
Localizing Objects With Smart Dictionaries

Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto

Department of Computer Science,
University of California, Los Angeles, CA 90095
{bfulkers,vedaldi,soatto}@cs.ucla.edu

Abstract. We present an approach to determine the category and loca-
tion of objects in images. It performs very fast categorization of each pixel
in an image, a brute-force approach made feasible by three key develop-
ments: First, our method reduces the size of a large generic dictionary
(on the order of ten thousand words) to the low hundreds while increas-
ing classification performance compared to k-means. This is achieved by
creating a discriminative dictionary tailored to the task by following the
information bottleneck principle. Second, we perform feature-based cate-
gorization efficiently on a dense grid by extending the concept of integral
images to the computation of local histograms. Third, we compute SIFT
descriptors densely in linear time. We compare our method to the state
of the art and find that it excels in accuracy and simplicity, performing
better while assuming less.

1 Introduction

Bag-of-features methods have enjoyed great popularity in object categorization,
owing their success to their simplicity and to surprisingly good performance
compared to more sophisticated models and algorithms. Unfortunately, such
methods only provide an answer as to whether an image contains an object of a
certain category, but they do not offer much insight as to where that object might
be within the image. In other words, because the representation discards spatial
information, bag-of-features methods cannot be used for localization directly.

That is, unless one could devise an object categorization method efficient
enough to test at a window centered on each pixel of an image. In that case, one
would be able to exploit the co-occurrence of features within a local region and
localize the object, pixel by pixel. However, with many features detected in each
image and quantized into thousands or tens of thousands of “words,” this does
not appear to be a viable proposition, especially in light of recent results that
advocate using very large visual dictionaries [1–3].

But what if we could reduce the size of a dictionary from tens of thousands
of words to a few hundred and maintain improved localization? After all, dictio-
naries commonly used in bag-of-features are not designed for the specific task
of categorization, so there may be gains to be found in creating “smarter” dic-
tionaries that are tailored to the task. This is precisely what we set out to do.
With this we can obtain robust, efficient localization, and show that our scheme

2 Fulkerson et al .

Fig. 1. Upper Left: Original image. Middle: Labeling weighted by the confidence for
the class ”person”. Lower Left: Labeling weighted by the confidence, with low confi-
dence background pixels reclassified as foreground. Right: Labeling weighted by the
confidence, with low confidence foreground pixels reclassified as background.

performs better than the state of the art [4] on a challenging dataset [5] despite
its simplicity.

Contributions. In this paper we propose a method for pixel-level category
recognition and localization. We employ a simple representation (bag-of-features)
and contribute three techniques which make the categorization process efficient.
First, we extend integral images [6] to windowed histogram-based classification.
Second, we construct small dictionaries which maintain the performance of their
larger counterparts by using agglomerative information bottleneck (AIB) [7].
In order to greatly reduce the bottleneck of quantizing features, we construct
the large dictionaries using hierarchical k-means (HKM). We also propose an
important speedup which makes it possible to compute AIB on large dictionaries
with ease. Third, we show that we can compute SIFT features densely in linear
time.

Related work. Lazebnik et al . [8] also perform discriminative learning to opti-
mize k-means, but are limited to small dictionaries and visual words which are
Voronoi cells. Leibe et al . [9] also perform compression, but not in a discrimina-
tive sense. Finally, Winn et al . [10] do discriminative compression in a similar
fashion, but we show that we perform better and can scale to larger dictionaries.
For the task of pixel-level localization, we show that our method outperforms k-
means and Winn et al ., while being nearly two hundred times faster to construct.
We compare our method directly to Winn et al . [10] in Sect. 3.1.

Object categorization methods have matured greatly in recent years, going
beyond bags of features by incorporating a spatial component into their model.
Approaches are varied, but broadly tend to include one of the following: inter-
actions between pairs of features [11–13], absolute position of the features [14],
segmentation [15, 16], or a learned shape or parts model of the objects [4, 17,

Localizing Objects With Smart Dictionaries 3

18]. Our method exploits interaction between groups of features (all features in
the window), but does not explicitly represent their configuration, in the spirit
of achieving viewpoint-invariance for objects of general shape[19].

Regarding object localization, recent works are based on two different ap-
proaches: either they form a shape based model of the object class as in [4, 17],
or they enforce spatial consistency using a conditional random field (CRF) [20,
21]. We focus our comparisons on the method of Marszalek et al . [4], who forms
a family of shape models for each category from the training data and casts
these into the target image on sparse feature points to find local features which
agree on the deformation of one of the learned models. Our approach will show
that we obtain better performance by simply performing local classification at
every pixel.

