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Abstract

We propose a method to identify and localize object
classes in images. Instead of operating at the pixel level,
we advocate the use of superpixels as the basic unit of a
class segmentation or pixel localization scheme. To this
end, we construct a classifier on the histogram of local fea-
tures found in each superpixel. We regularize this clas-
sifier by aggregating histograms in the neighborhood of
each superpixel and then refine our results further by us-
ing the classifier in a conditional random field operating
on the superpixel graph. Our proposed method exceeds
the previously published state-of-the-art on two challeng-
ing datasets: Graz-02 and the PASCAL VOC 2007 Segmen-
tation Challenge.

1. Introduction

Recent success in image-level object categorization has
led to significant interest on the related fronts of localization
and pixel-level categorization. Both areas have seen signifi-
cant progress, through object detection challenges like PAS-
CAL VOC [9]. So far, the most promising techniques seem
to be those that consider each pixel of an image.

For localization, sliding window classifiers [8, 3, 21, 35]
consider a window (or all possible windows) around each
pixel of an image and attempt to find the classification
which best fits the model. Lately, this model often includes
some form of spatial consistency (e.g. [22]). In this way, we
can view sliding window classification as a “top-down” lo-
calization technique which tries to fit a coarse global object
model to each possible location.

In object class segmentation, the goal is to produce a
pixel-level segmentation of the input image. Most ap-
proaches are built from the bottom up on learned local rep-
resentations (e.g. TextonBoost [32]) and can be seen as an
evolution of texture detectors. Because of their rather lo-
cal nature, a conditional random field [20] or some other
model is often introduced to enforce spatial consistency.
For computational reasons, this usually operates on a re-

duced grid of the image, abandoning pixel accuracy in favor
of speed. The current state-of-the-art for the PASCAL VOC
2007 Segmentation Challenge [31] is a scheme which falls
into this category.

Rather than using the pixel grid, we advocate a repre-
sentation adapted to the local structure of the image. We
consider small regions obtained from a conservative over-
segmentation, or “superpixels,” [29, 10, 25] to be the ele-
mentary unit of any detection, categorization or localization
scheme.

On the surface, using superpixels as the elementary units
seems counter-productive, because aggregating pixels into
groups entails a decision that is unrelated to the final task.
However, aggregating pixels into superpixels captures the
local redundancy in the data, and the goal is to perform
this decision in a conservative way to minimize the risk of
merging unrelated pixels [33]. At the same time, moving
to superpixels allows us to measure feature statistics (in this
case: histograms of visual words) on a naturally adaptive
domain rather than on a fixed window. Since superpixels
tend to preserve boundaries, we also have the opportunity
to create a very accurate segmentation by simply finding
the superpixels which are part of the object.

We show that by aggregating neighborhoods of superpix-
els we can create a robust region classifier which exceeds
the state-of-the-art on Graz-02 pixel-localization and on the
PASCAL VOC 2007 Segmentation Challenge. Our results
can be further refined by a simple conditional random field
(CRF) which operates on superpixels, which we propose in
Section 3.4.

2. Related Work

Sliding window classifiers have been well explored for
the task of detecting the location of an object in an image [3,
21, 8, 9]. Most recently, Blaschko et al. [3] have shown
that it is feasible to search all possible sub-windows of an
image for an object using branch and bound and a structured
classifier whose output is a bounding box. However, for our
purposes a bounding box is not an acceptable final output,
even for the task of localization.
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Figure 1. Aggregating histograms. An illustration of the detail of our superpixel segmentation and the effectiveness of aggregating
histograms from adjacent segments. From the left: segmentation of a test image from Graz-02, a zoomed in portion of the segmentation,
the classification of each segment where more red is more car-like, and the resulting classification after aggregating all histograms within
N = 2 distance from the segment being classified.

Our localization capability is more comparable to
Marszałek [24] or Fulkerson et al. [11]. Marszałek warps
learned shape masks into an image based on distinctive lo-
cal features. Fulkerson performs bag-of-features classifica-
tion within a local region, as we do, but the size of the region
is fixed (a rectangular window). In contrast, our method
provides a natural neighborhood size, expressed in terms of
low level image regions (the superpixels). A comparison
with these methods is provided in Table 2.

