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Abstract

In an effort to understand the meaning of the intermedi-
ate representations captured by deep networks, recent pa-
pers have tried to associate specific semantic concepts to
individual neural network filter responses, where interest-
ing correlations are often found, largely by focusing on ex-
tremal filter responses. In this paper, we show that this ap-
proach can favor easy-to-interpret cases that are not neces-
sarily representative of the average behavior of a represen-
tation.

A more realistic but harder-to-study hypothesis is that se-
mantic representations are distributed, and thus filters must
be studied in conjunction. In order to investigate this idea
while enabling systematic visualization and quantification
of multiple filter responses, we introduce the Net2Vec frame-
work, in which semantic concepts are mapped to vectorial
embeddings based on corresponding filter responses. By
studying such embeddings, we are able to show that 1., in
most cases, multiple filters are required to code for a con-
cept, that 2., often filters are not concept specific and help
encode multiple concepts, and that 3., compared to single
filter activations, filter embeddings are able to better char-
acterize the meaning of a representation and its relationship
to other concepts.

1. Introduction

While deep neural networks keep setting new records in
almost all problems in computer vision, our understanding
of these black-box models remains very limited. Without
developing such an understanding, it is difficult to charac-
terize and work around the limitations of deep networks,
and improvements may only come from intuition and trial-
and-error.

For deep learning to mature, a much better theoretical
and empirical understanding of deep networks is thus re-
quired. There are several questions that need answering,
such as how a deep network is able to solve a problem such

Figure 1. The diversity of BRODEN [4] images that most acti-
vate certain AlexNet conv5 filters motivates us to investigate to
what extent a single filter encodes a concept fully, without need-
ing other units, and exclusively, without encoding other concepts.
An image’s corner number n denotes that it is the n-th most max-
imally activating image for the given filter. Masks were generated
by our slightly modified NetDissect [4] approach (section 3.1.1)
and are upsampled first before thresholding for smoothness.

as classifying an image, or how it can generalize so well de-
spite having access to limited training data in relation to its
own capacity [23]. In this paper, we ask in particular what a
convolutional neural network has learned to do once train-
ing is complete. A neural network can be seen as a sequence
of functions, each mapping an input image to some interme-
diate representation. While the final output of a network is
usually easy to interpret (as it provides, hopefully, a solu-
tion to the task that the network was trained to solve), the
meaning of the intermediate layers is far less clear. Under-
standing the information carried by these representations is
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a first step to understanding how these networks work.
Several authors have researched the possibility that indi-

vidual filters in a deep network are responsible for captur-
ing particular semantic concepts. The idea is that low-level
primitives such as edges and textures are recognized by ear-
lier layers, and more complex objects and scenes by deeper
ones. An excellent representative of this line of research is
the recent Network Dissection approach by [4]. The authors
of this paper introduce a new dataset, BRODEN, which
contains pixel-level segmentation for hundreds of low- and
high-level visual concepts, from textures to parts and ob-
jects. They then study the correlation between extremal fil-
ter responses and such concepts, seeking for filters that are
strongly responsive for particular ones.

While this and similar studies [24, 22, 10] did find clear
correlations between feature responses and various con-
cepts, such an interpretation has intrinsic limitations. This
can be seen from a simple counting argument: the num-
ber of available feature channels is usually far smaller than
the number of different concepts that a neural network may
need to encode to interpret a complex visual scene. This
suggests that, at the very least, the representation must use
combinations of filter responses to represent concepts or, in
other words, be at least in part distributed.