Along the way, we will construct a small, smart dictionary which is comprised
of clusters of features from a much larger dictionary using AIB [7]. Liu et al . [22]
recently proposed a co-clustering scheme maximizing mutual information (MMI)
for scene recognition. Agarwal et al . [23] cluster features to create a whole image
descriptor called a “hyperfeature” stack. Their scheme repeatedly quantizes the
data in a fixed pyramid, while our representation allows the computation of any
arbitrary window without incurring any additional computational penalty. We
can just as easily extract our bag-of-features for the whole image, blocks of the
image, or (as we show) each pixel on a grid.

After this paper was submitted, two additional related works were published.
Lampert et al . [24] use branch-and-bound to search all possible subwindows of
an image for the window which best localizes an object. They do not seek to
localize at the pixel level, or handle multiple objects in one image. Shotton et
al . [25] perform pixel labeling as we do, but use much simpler features combined
with randomized decision forests. Because they use simple features, they must
build their viewpoint invariance by synthetically warping the training images
and providing them as new training examples. Our framework allows for that,
but our descriptors already exhibit reduced sensitivity to viewpoint.

2 Brute-force Localization

Our method uses bag-of-features as a “black box” to perform pixel-level category
recognition. In the simplest case, this involves extracting features from the image
and then for each window aggregating them into a histogram and comparing this
histogram with the training data we have been provided. The main stumbling
block is the extraction of histograms at each pixel of the image. For this, we use
integral images. However, this alone is not sufficient: Using large dictionaries
in the setting we propose would be impossible, yet we need our dictionary to
remain discriminative in order to be useful. To this end, in Sect. 3 we propose a
method for building a compact, efficient and informative dictionary from a much
larger one.

Integral Images. Viola et al . [6] popularized the use of integral images for the
task of feature extraction in boosting, and it has since been used by others [20]

4 Fulkerson et al .

Fig. 2. Dictionary architecture. We use hierarchical k-means (HKM) to build a
vocabulary tree (left, red nodes) of finely quantized features by recursively partition-
ing the data. Next, we use AIB to build an agglomerative tree (right, blue nodes) of
informative words. This architecture is efficient (in training and testing) and powerful.

for similar purposes. Integral images can also be used to quickly count events in
image regions [26], and Porikli [27] shows how to compute integral histograms in
Cartesian spaces. We build integral images of spatial occurrences of features and
use them to efficiently extract histograms of visual words on arbitrary portions of
the image. For each visual word b in our dictionary, let Ob(x, y) be the number of
occurrences of b at pixel (x, y) (typically this number is either zero or one). Each
image Ob is transformed into a corresponding integral image Ib by summing over
all the pixels (x′, y′) ≤ (x, y) above and to the left of pixel (x, y):

Ib(x, y) =
∑
x′<x

∑
y′<y

Ob(x′, y′)

Let R be a rectangular image region. The histogram HR(b) is the number of
occurrences of b in R and can be quickly computed as:

HR(b) = Ib(xs, ys) + Ib(xe, ye)− Ib(xs, ye)− Ib(xe, ys)

where (xs, ys) is the upper left corner and (xe, ye) is the lower right corner of R.
In this way we can extract a histogram of feature occurrences for a window of
arbitrary size in constant time. The memory required scales with the size of the
image and the size of the dictionary, and the constant time required to construct
each histogram scales linearly with the size of the dictionary. This precludes the
use of very large dictionaries, because each dictionary element that is included
requires adding an integral image.

3 Informative, Compact and Efficient Dictionaries

Our localization method directly benefits from having a small dictionary because
the complexity is linear in its size. Yet many recent works [1–3, 29] indicate that
large or very large dictionaries perform better for both object recognition and
categorization. However, over-specific visual words should eventually over-fit the
data, especially in categorization. We argue that one of the reasons why large
dictionaries often outperform smaller ones is that dictionaries are usually not

Localizing Objects With Smart Dictionaries 5

2420200100040008000
60

65

70

75

80

85

90

95

Dictionary Size

P
er

fo
rm

an
ce

 (
%

)

Performance vs. Compression

Bike
Cars
Person

Fig. 3. Results of an experiment showing the performance of AIB as the dictionary is
compressed. We adopt the framework of [28] on Graz-02, extracting SIFT descriptors
on salient regions, quantizing them, and classifying the resulting histograms with an
SVM. We vary the compression of the dictionary, starting from the full HKM tree
(8,000 leaves, K=20) and compressing to a dictionary with only 2 elements. In each
case, we can compress the dictionary by a factor of 8 without losing any accuracy. In
some cases (Cars, Bikes) we even increase performance slightly.

optimized for discrimination. If visual words could be tailored to discriminate
different categories, a smaller number of them would be sufficient. Motivated by
this idea, we seek to gain the performance increases of recent approaches using
large dictionaries without their computational burden.

