extrapolations. (a-c) Example scene from the 3 balls in the ‘Ellipsoidal bowl’ experiment. Extrapolation on multiple
objects generalises well to 3 objects. Note how in (b) the collision of the red and green ball is predicted by our networks, solely by seeing the first 4 frames of the
sequence. Remember, NPE and IFS start with the ground truth knowledge of the physical state of the objects. (d-f) Our models, taking only 4 images as input, have
learned to parse the illumination of a quickly changing heightfield surface and use it to predict the long-term (up to 10x the length of initial observation) motion of an
object. (d) For homogeneously lit flat regions, it is difficult to make decisions, indicated by ProbNet’s large uncertainty estimates. (e) IFS, DispNet and PosNet
correctly interpret the ball’s initial angular velocity to predict the future path. ProbNet demonstrates the power of anisotropic uncertainty estimation (c, f). It is more
certain in the direction of motion than orthogonal to it. Note, that NPE and IFS were given the ground truth object positions for the first four frames, and do not have
the capability to take images as input.
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Fig. 8: Errors on Heightfields. Position errors (left) and angular velocity error (right) for trained (Ttrain= 20) and untrained (Tgen= 40) generalization on increasing
difficulty heightfields (’Mean’ is reported in the right column of Table 2). Note, how angular velocity estimation helps position accuracy. Hatches denote non-visual
methods.

Table 8: Extrapolation vs Interpolation. We constructed InterpNet as an extension of DispNet, where in addition to the concatenation of the first T0 = 4 frames,
also the last frame at T f inal is provided to the model as inputs. All networks have been trained to predict the Ttrain := T f inal positions. As expected, InterpNet learned
to predict the positions at T f inal by relying on the features extracted from the last input image. We report the pixel errors at different times along the sequences.
T f inal is the last value shown for every experiment.

Hemispherical bowl Ellipsoidal bowl 1 ball Ellipsoidal bowl 2 balls Ellipsoidal bowl 3 balls Heightfield
Method pixel error, Ttrain = 40 pixel error, Ttrain = 40 pixel error, Ttrain = 30 pixel error, Ttrain = 30 pixel error, Ttrain = 40

T=10 20 30 40 T=10 20 30 40 T=10 20 30 T=10 20 30 T=10 20 30 40
DispNet 2.2 3.6 3.9 5.0 1.4 2.4 2.7 3.0 2.8 5.8 8.7 3.2 8.1 12.0 3.6 7.9 12.9 17.9

InterpNet 1.4 1.8 1.6 1.0 1.0 1.6 1.3 0.6 3.2 4.5 3.1 3.3 4.5 2.1 2.5 5.2 5.1 1.6

Does training for longer horizons help? Training for longer
horizons Ttrain= 40 in Table 8 compared to Ttrain= 20 in Table 2
results in better position estimates as expected. When a single
end state is also observed (interpolation) the model manages to
infer plausible trajectories even though the initial and final states
are far apart in time.

Table 9: Length of supervision. The maximum position error of DispNet
decreases when we add more supervision during training.

Dataset Extrapolation Interpolation
Ttrain= 20 Ttrain= 40 Ttrain= 40

‘Hemispherical bowl’ 15.9 5.0 1.8
‘Ellipsoidal bowl’ 16.1 3.0 1.6

‘Heightfield’ 21.6 17.9 5.2

This motivates us to design more structured representations
in the future, which would generalize even better outside the
supervised time spans (see Table 9).

Can the models handle collisions of multiple objects? Adding
additional objects to our scenes has appeared to be a challenging
task for our models. If our multiple objects module helped
to better handle collisions (see Table 6), the error increased
with the number of objects, which shows that collisions
remain difficult to estimate. Promisingly, InterpNet manages
to improve performance similarly to the earlier cases, the
remaining ambiguity in the middle of the sequences matches
the ratios of single object examples (ErrorT=10/ErrorT=20:
1.0/1.6 ' 3.2/4.5 ' 3.3/4.5 in Table 8 middle columns).

Does regression of angular velocity help? Almost all models
benefit from the additional supervision signal coming from the
loss on angular velocity, as shown in Fig. 5(left) and Fig. 8 (left).

The objects’ texture at these resolutions is difficult to interpret,
and the connection between pixel color and rotation around axis
is highly non-linear, which encourages us to look for a different
representation of rotation in the future to improve our angular
prediction errors.

Are changing environments more difficult? The characteristics
of the environment also appear to strongly contribute to the fi-
nal estimation errors. When only following one ball we notice
that for simple shapes where the environment parameters can
vary along at most 3 dimensions (in the ‘Hemispherical bowl’
and ‘Ellipsoidal bowl’ cases), the system can obtain nearly per-
fect estimates in the interpolation experiments. However in the
‘Heightfield’ scenes interaction with the environment is much
more difficult to estimate and the maximum errors are larger,
even for InterpNet the errors remains substantial.

6. Conclusions

In this paper, we studied the possibility of abstracting knowl-
edge of physics using a single neural network with a recurrent
architecture to model long term predictions with a changing
environment. We compared our model to various baselines on
the non-trivial motion of ball(s) rolling on a surfaces with dif-
ferent possible shapes (e.g. ellipsoidal bowls or randomized
heightfields) on both synthetic and real data. Closer to some
approaches, we do not integrate physical quantities but implic-
itly encode the states in a feature vector that we can propagate
through time.

However, we demonstrated a significant difference compared
to existing networks using implicit state encoding, namely the
ability to account for complex variable environments. The latter
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leverage a distributed representation of the system state which,
at the same time, is still able to model concentrated object inter-
actions such as collisions.

Our experiments on synthetic simulations also indicate that
our networks can predict mechanical phenomena more accu-
rately than networks that build on hand-crafted physically-
grounded representations of the system state. This means that
our approach can both infer automatically an internal represen-
tation of these phenomena and work with visual inputs in order
to initialize such a representation and use it for extrapolation.
Our models can also estimate a distribution over physical mea-
surements such as position to account for uncertainty in the
predictions.

While keeping the same architecture, we further demonstrate
that it is possible to remove ambiguity by showing the network
an image of the final state of the system, performing interpola-
tion. However, in this case the internal state propagation mech-
anism is still limited by its ability to make accurate long term
predictions outside temporal spans observed during training.

In the future, we aim at increasing the robustness and general-
ization capabilities of our models by enforcing more explicitly
temporal and spatial invariance (as physical laws are constant
and homogeneous). Finally, we plan to work on the generaliza-
tion abilities of our multiple objects pipeline to handle various
object shapes and remove the limitation of having to known the
number of objects in advance.
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