Overview. The goal of this paper is to go beyond looking
at individual filters, and to study instead what information
is captured by combinations of neural network filters. In
this paper, we conduct a thorough analysis to investigate
how semantic concepts, such as objects and their parts, are
encoded by CNN filters. In order to make this analysis man-
ageable, we introduce the Net2Vec framework (section 3),
which aligns semantic concepts with filter activations. It
does so via learned concept embeddings that are used to
weight filter activations to perform semantic tasks like seg-
mentation and classification. Our concept vectors can be
used to investigate both quantitatively and qualitatively the
“overlap” of filters and concepts. Our novelty lies in outlin-
ing methods that go beyond simply demonstrating that mul-
tiple filters better encode concepts that single ones [2, 21] to
quantifying and describing how a concept is encoded. Prin-
cipally, we gain unique, interpretive power by formulating
concepts vectors as embeddings.

Using Net2Vec, we look first at two questions (sec-
tion 4): (1) To what extent are individual filters sufficient to
express a concept? Or, are multiple filters required to code
for a single concept? (2) To what extent does a filter exclu-
sively code for a single concept? Or, is a filter shared by
many, diverse concepts? While answers to these questions
depend on the specific filter or concept under consideration,
we demonstrate how to quantify the “overlap” between fil-
ters and concepts and show that there are many cases in
which both notions of exclusive overlap do not hold. That

is, if we were to interpret semantic concepts and filter ac-
tivations as corresponding set of images, in the resulting
Venn’s diagram the sets would intersect partially but neither
kind of set would contain or be contained by the other.

While quantifying the relationship between concepts and
representation may seem an obvious aim, so far much of the
research on explaining how concepts are encoded by deep
networks roughly falls into two more qualitative categories:
(1) Interpretable visualizations of how single filters encode
semantic concepts; (2) Demonstrations of distributive en-
coding with limited explanatory power of how a concept
is encoded. In this work, we present methods that seek to
marry the interpretive benefits of single filter visualizations
with quantitative demonstrations of how concepts are en-
coded across multiple filters (section 5).

As part of our analysis, we also highlight the problem
with visualizing only the inputs that maximally activate a
filter and propose evaluating the power of explanatory visu-
alizations by how well they can explain the whole distribu-
tion of filter activations (section 5.1).

2. Related Work
Visualizations. Several methods have been proposed to
explain what a single filter encodes by visualizing a
real [22] or generated [10, 17, 14] input that most activates
a filter; these techniques are often used to argue that sin-
gle filters substantially encode a concept. In contrast, [20]
shows that visualizing the real image patches that most ac-
tivate a layer’s filters after a random basis has been applied
also yields semantically, coherent patches. [24, 4] visualize
segmentation masks extracted from filter activations for the
most confident or maximally activating images; they also
evaluate their visualizations using human judgments.

Distributed Encodings. [2] demonstrates that most PAS-
CAL classes require more than a few hidden units to
perform classification well. Most similar to [24, 4], [6]
concludes that only a few hidden units encode semantic
concepts robustly by measuring the overlap between im-
age patches that most activate a hidden unit with ground
truth bounding boxes and collecting human judgments on
whether such patches encode systematic concepts. [21]
compares using individual filter activations with using clus-
ters of activations from all units in a layer and shows that
their clusters yielded better parts detectors and qualitatively
correlated well with semantic concepts. [3] probes mid-
layer filters by training linear classifiers on their activations
and analyzing them at different layers and points of training.

3. Net2Vec
With our Net2Vec paradigm, we propose aligning con-

cepts to filters in a CNN by (a) recording filter activations
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of a pre-trained network when probed by inputs from a
reference, “probe” dataset and (b) learning how to weight
the collected probe activations to perform various semantic
tasks. In this way, for every concept in the probe dataset,
a concept weight is learned for the task of recognizing that
concept. The resulting weights can then be interpreted as
concept embeddings and analyzed to understand how con-
cepts are encoded. For example, the performance on se-
mantic tasks when using learned concept weights that span
all filters in a layer can be compared to when using only a
single filter or subset of filters.

In the remainder of the section, we provide details for
how we learn concept embeddings by learning to segment
(3.1) and classify (3.2) concepts. We also outline how we
compare embeddings arising from using only a restricted
set of filters, including single filters. Before we do so, we
briefly discuss the dataset used to learn concepts.