Winn et al . [10] introduced the idea of constructing small and informative
visual dictionaries by compressing larger ones. Here we propose a novel architec-
ture and compression algorithm that has two key advantages: (i) it is very fast to
project novel features on the optimized dictionary and (ii) compression is several
orders of magnitude faster, which makes it possible to operate on much larger
dictionaries and datasets. In addition, we show that our method outperforms [10]
for the task of pixel level categorization (Sect. 4).

Fast Projection by HKM. In order to project N novel features f ∈ F ⊂ Rn

onto a visual dictionary of L elements, the required time is usually O(NL). This
is true even if the dictionary is eventually compressed into a smaller one [10].
Since a large number of features N are typically extracted from an image, map-
ping features to the visual dictionary may become the bottleneck of the recog-
nition pipeline.

Here we solve this problem by using an HKM [1] tree as the initial visual
dictionary. HKM trees have shown excellent performance in object recognition [1,
2]. More importantly, they enable efficient projection of novel features, requiring
only O(N logL) operations. Combining the HKM tree with the compression tree
(Sect. 3.1), yields the coarse-to-fine-to-coarse architecture of Fig. 2.

6 Fulkerson et al .

3.1 Dictionary Compression

We compress a visual dictionary by merging visual words in such a way that the
discriminative power of the dictionary is preserved. The discriminative power
can be characterized in different ways, yielding different compression algorithms.
Here we discuss and compare two: Agglomerative Information Bottleneck (AIB) [7]
and the method from [10], which we indicate with WCM. We also contribute a
modification of the AIB algorithm that makes it feasible to process dictionaries
of tens of thousands of elements. We show that the same fast algorithm may
be used to speed-up WCM as well. However, even with this speedup we find
that WCM is much slower than AIB (to the point of being infeasible for large
datasets and dictionaries) and performs worse than AIB when applied to pixel-
level categorization.

AIB Compression. AIB characterizes the discriminative power of the dictio-
nary X as the mutual information I(x, c) of the random variables x (visual word)
and c (category):

I(x, c) =
∑
x∈X

C∑
c=1

P (x, c) log
P (x, c)
P (x)P (c)

. (1)

The joint probability P (x, c) is estimated from data simply by counting the num-
ber of occurrences of each visual word x ∈ X in each category c ∈ {1, . . . , C}.
AIB iteratively compresses the dictionary X by merging the two visual words xi

and xj that cause the smallest decrease Dij in the mutual information (discrim-
inative power) I(x, c). Denoting [x]ij the random variable corresponding to the
dictionary after the merge, the quantity Dij is

Dij = I(x, c)− I([x]ij , c). (2)

The information I(x, c) is monotonically reduced after each merge. Merging is
iterated until one obtains the desired number of words.

At test time, projecting a visual word x ∈ X onto the compressed dictionary
requires constant time (O(1)). So, since we use HKM for the initial dictionary,
the number of operations required to project N novel features on the compressed
dictionary is only O(N logK), where K is the number of leaves of the HKM tree.

In Fig. 3 we show the effectiveness of this technique using a simple experiment
on Graz-02. In all cases, we compress the dictionary significantly without losing
any accuracy. In fact, in two of the three cases the results are slightly improved
at some compression level.

Fast AIB. The basic implementation of the AIB algorithm is prohibitively slow
for very large dictionaries. The implementation proposed in Slonim et al . [7]
stores the symmetric “distance” matrix D = [Dij] (O(L2) space).1

1 Reciprocal Nearest Neighbor Clustering [9] proposes an efficient agglomerative
clustering algorithm that can be applied whenever the distance matrix Dij satisfies

Localizing Objects With Smart Dictionaries 7

Then, at each iteration one only needs to update the row and column i, j of
D which were involved in the last merge (since only words xi and xj change).
This has complexity O(LC). Searching for the minimal matrix element at each
step is O(L2), and this process is iterated L times, so the overall complexity is
O(L(L2 + LC)) time and O(L2) space [30].