Class segmentation algorithms which operate at the pixel
level are often based on local features like textons [32] and
are augmented by a conditional random field or another spa-
tial coherency aid [15, 19, 16, 37, 17, 28, 13] to refine the re-
sults. Shotton et al. [31] constructs semantic texton forests
for extremely fast classification. Semantic texton forests
are essentially randomized forests of simple texture classi-
fiers which are themselves randomized forests. We compare
our results with and without an explicit spatial aid (a CRF)
with those of Shotton in Table 3. Another notable work in
this area is that of Gould et al. [13] who recently proposed
a superpixel-based CRF which learns relative location off-
sets of categories. We eventually augment our model with a
CRF on superpixels, but we do not model the relative loca-
tions of objects explicitly, instead preferring to use stronger
local features and learn context via connectedness in the su-
perpixel graph.

A number of works utilize one or more segmentations
as a starting point for their task. An early example is
Barnard et al. [2], who explore associating labels with im-
age regions using simple color features and then merging
regions based on similarity over the segment-label distri-
bution. More recently, Russell et al. [30] build a bag-of-
features representation on multiple segmentations to auto-
matically discover object categories and label them in an
unsupervised fashion. Similarly, Galleguillos et al. [12]
use Multiple Instance Learning (MIL) to localize objects
in weakly labeled data. Both assume that at least one of
their segmentations contains a segment which correctly sep-
arates the entire object from the background. By operating

on superpixels directly, we can avoid this assumption and
the associated difficulty of finding the one “good” segment.

Perhaps the most closely related work to ours is that
of Pantofaru et al. [27]. Pantofaru et al. form superpixel-
like objects by intersecting multiple segmentations and then
classify these by averaging the classification results from all
of the member regions. Their model allows them to gather
classification information from a number of different neigh-
borhood sizes (since each member segment has a different
extent around the region being classified). However, mul-
tiple segmentations are much more computationally expen-
sive than superpixels, and we exceed their performance on
the VOC 2007 dataset (see Table 3).

Additionally, a number of authors use graphs of image
structures for various purposes, including image categoriza-
tion [14, 26] and medical image classification [1]. Although
we operate on a graph, we do not seek to mine discrim-
inative substructures [26] or classify images based on the
similarity of walks [14]. Instead we use the graph only to
define neighborhoods and optionally to construct a condi-
tional random field.

3. Superpixel Neighborhoods
3.1. Superpixels

We use quick shift [36] to extract superpixels from our
input images. Our model is quite simple: we perform quick
shift on a five-dimensional vector composed of the LUV
colorspace representation of each pixel and its location in
the image.

Unlike superpixelization schemes based on normalized
cuts (e.g. [29]), the superpixels produced by quick shift are
not fixed in approximate size or number. A complex image
with many fine scale image structures may have many more
superpixels than a simple one, and there is no parameter
which puts a penalty on the boundary, leading to superpixels
which are quite varied in size and shape. Statistics related
to our superpixels (such as the average size and degree in
the graph) are detailed in Section 4.



This produces segmentations, like the one in Figure 1,
which consist of many small regions that preserve most of
the boundaries in the original image. Since we perform this
segmentation on the full resolution image, we leave open
the potential to obtain a nearly pixel-perfect segmentation
of the object.

3.2. Classification

We construct a bag-of-features classifier which operates
on the regions defined by the superpixels we have found.
SIFT descriptors [23] are extracted for each pixel of the
image at a fixed scale and orientation using the fast SIFT
framework found in [34]. The extracted descriptors are then
quantized using a K-means dictionary and aggregated into
one l1-normalized histogram h0

i ∈ RK+ for each superpixel
si ∈ S. In order to train the classifier, each superpixel si
is assigned the most frequent class label it contains (since
the ground-truth labels have pixel-level granularity). Then
a one-vs-rest support vector machine (SVM) with an RBF-
χ2 kernel is trained on the labeled histograms for each of
the object categories. This yields discriminant functions of
the form

C(h0) =
L∑
j=1

ci exp(−γd2
χ2(h0, h0

i ))

where ci ∈ R are coefficients and h0
i representative

histograms (support vectors) selected by SVM training,
γ ∈ R+ is a parameter selected by cross-validation, and
d2
χ2(h0, h0

i ) is the χ2 distance between histograms h0 and
h0
i , defined as

d2
χ2(h0, h0

i ) =
K∑
k=1

(h0(k)− h0
i (k))2

h0(k) + h0
i (k)

.