Data. We build on the BRODEN dataset recently intro-
duced by [4] and use it to primarily probe AlexNet [9]
trained on the ImageNet dataset [16] as a representative
model for image classification. BRODEN contains over
60,000 images with pixel- and image-level annotations for
1197 concepts across 6 categories: scenes (468), objects
(584), parts (234), materials (32), textures (47), and col-
ors (11). We exclude 8 scene concepts for which there
were no validation examples. Thus, of the 1189 concepts
we consider, all had image-level annotations, but only 682
had segmentation annotations, as only image-level anno-
tations are provided for scene and texture concepts. Note
that our paradigm can be generalized to any probe dataset
that contains pixel- or image-level annotations for con-
cepts. To compare the effects of different architectures
and supervision, we also probe VGG16 [18] conv5 3 and
GoogLeNet [19] inception5b trained on ImageNet [16] and
Places365 [25] as well as conv5 of the following self-
supervised, AlexNet networks: tracking [21], audio [15],
objectcentric [5], moving [1], and egomotion [7]. Post-
ReLU activations are used.

3.1. Concept Segmentation

In this section, we show how learning to segment con-
cepts can be used to induce concept embeddings using ei-
ther all the filters available in a CNN layer or just a single
filter. We also show how embeddings can be used to quan-
tify the degree of overlap between filter combinations and
concepts. This task is performed on all 682 Broden con-
cepts with segmentation annotations, which excludes scene
and texture concepts.

3.1.1 Concept Segmentation by a Single Filter

We start by considering single filter segmentation follow-
ing [4]’s paradigm with three minor modifications, listed
below. For every filter k, let ak be its corresponding activa-
tion (at a given pixel location and for a given input image).
The τ = 0.005 activation’s quantile Tk is determined such
that P (ak > Tk) = τ , and is computed with respect to the
distribution p(ak) of filter activations over all probe images
and spatial locations; we use this cut-off point to match [4].

Filter k in layer l is used to generate a segmentation
of an image by first thresholding Ak(x) > Tk, where
Ak(x) ∈ RHl×Wl is the activation map of filter k on in-
put x ∈ RH×W×3 and upsampling the result as needed to
match the resolution of the ground truth segmentation mask
Lc(x), i.e. Mk(x) = S(Ak(x) > Tk), where S denotes a
bilinear upsampling function.

Images may contain any number of different concepts,
indexed by c. We use the symbol x ∈ Xc to denote the
probe images that contain concept c. To determine which
filter k best segments concept c, we compute a set IoU
score. This score is given by the formula

IoUset(c;Mk, s) =

∑
x∈Xs,c

|Mk(x) ∩ Lc(x)|∑
x∈Xs,c

|Mk(x) ∪ Lc(x)|
(1)

which computes the intersection over union (Jakkard in-
dex) difference between the binary segmentation masksMk

produced by the filter and the ground-truth segmentation
masks Lc. Note that sets are merged for all images in
the subset Xs,c of the data, where s ∈ {train, val}. The
best filter k∗(c) = argmaxk IoUset(c;Mk, train) is then
selected on the training set and the validation score IoU
IoUset(c;Mk∗ , val) is reported.

We differ from [4] in the following ways: (1) we thresh-
old before upsampling, in order to more evenly compare
to the method described below; (2) we bilinearly upsample
without anchoring interpolants at the center of filter recep-
tive fields to speed up the upsampling part of the experimen-
tal pipeline; and (3) we determine the best filter for a con-
cept on the training split Xtrain,c rather than Xc whereas [4]
does not distinguish a training and validation set.