A simple modification of the basic algorithm is far more efficient. We cache
for each i the index and value (ki, Diki) of the minimum distance along the row
and do not store D. This reduces the time spent searching for the minimum
element (i∗, j∗) of D from O(L2) to O(L). Now, when we merge (i∗, j∗), we
must update the entries (ki, Diki

) for which either ki = i∗ or ki = j∗. This has
time complexity O(L(L + γLC)), where γ is the number of entries which need
to be updated at each iteration. We find empirically that γ � L, so in practice
the amount of time taken is approximately O(L2C) and the space complexity
has been reduced to O(L).

To get a sense of the advantages of this implementation, the original AIB
algorithm [30] requires L2 elements of memory at each iteration, which meant
that a 20,000 cluster case would require roughly 3.2GB of memory as opposed to
320kB with our modified approach. We also note that in the 10,000 cluster cases
we test, we often find γ to be on the order of 5 and so the clustering process
is very fast (about 5 minutes for 10,000 clusters on a 2.3Ghz Core 2 Duo). The
basic implementation of AIB on the same task requires approximately a day.

WCM compression. WCM differs from AIB in the way it measures the dis-
criminative power of the visual dictionary. This is motivated by the fact that in
the bag-of-features setting images are represented by histograms of visual words
rather than visual words in isolation. Thus, one is more interested in obtaining
informative histograms than informative visual words. This notion could be cap-
tured, for instance, by considering the mutual information I(h, c) in place of the
information I(x, c) used by AIB.

Due to the high dimensionality of the histograms, estimating I(h, c) is nearly
impossible without strong assumptions. WCM assumes that histograms are dis-
tributed according to a mixture of Gaussians, with one Gaussian per category.
Moreover, they characterize the discriminative power of the dictionary by the
category posterior probability p(c|h) rather than by the information I(h, c). This
creates a mechanism for model selection which can automatically stop the merg-
ing procedure when a maximum of p(c|h) is attained (in contrast, in AIB the
information criterion I(x, c) decreases monotonically). Finally, it is also possible
to extend the fast AIB algorithm introduced in the previous section to WCM
almost without changes.

the reducibility property Dij ≤ min{Dik, Djk} ⇒ min{Dik, Djk} ≤ Dīj,k, where
īj denotes the merged dictionary entry. Unfortunately, AIB clustering violates this
property. For a counter example, consider the case C = 3, P (xi) = P (xj) = P (xk) =
1/3, P (c = 1|xk) = P (c = 2|xk) = 1/3, P (c = 1|xi) = P (c = 2|xi) = 2/5 and
P (c = 2|xj) = P (c = 3|xj) = 2/5.

8 Fulkerson et al .

Despite these appealing characteristics, WCM does not perform as well as
AIB in our setting. First, despite our fast implementation, it is much slower
than AIB on large datasets (in Sect. 4 we show it requires up to twelve days on
a task that our fast AIB can solve in about five minutes).2 Second, WCM model
selection is not useful for our localization task as we are interested in obtaining
dictionaries of a prescribed size (Sect. 4). Third, AIB compressed dictionaries
result in better categorization results than WCM3 (Sect. 4; Table 1).

4 Experiments

Graz-02 [5] is a challenging dataset consisting of three categories (cars, bicycles,
and people) with extreme variability in pose, scale and lighting. Our goal is the
same as Marszalek et al . [4]: We wish to label each image pixel as either belonging
to one of these categories or not. In order to compare directly to Marszalek et
al . [4], we adopt their measure of performance: pixel precision-recall. Our features
extraction and dictionary compression are implemented within VLFeat [31], and
the rest of our implementation is available from our website4.

Training. We select the same training images as [4], namely the first 150 odd
numbered images from each category. We compute dense SIFT descriptors and
quantize them using our dictionary (see Sect. 4). Then for each image we gen-
erate two histograms: The first aggregates all the features that belong to the
background (based on the feature center and the ground truth object masks),
and the second the features that belong to the object. This collection of his-
tograms is used as training data for either an SVM classifier with χ2 kernel
or an inverse document frequency (IDF) [1] weighed k-nearest neighbor (KNN)
classifier (k = 10).