The classifier which results from this is very specific. It
finds superpixels which resemble superpixels that were seen
in the training data without considering the surrounding re-
gion. This means that while a wheel or grille on a car may
be correctly identified, the nearby hub of the wheel or the
headlight can be detected with lower confidence or missed
altogether (Figure 1).

Another drawback of learning a classifier for each super-
pixel is that the histograms associated with each superpixel
are very sparse, often containing only a handful of non-
zero elements. This is due to the nature of our superpix-
els: by definition they cover areas that are roughly uniform
in color and texture. Since our features are fixed-scale and
extracted densely, our superpixels sometimes contain tens
or even hundreds of descriptors that quantize to the same
visual word.

3.3. Superpixel Neighborhoods

We address both of the problems mentioned in the previ-
ous section by introducing histograms based on superpixel
neighborhoods. Let G(S,E) be the adjacency graph of su-
perpixels si ∈ S in an image, and H0

i be the unnormalized
histogram associated with this region. E is the set of edges
formed between pairs of adjacent superpixels (si, sj) in the
image and D(si, sj) is the length of shortest path between
two superpixels. Then, HN

i is the histogram obtained by
merging the histograms of the superpixel si and neighbors
who are less than N nodes away in the graph:

HN
i =

∑
sj |D(si,sj)≤N

H0
j

The learning framework is unchanged, except that we de-
scribe superpixels by the histograms hNi = HN

i /‖HN
i ‖1 in

place of h0
i .

Using these histograms in classification addresses both
of our previous issues. First, since adjacent superpixels
must be visually dissimilar, histograms constructed from
superpixel neighborhoods contain more diverse features and
are therefore less sparse. This provides a regularization for
our SVM, reducing overfitting. It also provides spatial con-
sistency in our classification because as we increase N , his-
tograms of adjacent superpixels have more features in com-
mon.

Second, because we are effectively increasing the spatial
extent of the region considered in classification, we are also
providing our classifier with a better description of the ob-
ject. As we increase N we move from the “part” level to
the “object” level, and since not all training superpixels will
lie on the interior of the object, we are also learning some
“context”.

However, note that as N becomes larger we will blur
the boundaries of our objects since superpixels which are
on both sides of the object boundary will have similar his-
tograms. In the next section, we explore adding a CRF to
reduce this effect.

3.4. Refinement with a CRF

In order to recover more precise boundaries while still
maintaining the benefits of increasing N , we must intro-
duce new constraints that allow us to reduce misclassifica-
tions that occur near the edges of objects. Conditional ran-
dom fields provide a natural way to incorporate such con-
straints by including them in the pairwise edge potential of
the model. Let P (c|G;w) be the conditional probability
of the set of class label assignments c given the adjacency
graph G(S,E) and a weight w:

− log(P (c|G;w)) =
∑
si∈S

Ψ(ci|si) +w
∑

(si,sj)∈E

Φ(ci, cj |si, sj)



Our unary potentials Ψ are defined directly by the proba-
bility outputs provided by our SVM [7] for each superpixel:

Ψ(ci|si) = − log(P (ci|si))

and our pairwise edge potentials Φ are similar to those of
[32, 6]:

Φ(ci, cj |si, sj) =
(

L(si, sj)
1 + ‖si − sj‖

)
[ci 6= cj ]

where [·] is the zero-one indicator function and ‖si − sj‖ is
the norm of the color difference between superpixels in the
LUV colorspace. L(si, sj) is the shared boundary length
between superpixels si and sj and acts here as a regulariz-
ing term which discourages small isolated regions.