3.1.2 Concept Segmentation by Filter Combinations

In order to compare single-feature concept embeddings to
representations that use filter combinations, we also learn
to solve the segmentation task using combinations of filters
extracted by the neural network. For this, we learn weights
w ∈ RK , where K is the number of filters in a layer, to
linearly combine thresholded activations. Then, the linear
combination is passed through the sigmoid function σ(z) =
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1/(1+exp(−z)) to predict a segmentation maskM(x;w):

M(x;w) = σ

(∑
k

wk · I(Ak(x) > Tk)

)
(2)

where I(·) is the indicator function of an event. The sigmoid
is irrelevant for evaluation, for which we threshold the mask
predicted byM(x;w) by 1

2 , but has an effect in training the
weights w.

Similar to the single filter case, for each concept the
weights w are learned onXtrain,c and the set IoU score com-
puted on thresholded masks for Xval,c is reported. In addi-
tion to evaluating on the set IoU score, per-image IoU scores
are computed as well:

IoUind(x, c;M) =
|M(x) ∩ Lc(x)|
|M(x) ∪ Lc(x)|

(3)

Note that choosing a single filter is analogous to setting w
to a one-hot vector, where wk = 1 for the selected filter and
wk = 0 otherwise, recovering the single-filter segmenter
of section 3.1.1, with the output rescaled by the sigmoid
function (2).

Training For each concept c, the segmentation concept
weights w are learned using SGD with momentum (lr =
10−4, momentum γ = 0.9, batch size 64, 30 epochs) to
minimize a per-pixel binary cross entropy loss weighted by
the mean concept size, i.e. 1-α:

L1 = − 1

Ns,c

∑
x∈Xs,c

αM(x;w)Lc(x)

+ (1− α)(1−M(x;w)(1− Lc(x)), (4)

where Ns,c = |Xs,c|, s ∈ {train, val}, and α = 1 −∑
x∈Xtrain

|Lc(x)|/S, where |Lc(x)| is the number of fore-
ground pixels for concept c in the ground truth (g.t.) mask
for x and S = hs ·ws is the number of pixels in g.t. masks.

3.2. Concept Classification

As an alternate task to concept segmentation, the prob-
lem of classifying concept (i.e., to tell whether the concept
occurs somewhere in the image) can be used to induce con-
cept embeddings. In this case, we discuss first learning em-
beddings using generic filter combinations (3.2.1) and then
reducing those to only use a small subset of filters (3.2.2).

3.2.1 Concept Classification by Filter Combinations

Similar to our segmentation paradigm, for each concept c, a
weight vector w ∈ RK and a bias term b ∈ R are learned to
combine the spatially-averaged filter activations k; the lin-
ear combination is then passed through the sigmoid function

σ to obtain the concept posterior probability:

f(x;w, b) = σ

(
b+

∑
k

wk ·
∑Hl

i=1

∑Wl

j=1Aijk(x)

HlWl

)
(5)

where Hl and Wl denote the height and width respectively
of layer l’s activation map Ak(x).

For each concept c, the training imagesXtrain are divided
into the positive subset Xtrain,c+ of images that contain con-
cept c and its complement Xtrain,c− of images that do not.
While in general the positive and negative sets are unbal-
anced, during training, images from the two sets are sam-
pled with equal probability in order to re-balance the data
(supp. sec. 1.2). To evaluate performance, we calculate the
classification accuracy over a balanced validation set.

3.2.2 Concept Classification by a Subset of Filters

In order to compare using all filters in a layer to just a
subset of filters, or even individual filters, we must learn
corresponding concept classifiers. Following [2], for
each concept c, after learning weights w as explained
before, we choose the top F by their absolute weight |wk|.
Then, we learn new weights w′ ∈ RF and bias b′ that
are used to weight activations from only these F filters.
With respect to eq. (5), this is analogous to learning new
weights w′ ∈ RK , where w′k = 0 for all filters k that
are not the top F ones. We train such classifiers for F ∈
{1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 80, 100, 128}
for the last three AlexNet layers and for all its layers for
the special case F = 1, corresponding to a single filter.
For comparison, we use this same method to select subsets
of filters for the segmentation task on the last layer using
F ∈ {1, 2, 4, 8, 16, 32, 64, 128, 160, 192, 224}.