Fast Dense Feature Extraction. We extract a SIFT descriptor [32] every four
pixels. The support of each descriptor is a 16×16 patch. We do not compute the
orientation of the descriptor since this has been shown to adversely affect other
dense bag of features methods [28]. Features that have low gradient magnitude
before normalization are discarded as in [14, 3].

We introduce here a novel technique to compute dense SIFT descriptors
very efficiently. Fast SIFT-like descriptors have been proposed by [33, 3] and re-
cently [34]. Our technique has the advantage of being fully equivalent to SIFT
and still efficient: The complexity is only O(Q2R) compared to O(Q2R2) of a

2 Updating an entry of the Dij matrix requires scanning the data to compute the linear
correlation of bin i and j. This is due to the fact that WCM considers visual words
in the context of histograms where AIB does not. Although the model assumes that
histogram bins are statistically independent, they interact when merged. The update
operation requires about O(ML2C), where M is the number of training histograms,
as opposed to O(L2C) for AIB.

3 This is probably due to the fact that in our setting the assumptions made by WCM
are not satisfied.

4 http://vision.ucla.edu/bag/

Localizing Objects With Smart Dictionaries 9

direct implementation, where Q2 the area of the image and R2 the area of the
descriptor support. Moreover, up to a small approximation, we can reduce the
complexity to O(Q2), which is independent of the area of the descriptor sup-
port. Our implementation is included with VLFeat [31], an open source feature
extraction library.

The idea is to reduce the calculation of the dense descriptors to a number
of separable convolutions. Recall that the SIFT descriptor at location (x0, y0)
is a three-dimensional histogram of the gradient ∇I(x, y) in a circular patch
surrounding that point [32]. The histogram is indexed by the relative posi-
tion (x − x0, y − y0) and orientation ∠∇I(x, y) of the gradient ∇I(x, y) in the
patch, weighed by the gradient modulus |∇I(x, y)| and by a Gaussian win-
dow centered at (x0, y0). The relative positions are quantized in 4 × 4 bins
and the orientation in 8 bins using bilinear interpolation. For a given orien-
tation, the data for a bin b is obtained by computing integrals of the type∫
g(x − x0, y − y0)hb(x − x0, y − y0)f(x, y) dx dy, where f(x, y) is the mass of

the gradient at that particular orientation, g(x, y) is the Gaussian window and
hb(x, y) is the product of two triangular windows resulting from the bilinear in-
terpolation of bin b. Since both h(x, y) and g(x, y) are separable, the calculation
requires only O(Q2R) operations.

Notice that this requires 4×4×8 separable convolutions in total. However, by
dropping the Gaussian window g(x, y) (the effect on the computed descriptors
is modest), convolutions for different spatial bins at the same orientations are
identical up to translation, and only 8 separable convolutions are sufficient. More-
over, recall that convolving by a rectangular kernel can be done very efficiently
by integral images. Since convolving by a triangular kernel can be decomposed
in convolving twice by rectangular ones, we obtain a final complexity of O(Q2).

We also experimented with color descriptors by first transforming the (R,G,B)
image into the normalized (r, g, b) space [35] where r = R

R+G+B , g = G
R+G+B ,

b = B
R+G+B . SIFT descriptors are extracted independently from the r and g

channel and concatenated into one 256 dimensional descriptor5.

Dictionary Construction. We sample a large number of feature-category pairs
from our training data and follow one of two approaches to construct a dictio-
nary. As a baseline, we use k-means with k = {5, 40, 200}. Alternatively, we
construct a hierarchical k-means dictionary with k = 10 and 10,000 leaf nodes,
and then compress this dictionary to N = {5, 40, 200} clusters (we experiment
with both AIB and WCM). Notice that, in our application, the size of the dic-
tionary is the primary factor in determining the speed and memory footprint of
the classification algorithm.

Testing. We test on the first 150 even numbered images from each category.
For each pixel on a gird with a step 4 pixels, we construct a histogram of feature
occurrences within a window of 80 × 80 pixels using integral images (Sect. 2)
and classify using either SVM or KNN. The classification returns a label and

5 We do not include the b channel because the constraint r + g + b = 1 makes it
redundant.

10 Fulkerson et al .

object class cars people bicycles time

[4] no hyp. eval. 40.4% 28.4% 46.6% -
[4] no evid. collect. 50.3% 40.3% 48.9% -
[4] full framework 53.8% 44.1% 61.8% -