In many CRF applications for this domain, the unary and
pairwise potentials are represented by a weighted summa-
tion of many simple features (e.g. [32]), and so the param-
eters of the model are learned by maximizing their condi-
tional log-likelihood. In our formulation, we simply have
one weight w which represents the tradeoff between spatial
regularization and our confidence in the classification. We
estimate w by cross validation on the training data. Once
our model has been learned, we carry out inference with the
multi-label graph optimization library of [4, 18, 5] using
α-expansion. Since the CRF is defined on the superpixel
graph, inference is very efficient, taking less than half a sec-
ond per image.

Results with the CRF are presented in Section 4 as well
as Figures 2 and 3.

4. Experiments

We evaluate our algorithm for varying N with and with-
out a CRF on two challenging datasets. Graz-02 contains
three categories (bicycles, cars and people) and a back-
ground class. The task is to localize each category against
the background class. Performance on this dataset is mea-
sured by the pixel precision-recall.

The PASCAL VOC 2007 Segmentation Challenge [9]
contains 21 categories and few training examples. While
the challenge specifies that the detection challenge training
data may also be used, we use only the ground truth seg-
mentation data for training. The performance measure for
this dataset is the average pixel accuracy: for each category
the number of correctly classified pixels is divided by the
ground truth pixels plus the number of incorrectly classi-
fied pixels. We also report the total percentage of pixels
correctly classified.

MATLAB code to reproduce our experiments is avail-
able from our website1.

1http://vision.ucla.edu/bag/

4.1. Common Parameters

Experiments on both datasets share many of the same
parameters which we detail here.

SIFT descriptors are extracted at each pixel with a patch
size of 12 pixels and fixed orientation. These descriptors are
quantized into aK-means dictionary learned on the training
data. All experiments we present here useK = 400, though
in Figure 1 we show that a wide variety of K produce simi-
lar results.

The superpixels extracted via quick shift are controlled
by three parameters: λ, the trade-off between color impor-
tance and spatial importance, σ, the scale at which the den-
sity is estimated, and τ , the maximum distance in the fea-
ture space between members of the same region. We use
the same parameters for all of our experiments: σ = 2, λ =
0.5, τ = 8. These values were determined by segmenting a
few training images from Graz-02 by hand until we found a
set which preserved nearly all of the object boundaries and
had the largest possible average segment size. In principle,
we could do this search automatically on the training data,
looking for the parameter set which creates the largest aver-
age segment size while ensuring that the maximum possible
classification accuracy is greater than some desired level. In
practice, the algorithm is not too sensitive to the choice of
parameters, so a quick tuning by hand is sufficient. Note
that the number or size of the superpixels is not fixed (as op-
posed to [13]): the selected parameters put a rough bound
on the maximum size of the superpixels but do not con-
trol the shape of the superpixels or degree of the superpixel
graph.

Histograms for varying N are extracted as described in
Section 3.3 and labels are assigned to training superpixels
by the majority class vote. We randomly select an equal
number of training histograms from each category as the
training data for our SVM.

We learn a one-vs-rest multi-class SVM with an RBF-
χ2 kernel on the histograms using libsvm [7] as described
in Section 3.2. During testing, we convert our superpixel la-
bels into a pixel-labeled map and evaluate at the pixel level
for direct comparison with other methods.

In both experiments, we take our final SVM and include
it in the CRF model described in Section 3.4.

4.2. Graz-02

On Graz-02, we use the same training and testing split as
Marszałek and Schmid [24] and Fulkerson et al. [11]. Our
segment classifier is trained on 750 segments collected at
random from the category and the background.

Graz-02 images are 640 by 480 pixels and quick shift
produces approximately 2000 superpixels per image with
an average size of 150 pixels. The average degree of the su-
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Figure 2. Graz-02 confidence maps. Our method produces very well localized segmentations of the target category on Graz-02. Here, a
dark red classification means that the classifier is extremely confident the region is foreground (using the probability output of libsvm), while
a dark blue classification indicates confident background classification. Notice that as we increase the number of neighbors considered (N )
regions which were uncertain become more confident and spurious detections are suppressed. Top two rows: Without CRF. Bottom two
rows: With CRF.