4. Quantifying the Filter-Concept Overlap
4.1. Are Filters Sufficient Statistics for Concepts?

We start by investigating a popular hypothesis: whether
concepts are well represented by the activation of individual
filters or not. In order to quantify this, we consider how
our learned weights, which combine information from all
filter activations in a layer, compare to a single filter when
being used to perform segmentation and classification on
BRODEN.

Figure 2 shows that, on average, using learned weights
to combine filters outperforms using a single filter on both
the segmentation and classification tasks (sections 3.1.1
and 3.2.2) when being evaluated on validation data. The
improvements can be quite dramatic for some concepts and
starts in conv1. For instance, even for simple concepts like
colors, filter combinations outperform individual filters by
up to 4× (see supp. figs. 2-4 for graphs on the perfor-
mance of individual concepts). This suggests that, even if
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Figure 2. Results by concept category on the segmentation (top)
and classification (bottom) tasks show that, on average, using
learned weights to combine filters (left) out performs using a sin-
gle filter (right). Standard error is shown.

filters specific to a concept can be found, these do not op-
timally encode or fully “overlap” with the concept. In line
with the accepted notion that deep layers improve represen-
tational quality, task performance generally improves as the
layer depth increases, with trends for the color concepts be-
ing the notable exception. Furthermore, the average perfor-
mance varies significantly by concept category and consis-
tently in both the single- and multi-filter classification plots
(bottom). This suggests that certain concepts are less well-
aligned via linear combination to the filter space.

How many filters are required to encode a concept? To
answer this question, we observe how varying the num-
ber of top conv5 filters, F , from which we learn concept
weights affects performance (section 3.2.2). Figure 3 shows
that mean performance saturates at different F for the var-
ious concept categories and tasks. For the classification
task (right), most concept categories saturate by F = 50;
however, scenes reaches near optimal performance around
F = 15, which is much more quickly than that of materials.
For the segmentation task (left), performance peaks much
earlier at F = 8 for materials and parts, F = 16 for ob-
jects, andF = 128 for colors. We also observe performance
drops after reaching optimal peaks for materials and parts in
the segmentation class. This highlights that the segmenta-
tion task is challenging for those concept categories in par-
ticular (i.e., object parts are much smaller and harder to seg-
ment, materials are most different from network’s original
ImageNet training examples of objects); with more filters
to optimize for, learning is more unstable and more likely
to reach a sub-optimal solution.

Failure Cases. While on average our multi-filter ap-
proach significantly outperforms a single-filter approach

Figure 3. Results by concept category and number of top conv5
filters used for segmentation and classification show that different
categories and tasks saturate in performance at different F .

Table 1. Percent of concepts for which the evaluation metric (set
IoU for segmentation and accuracy for classification) is equal to or
better when using learned weights than the best single filter.

conv1 conv2 conv3 conv4 conv5

Segmentation 91.6% 86.8% 84.0% 82.3% 75.7%

Classification 87.8% 90.2% 85.0% 87.9% 88.1%

on both segmentation and classification tasks (fig. 2), Ta-
ble 1 shows that for around 10% of concepts, this does not
hold. For segmentation, this percentage increases with layer
depth. Upon investigation, we discovered that the concepts
for which our learned weights do not outperform the best
filter either have very few examples for that concept, i.e.
mostly |Xtrain,c| ∈ [10, 100] which leads to overfitting; or
are very small objects, of average size less than 1% of an
image, and thus training with the size weighted (4) loss is
unstable and difficult, particularly at later layers where there
is low spatial resolution. A similar analysis on the classifi-
cation results shows that small concept dataset size is also
causing overfitting in failure cases: Of the 133 conv5 fail-
ure cases, 103 had at most 20 positive training examples
and all but one had less than 100 positive training examples
(supplementary material figs. 7 and 8).