AIB5-KNN 39.8% 47.1% 57.4% 0.5s
AIB5-SVM 38.5% 48.2% 56.8% 0.7s
KM5-KNN 27.1% 32.1% 44.9% 2s
KM5-SVM 30.0% 33.1% 44.9% 2s

AIB40-KNN 47.5% 47.2% 61.7% 0.5s
AIB40-SVM 44.9% 49.0% 59.9% 0.8s
KM40-KNN 45.1% 42.8% 59.5% 2s
KM40-SVM 37.8% 45.4% 59.5% 2.5s

AIB200-KNN 50.9% 49.7% 63.8% 1.1s
AIB200-SVM 40.1% 50.7% 59.9% 3.3s
KM200-KNN 50.1% 46.5% 62.6% 2.5s
KM200-SVM 39.3% 49.3% 58.9% 5s

AIB200RGB-KNN 54.7% 47.1% 66.4% 1.4s
AIB200RGB-SVM 49.4% 51.4% 65.2% 3.7s

WCM200RGB-KNN 54.2% 41.1% 59.6% 1.4s
WCM200RGB-SVM 39.8% 46.3% 59.6% 3.7s

KM200RGB-KNN 51.6% 44.2% 60.8% 3.5s
KM200RGB-SVM 48.3% 49.3% 61.4% 7s

Table 1. A comparison of the pixel precision-recall equal error rates on Graz-02.
Although we do not represent shape explicitly, our results are competitive with [4].
The best performance is achieved using our compressed dictionary (Sect. 3). We also
outperform Winn et al . (WCM), and while our dictionaries take roughly 5 minutes to
construct, Winn et al . takes up to 12 days on this task. Here time is the amount of time
required per image, including dense feature extraction, quantization, and classification
of all pixels. Dense feature extraction alone requires 0.15s for grayscale and 0.3s for
RGB. Images are 640× 480.

a score. The magnitude of the score indicates the confidence in the label and
the sign of the score indicates the class (-1 is a fully confident classification of
“background”). For pixels which do not lie on the grid, we interpolate the score
from adjacent pixels.

We choose a range of confidence thresholds ρ and for each we classify as object
all pixels which have a score greater than the threshold. These are compared to
the ground-truth segmentation which provides us with pixel precision and recall
for the testing data. We also use this threshold to create Fig. 1 and to generate
the movie included as supplementary material.

Discussion. Table 1 reports the points where precision and recall are equal
and compares our results to those of Marszalek et al . [4], the previous state of
the art in pixel accurate localization on Graz-02. The full curves are available
at the author’s website. Although we do not have shape or even scale in our
model, we still perform significantly better on all categories. Specifically, our

Localizing Objects With Smart Dictionaries 11

best performing cases are 4.8% better on bikes, 0.9% better on cars, and 7.3%
better on people. In each case, the compressed dictionary outperforms the k-
means dictionary of equal size. The differences decrease as the final vocabulary
size is increased, which is intuitive because the variability of the dataset can be
better captured by k-means as we increase k, while the descriptive power of our
rebuilt dictionary is upper bounded by that of the associated HKM tree.

Our approach naturally provides a confidence measure, so we can quantify
the uncertainty in classification as shown in Fig. 4.

5 Conclusions and Future Work

We have described and shown that an object localization framework which uses
bag-of-features as a tool can successfully localize objects without making as-
sumptions about the shape of the object, or explicitly performing segmentation.
In order to make this possible, we have also shown a method that efficiently
learns a dictionary which is tailored for the task of categorization. In spite of
its simplicity, our approach produces pixel-accurate object localizations which
exceed the state of the art on a challenging dataset.

Our experiments show that more care should be exercised in integrating
shape information into generic object class representations. We believe shape is
an important discriminant ([19], Theorem 3), but our work should be viewed as
a baseline method whose performance should be convincingly exceeded before
justifying the additional complexity a shape-based model might bring.

The techniques we describe can be directly extended to pixel-level multi-
class localization, and we plan to do this. We will also explore adding a notion
of scale, perhaps by simply performing multiple classifications at different scales
followed by scale selection. We note that in our framework this does not add any
significant computational burden since our complexity is not tied to the size of
the windows we choose. Our system is already very fast, and we plan to improve
the speed further until the system operates in real-time.

Last, our approach could be combined with conditional random fields or
other models that are capable of enforcing spatial consistency and context-type
constraints (e.g. [20, 16]). However, we note that we already have some local
consistency built-in since each windowed histogram we classify has a very high
overlap with its neighbors.