Graz-02 N = PASCAL 2007 N =
0 1 2 3 4 0 1 2 3 4

K = 10 37 44 47 51 49 10 10 12 12 12
K = 100 48 61 64 64 64 13 19 23 25 25
K = 200 49 63 66 66 64 13 20 25 26 25
K = 400 50 64 67 69 67 14 21 25 28 27
K = 1000 49 63 68 68 66 14 22 27 27 26

Table 1. Effect of K. Here we explore the effect of the dictionary
size K on the accuracy of our method (without a CRF) for vary-
ing neighborhood sizes N . Increasing the size of the dictionary
increases performance until we begin to overfit the data. We pick
K = 400 for our experiments, but a large range of K will work
well. Notice that even with K = 10 we capture some information,
and increasing N still provides noticeable improvement.

perpixel graph is 6, however the maximum degree is much
larger (137).

In Table 2, we compare our results for varying size N
with those of Fulkerson et al. [11] which uses a similar
bag-of-features framework and Marszałek and Schmid [24]
which warps shape masks around likely features to define
probable regions. We improve upon the state-of-the-art in
all categories (+17% on cars, +15% on people, and +6% on
bicycles).

Example localizations may be found in Figures 1 and 2.

Cars People Bicycles
[24] full framework 53.8% 44.1% 61.8%

[11] NN 54.7% 47.1% 66.4%
[11] SVM 49.4% 51.4% 65.2%

N = 0 43.3% 51.3% 56.7%
CRF N = 0 46.0% 54.3% 63.4%

N = 1 62.0% 62.7% 67.6%
CRF N = 1 69.7% 63.8% 69.7%

N = 2 67.1% 65.4% 69.3%
CRF N = 2 71.2% 66.3% 71.2%

N = 3 68.6% 65.7% 71.7%
CRF N = 3 72.2% 66.1% 72.2%

N = 4 67.1% 62.7% 71.0%
CRF N = 4 71.3% 63.2% 71.3%

Table 2. Graz-02 results. The precision = recall points for our
experiments on Graz-02. Compared to the former state-of-the-art
[11], we show a 17% improvement on Cars, a 15% improvement
on People and a 6% improvement on Bicycles. N is the distance of
the furthest neighboring region to aggregate, as described in Sec-
tion 3.3. Our best performing case is always the CRF-augmented
model described in Section 3.4.

Notice that although N = 0 produces some very precisely
defined correct classifications, there are also many missed



detections and false positives. As we increase the amount of
local information that is considered for each classification,
regions that were classified with lower confidence become
more confident, and false positives are suppressed.

Adding the CRF provides consistent improvement,
sharpening the boundaries of objects and providing further
spatial regularization. Our best performing cases useN = 2
or N = 3, balancing the incorporation of extra local sup-
port with the preference for compact regions with regular
boundaries.

4.3. VOC 2007 Segmentation

For the VOC challenge, we use the same sized dictionary
and features as Graz-02 (K = 400, patch size = 12 pixels).
The training and testing split is defined in the challenge. We
train on the training and validation sets and test on the test
set. Since there are fewer training images per category, for
this experiment we train on 250 randomly selected training
histograms from each category.

VOC 2007 images are not fixed size and tend to be
smaller than those in Graz-02, so with the same parame-
ters quick shift produces approximately 1200 superpixels
per image with a mean size of 150 pixels. The average de-
gree of the superpixel graph is 6.4, and the maximum degree
is 72.

In Table 3 we compare with the only segmentation entry
in the challenge (Oxford Brookes), as well as the results of
Shotton et al. [31], and Pantofaru et al. [27]. Note that Shot-
ton reports a set of results which bootstrap a detection entry
(TKK). We do not compare with these results because we do
not have the data to do so. However, because our classifier
is simply a multi-class SVM, we can easily add either the
Image Level Prior (ILP) or a Detection Level Prior (DLP)
that Shotton uses. Even without the ILP, we find that we
outperform Shotton with the ILP on 14 of the 21 categories
and tie on one more. Our average performance is also im-
proved by 8%. Compared to Shotton without ILP or Panto-
faru, average performance is improved by 12%. Selected
segmentations may be found in Figure 3.