4.2. Are Filters Shared between Concepts?

Next, we investigate the extent to which a single filter is
used to encode many concepts. Note that Figure 1 suggests
that a single filter might be activated by different concepts;
often, the different concepts a filter appears to be activated
by are related by a latent concept that may or may not be
human-interpretable, i.e., an ‘animal torso’ filter which also
is involved in characterizing animals like ‘sheep’, ‘cow’,
and ‘horse’ (fig. 4, supp. fig. 9).

Using the single best filters identified in both the seg-
mentation and classification tasks, we explore how often a
filter is selected as the best filter to encode a concept. Fig-
ure 5 shows the distribution of how many filters (y-axis)
encode how many concepts (x-axis). Interestingly, around
15% of conv1 filters (as well as several in all the other lay-
ers) were selected for encoding at least 20 and 30 concepts
(# of concepts / # of conv1 filters = 10.7 and 18.6; supp.
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Figure 4. AlexNet conv5 filter 66 appears selective for pastoral an-
imal’s torso. Validation examples for ‘sheep’, ‘horse’, and ‘cow’
with the highest individual IOU scores are given (masks are up-
sampled before thresholding for visual smoothness).

Figure 5. For each filter in a layer, the number of concepts for
which it is selected as the best filter in the segmentation (left) and
classification (right) tasks is counted and binned.

tbl. 1) for the segmentation and classification tasks respec-
tively and a substantial portion of filters in each layer (ex-
cept conv1 for the segmentation task) are never selected.
The filters selected to encode numerous concepts are not
exclusively “overlapped” by a single concept. The filters
that were not selected to encode any concepts are likely not
be involved in detecting highly discriminative features.

4.3. More Architectures, Datasets, and Tasks

Figure 6 shows segmentation (top) and classification
(bottom) results when using AlexNet (AN) conv5, VGG16
(VGG) conv5 3, and GoogLeNet (GN) inception5b trained
on both ImageNet (IN) and Places365 (P) as well as conv5
of these self-supervised (SS), AlexNet networks: track-
ing, audio, objectcentric, moving, and egomotion. GN per-
formed worse than VGG because of its lower spatial resolu-
tion (7×7 vs. 14×14); GN-IN inception4e (14×14) outper-
forms VGG-IN conv5 3 (supp. fig. 11). In [4], GN detects
scenes well, which we exclude due to lack of segmentation
data. SS performance improves more than supervised net-
works (5-6x vs. 2-4x), suggesting that SS networks encode

Figure 6. Segmentation (top) and classification (bottom) results for
additional networks & datasets.

BRODEN concepts more distributedly.

5. Interpretability
In this section, we propose a new standard for visu-

alizing non-extreme examples, show how the single- and
multi-filter perspectives can be unified, and demonstrate
how viewing concept weights as embeddings in filter space
give us novel explanatory power.

5.1. Visualizing Non-Maximal Examples

Many visual explanation methods demonstrate their
value by showing visualizations of inputs that maximally
activate a filter, whether that be real, maximally-activating
image patches [22]; learned, generated maximally-activated
inputs [11, 14]; or filter segmentation masks for maximally-
activating images from a probe dataset [4].

While useful, these approaches fail to consider how vi-
sualizations differ across the distribution of examples. Fig-
ure 7 shows that using a single filter to segment concepts [4]
yields IoUind scores of 0 for many examples; such examples
are simply not considered by the set IoU metric. This of-
ten occurs because no activations survive the τ -thresholding
step, which suggests that a single filter does not consistently
fire strongly on a given concept.