6 Acknowledgements

This research was supported by ONR N00014-08-1-0414, 67F-1080868 and AFOSR
FA9550-06-1-0138.

12 Fulkerson et al .

Fig. 4. Selected results on Graz-02. (Best viewed in color). Images are first masked
by the classification then transformed to HSV. The HSV images have their V channel
weighted by the confidence in the classification, darkening the pixels which are less
confident about the class. All images shown were generated with the parameter set
denoted AIB200RGB and classified with an SVM.

Localizing Objects With Smart Dictionaries 13

References

1. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc.
CVPR. (2006)

2. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: Proc. CVPR. (2007)

3. Tuytelaars, T., Schmid, C.: Vector quantizing feature space with a regular lattice.
In: Proc. ICCV. (2007)

4. Marsza lek, M., Schmid, C.: Accurate object localization with shape masks. In:
Proc. CVPR. (2007)

5. Opelt, A., Pinz, A.: Object localization with boosting and weak supervision for
generic object recognition. In: Proc. SCIA. (2005)

6. Viola, P., Jones, M.: Robust real-time object detection. In: Second Interna-
tional Workshop on Statistical and Computational Theories of Vision, Vancouver,
Canada (2001)

7. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Proc. NIPS.
(1999)

8. Lazebnik, S., Raginsky, M.: Learning nearest-neighbor quantizers from labeled
data by information loss minimization. In: Proc. Conf. on Artificial Intellligence
and Statistics. (2007)

9. Leibe, B., Micolajckzyk, K., Schiele, B.: Efficient clustering and matching for object
class recognition. In: Proc. BMVC. (2006)

10. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal
visual dictionary. In: Proc. ICCV. (2005)

11. Marsza lek, M., Schmid, C.: Spatial weighting for bag-of-features. In: Proc. CVPR.
(2006)

12. Leordeanu, M., Hebert, M., Sukthankar, R.: Beyond local appearance: Category
recognition from pairwise interactions of simple features. In: Proc. CVPR. (2007)

13. Ling, H., Soatto, S.: Proximity distribution kernels for geometric context in cate-
gory recognition. In: Proc. CVPR. (2007)

14. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bag of features: Spatial pyramid
matching for recognizing natural scene categories. In: Proc. CVPR. (2006)

15. Cao, L., Fei-Fei, L.: Spatially coherent latent topic model for concurrent object
segmentation and classification. In: Proc. ICCV. (2007)

16. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects
in context. In: Proc. ICCV. (2007)

17. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmen-
tation with implicit shape model. In: ECCV Workshop on Statistical Learning in
Comp. Vision. (2004)

18. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multi-
scale, deformable part model. http://people.cs.uchicago.edu/ pff/papers/ (2007)

19. Vedaldi, A., Soatto, S.: Features for recognition: Viewpoint invariance for non-
planar scenes. In: Proc. ICCV. (2005)

20. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation.
In: Proc. ECCV. (2006)

21. He, X., Zemel, R., nán, M.C.P.: Multiscale conditional random fields for image
labeling. In: Proc. CVPR. (2004)

22. Liu, J., Shah, M.: Scene modeling using co-clustering. In: Proc. ICCV. (2007)

14 Fulkerson et al .

23. Agarwal, A., Triggs, B.: Hyperfeatures - multilevel local coding for visual recogni-
tion. Technical report, INRIA (2005)

24. Lampert, C., Blaschko, M., Hofmann, T.: Beyond sliding windows: Object local-
ization by efficient subwindow search. cvpr (2008)

25. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catego-
rization and segmentation. cvpr (2008)

26. Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance
context modeling. In: Proc. ICCV. (2007)

27. Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces.
In: Proc. CVPR. (2005)

28. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels
for classification of texture and object categories: A comprehensive study. IJCV
(2006)

29. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using
randomized clustering forests. In: Proc. NIPS. (2006)

30. Slonim, N.: Iba 1.0 Matlab code for information bottleneck clustering algorithms.
http://www.princeton.edu/ nslonim/ (2003)

31. Vedaldi, A., Fulkerson, B.: Vlfeat: Feature extraction library.
http://vision.ucla.edu/vlfeat/ (2007)

32. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 2(60)
(2004) 91–110

33. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Proc.
ECCV. (2006)

34. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: Proc.
CVPR. (2008)

35. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background
subtraction. In: Proc. ECCV. (2000) 751–767