This dataset is much more challenging (we are separat-
ing 21 categories instead of 2, with less training data and
more variability) and because of this when N = 0 every-
thing has very low confidence. As we increase N we start
to see contextual relationships playing a role. For exam-
ple, in the upper left image of Figure 4 we see that as the
person classification gets more confident, so does the bike
and motorbike classification, since this configuration (per-
son above bike) occurs often in the training data. We also
see that larger N tends to favor more contiguous regions,
which is consistent with what we expect to observe.

On this dataset, adding a CRF improves the qualitative
results significantly, and provides a consistent boost for the
accuracy as well. Object boundaries become crisp, and of-

ten the whole object has the same label, even if it is not
always the correct one.

5. Conclusion
We have demonstrated a method for localizing objects

and segmenting object classes that considers the image at
the level of superpixels. Our method exceeds the state-of-
the-art on Graz-02 and the PASCAL VOC 2007 Segmen-
tation Challenge, even without the aid of a CRF or color
information. When we add a CRF which penalizes pairs of
superpixels that are very different in color, we consistently
improve both our quantitative and especially our qualitative
results.
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Figure 3. PASCAL VOC 2007 + CRF. Some selected segmentations for PASCAL. For each test image, the results are arranged into two
blocks of four images. The first block (left-to-right) shows the results of the superpixel neighborhoods without a CRF. The second block
uses the CRF described in Section 3.4. Colors indicate category and the intensity of the color is proportional to the posterior probability of
the classification. Best viewed in color.
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Brookes 78 6 0 0 0 0 9 5 10 1 2 11 0 6 6 29 2 2 0 11 1 9 -
[27] 59 27 1 8 2 1 32 14 14 4 8 32 9 24 15 81 11 26 1 28 17 20 -
[31] 33 46 5 14 11 14 34 8 6 3 10 39 40 28 23 32 19 19 8 24 9 20 -

[31] + ILP 20 66 6 15 6 15 32 19 7 7 13 44 31 44 27 39 35 12 7 39 23 24 -
N = 0 21 14 8 8 17 14 10 7 19 13 13 7 16 9 13 2 10 23 34 17 20 14 18

CRF+N = 0 20 14 8 8 17 14 10 7 19 13 13 7 16 9 13 2 10 23 34 17 20 14 18
N = 1 27 27 20 17 14 12 18 11 37 18 7 14 26 19 35 18 13 21 25 31 25 21 25

CRF+N = 1 38 32 20 13 17 10 20 11 52 17 7 14 31 21 39 28 14 12 28 42 33 24 34
N = 2 36 27 26 15 11 5 26 29 42 25 9 15 36 23 58 32 17 11 20 37 29 25 34

CRF+N = 2 56 26 29 19 16 3 42 44 56 23 6 11 62 16 68 46 16 10 21 52 40 32 51
N = 3 47 22 24 17 11 6 35 25 46 19 8 19 33 29 62 47 16 20 26 37 29 28 43

CRF+N = 3 65 22 28 32 2 4 40 30 61 10 3 20 35 24 72 62 16 23 20 44 30 30 57
N = 4 51 20 22 18 7 2 39 25 49 15 6 14 36 28 64 56 15 17 21 40 23 27 46

CRF+N = 4 65 20 30 22 2 2 39 25 57 10 3 7 36 23 66 62 15 17 8 46 11 27 57

Table 3. VOC 2007 segmentation results. Our best overall average performance (CRF+N = 2) performs better than Shotton et al. [31]
with or without an Image Level Prior (ILP) on 14 out of 21 categories. Note that we could add ILP to our model. Similarly, we do not
compare with the Shotton et al. results which used TKK’s detection results as a Detection Level Prior (DLP) because TKK’s detections
were not available. We expect our method would provide a similar performance boost with this information. The CRF provides consistent
improvment in average accuracy and in the percentage of pixels which were correctly classified.
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Figure 4. PASCAL VOC 2007 Confidence. Confidence maps for PASCAL. The results are arranged into two blocks of four images for
each test image. The first block contains the input image, a category label, and the confidence map for that category for N = 0, 2, 4. The
second block contains the ground truth labeling and our labellings with an intensity proportional to the confidence of the classification.
Colors indicate category. For example, in the upper left we show the confidence for bicycle, and the classification which contains mostly
bicycle (green) and some motorbike (light blue).
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