We argue that a visualization technique should still work
on and be informative for non-maximal examples. In Fig-
ure 8, we automatically select and visualize examples at
each decile of the non-zero portion of the individual IoU
distribution (fig. 7) using both learned concept weights and
the best filters identified for each of the visualized cate-
gories. For ‘dog’ and ‘airplane’ visualizations using our
weighted combination method, the predicted masks are in-
formative and salient for most of the examples, even the
lowest 10th percentile (leftmost column). Ideally, using this
decile sampling method, the visualizations should appear
salient even for examples from lower deciles. However, for
examples using the best single filter (odd rows), the visual-
izations are not interpretable until higher deciles (rightmost
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Figure 7. The empirical IoUind distribution when using the best
single filter and the learned weights for ‘dog’ (left) and ‘train’
(right) (µ, σ computed on the non-zero part of each distribution).

columns). This is in contrast to the visually appealing, max-
imally activating examples shown in supp. fig. 13.

5.2. Unifying Single- & Multi-Filter Views

Figure 9 highlights that single filter performance is of-
ten strongly, linearly correlated with the learned weights w,
thereby showing that individual filter performance is indica-
tive of how weighted it’d be in a linear filter combination.
Visually, a filter’s set IoU score appears correlated with
its associated weight value passed through a ReLU, i.e.,
max(wk, 0). For each of the 682 BRODEN segmentation
concepts and each AlexNet layer, we computed the correla-
tion between max(w, 0) and {IoUset(c;Mk, val)}k=1...K .
By conv3, around 80% of segmentation concepts are sig-
nificantly correlated (p < 0.01): conv1: 47.33%, conv2:
69.12%, conv3: 81.14%, conv4: 79.13%, conv5: 82.47%.
Thus, we show how the single filter perspective can be uni-
fied with and utilized to explain the distributive perspec-
tive: we can quantify how much a single filter k contributes
to concept c’s encoding from either |wk|

‖w‖1 where w is c’s

learned weight vector or IoUset(c;Mk∗ ,val)
IoUset(c;M(·;w),val) .

5.3. Explanatory Power via Concept Embeddings

Finally, the learned weights can be considered as em-
beddings, where each dimension corresponds to a filter.
Then, we can leverage the rich literature [12, 13, 8] on word
embeddings derived from textual data to better understand
which concepts are similar to each other in network space.
To our knowledge, this is the first work that learns seman-
tic embeddings aligned to the filter space of a network from
visual data alone. (For this section, concept weights are
normalized to be unit length, i.e., w′ = w

‖w‖ ).
Table 2 shows the five closest concepts in cosine dis-

tance, where 1 denotes that w′1 is 0◦ from w′2 and −1 de-
notes that w′1 is 180◦ from w′2. These examples suggest
that the embeddings from the segmentation and classifica-
tion tasks capture slightly different relationships between
concepts. Specifically, the nearby concepts in segmenta-
tion space appear to be similar-category objects (i.e., ani-
mals in the case of ‘cat’ and ‘horse’ being nearest to ‘dog’),

whereas the nearby concepts in classification space appear
to be concepts that are related compositionally (i.e., parts of
an object in the case of ‘muzzle’ and ‘paw’ being nearest to
‘dog’). Note that ‘street’ and ‘bedroom’ are categorized as
scenes and thus lack segmentation annotations.

Understanding the Embedding Space. Table 3 shows
that we can also do vector arithmetic by adding and sub-
tracting concept embeddings to get meaningful results.
For instance, we observe an analogy relationship between
‘grass’−‘green’ and ‘sky’−‘blue’ and other coherent re-
sults, such as non-green, ‘ground’-like concepts for ‘grass’
minus ‘green’ and floral concepts for ‘tree’ minus ‘wood’. t-
SNE visualizations and K-means clustering (see supp. table
2 and supp. figs. 16 and 17) also demonstrate that networks
learn meaningful, semantic relationships between concepts.

Comparing Embeddings from Different Learned Repre-
sentations. The learned embeddings extracted from indi-
vidual networks can be compared with one another quanti-
tatively (as well as to other semantic representations). Let
d(W ) : RC×K → RC×C = W ·WT compute the cosine
distance matrix for C concepts of a given representation
(e.g., AlexNet), whose normalized embeddings w′ form the
rows of W . Then, Di,j = ‖d(W i) − d(W j)‖22 quantifies
the distance between two embedding spaces W i,W j , and
Di,j,c = ‖d(W i)c−d(W j)c‖22 does that for concept c. Fig-
ure 10 (left) shows Di,j between 24 embedding spaces: 2
tasks× 11 network, WordNet (WN), and Word2Vec (W2V)
(C = 501, the number of BRODEN concepts available for
all embeddings; see supp. sec. 3.2.1). It shows that track-
ing and audio (T, A) classification embeddings are quite dif-
ferent from others, and that classification embeddings (-C)
are more aligned to WN and W2V than segmentation ones
(-S). Figure 10 (right) shows select mean Di,j,c distances
averaged over concept categories. It demonstrates that col-
ors are quite similar between WN and network embeddings
and that materials most differ between audio and the WN
and W2V embeddings.

6. Conclusion
We present a paradigm for learning concept embeddings

that are aligned to a CNN layer’s filter space. Not only do
we answer the binary questions, “does a single filter encode
a concept fully and exclusively?,” we also introduce the idea
of filter and concept “overlap” and outline methods for an-
swering the scalar extension questions, “to what extent...?”
We also propose a more fair standard for visualizing non-
extreme examples and show how to explain distributed con-
cept encodings via embeddings. While powerful and inter-
pretable, our approach is limited by its linear nature; future
work should explore non-linear ways concepts can be better
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Figure 8. For the ‘dog’ and ‘airplane’ concepts, an example is automatically selected at each decile of the non-zero portion of the distribution
of individual IoU scores (Figure 7), and the predicted conv5 segmentation masks using the best filter (odd rows) as well as the learned
weights (even rows) are overlaid.

Table 2. Nearest concepts (in cos distance) using segmentation (left sub-columns) and classification (right) conv5 embeddings.
dog house wheel street bedroom

cat (0.81) muzzle (0.73) building (0.77) path (0.56) bicycle (0.86) headlight (0.66) n/a sidewalk (0.74) n/a headboard (0.90)
horse (0.73) paw (0.65) henhouse (0.62) dacha (0.54) motorbike (0.66) car (0.53) n/a streetlight (0.73) n/a bed (0.85)

muzzle (0.73) tail (0.52) balcony (0.56) hovel (0.54) carriage (0.54) bicycle (0.52) n/a license plate (0.73) n/a pillow (0.84)
ear (0.72) nose (0.47) bandstand (0.54) chimney (0.53) wheelchair (0.53) road (0.51) n/a traffic light (0.73) n/a footboard (0.82)
tail (0.72) torso (0.44) watchtower (0.52) earth (0.52) water wheel (0.48) license plate (0.49) n/a windshield (0.71) n/a shade (0.74)

Table 3. Vector arithmetic using segmentation, conv5 weights.
grass + blue − green grass − green tree − wood person − torso

sky (0.17) earth (0.22) plant (0.36) foot (0.12)

patio (0.10) path (0.21) flower (0.29) hand (0.10)

greenhouse (0.10) brown (0.18) brush (0.29) grass (0.09)

purple (0.09) sand (0.16) bush (0.28) mountn. pass (0.09)

water (0.09) patio (0.15) green (0.25) backpack (0.09)

Figure 9. Correlation between learned segmentation weights and
each filter’s set IoU score for ‘dog’ (left) and ‘airplane’ (right).

aligned to the filter space.
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Figure 10. Comparing Net2Vec embeddings quantitatively. Left:
Each cell corresponds to distanceDi,j for embedding spaces i and
j (see section 4.3 for abbreviations). Right: Each cell corresponds
to mean distance Di,j,c for each concept category.
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