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a b s t r a c t

Deformable object models capture variations in an object’s appearance that can be represented as image de-

formations. Other effects such as out-of-plane rotations, three-dimensional articulations, and self-occlusions

are often captured by considering mixture of deformable models, one per object aspect. A more scalable ap-

proach is representing instead the variations at the level of the object parts, applying the concept of a mixture

locally. Combining a few part variations can in fact cheaply generate a large number of global appearances.

A limited version of this idea was proposed by Yang and Ramanan [1], for human pose dectection. In this

paper we apply it to the task of generic object category detection and extend it in several ways. First, we

propose a model for the relationship between part appearances more general than the tree of Yang and

Ramanan [1], which is more suitable for generic categories. Second, we treat part locations as well as their

appearance as latent variables so that training does not need part annotations but only the object bounding

boxes. Third, we modify the weakly-supervised learning of Felzenszwalb et al. and Girshick et al. [2], [3] to

handle a significantly more complex latent structure.

Our model is evaluated on standard object detection benchmarks and is found to improve over existing

approaches, yielding state-of-the-art results for several object categories.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Pictorial structures (PSs) [4,5] and their modern variants such as

the deformable part models (DPMs) [2] are probably the most popu-

lar models for object category detection. A PS is a collection of inde-

pendent object parts whose spatial configuration is constrained by a

system of elastic connections (springs). A DPM is a particular example

of a PS that is learned by a discriminative method (latent SVM) and

that uses linear classifiers on top of HOG features to describe the part

appearance.

By design, DPMs model variations of the object that can be ex-

pressed as an independent motion of the object parts, which excludes,

in particular, all the effects that cannot be expressed as an image

deformation. Examples are appearance variations due to the self oc-

clusion of a three dimensional object rotating out-of-plane. Other

examples are three dimensional articulations or deformations: the

appearance of a horse tail or of a scarf can change quite dramatically

with motion. Since the linear HOG filters used in DPMs represent,
∗ Corresponding author.
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y their very nature, a unimodal distribution of appearances, none of

hese variations can be modelled effectively by a DPM.

A simple way of incorporating multi-modal statistics in a DPM is

o give up the linearity of the filters. For a discriminatively trained

odel, this means using a kernel other than a linear one, for example

radial basis function (RBF) kernel [6,7]. Unfortunately, non-linear

ernels have a major impact on the learning and testing complex-

ty of the model [6]. In fact, if the bottleneck of a standard DPM is

earching object parts at all image locations and scales [8], with a

on-linear kernel this is further exacerbated by the need of com-

aring each candidate part appearance to a large number of support

ectors (typically in the order of thousands [6]). Recent techniques

or the efficient “linearization” of non-linear kernels [7,9] do not

elp much here because they are limited to additive kernels, which,

nlike the RBF ones, cannot be used to express multi-modal func-

ions. Approximating RBF kernels very efficiently are still an open

ssue [10].

The alternative and more common approach for modeling multi-

odal statistics with a DPM is to use a mixture of multiple DPMs

2,11,12], one for each object aspect (e.g., the front, three-quarter,

nd side views of a car, as in Fig. 1). The multiple DPMs are

glued” together by a latent variable that selects which component

o use for each given candidate object instance. Compared to using

http://dx.doi.org/10.1016/j.cviu.2015.04.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.04.008&domain=pdf
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(i) AND/OR graph representation of our model.

(ii) Part
deformation

(iii) Appearance
compatibility

Fig. 1. Structure of the object model. (i) Our model can be interpreted as a OR-AND-OR

tree, where aspect, parts and local appearance of each part are represented. (ii) As in

DPM each part is constrained to a center, in a star model. (iii) In contrast to Yang and

Ramanan [1] our appearance compatibility is learnt with a grid-like structure to adapt

to any class.
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on-linear kernels, the increase in complexity is bounded (linear in

he number of components), and the latent variable explicitly cap-

ures which appearance variant is active, which may have a well de-

ned semantic (e.g., the object viewpoint).

Mixtures of DPMs are usually learned jointly to calibrate their

cores and to determine which component to use for each training

bject instance [2,11]. Other than that, the components are indepen-

ent computationally and statistically. The latter issue is particularly

evere as it limits the number of components that can be added to

he model before overfitting starts to kick in. In practice, mixtures of

PMs can only model a handful of different object aspects. A more ef-

ective modeling scheme must exploit the fact that the various object

spects are by and large statistically dependent.

In this paper we extend the mixture-of-parts proposed in Yang

nd Ramanan [1] for pose estimation to general object class detec-

ion. In essence, we investigate the simplest extension to DPMs that

llows exploiting the statistical dependencies between different ob-

ect aspects. In particular, we apply the notion of a mixture of ob-

ect appearances at the level of the object parts, rather than to the

bject as a whole. In object detection, the class structure for any ob-

ect and the part locations are generally unknown, and only bound-

ng boxes are available. Therefore, the fully supervised method of

ang and Ramanan [1] cannot be used. In contrast, our model con-

iders the object parts and their appearances as latent variables that

hould be jointly estimated during training. In order to properly con-

traint the latent variables, we adapt the weakly-supervised latent

VM algorithm [2,3], with a hierarchical regularization as explained in

ection 3. In this way, local part appearances can be learned in an un-

upervised way.

To illustrate our model, consider a standard mixture of DPMs [2].

raphically, this can be represented by the AND-OR tree of Fig. 1(i).

he root node represents an OR node, and entails selecting one of a

umber of possible DPM models (corresponding to the three-quarter,

ide, and front views of the car). Each of these nodes is in turn con-

ected to a small number of parts by an AND node, meaning that all

hose parts should be detected for the corresponding DPM. Our exten-

ion associates to each part a pool of different appearances to choose

rom, connected by an OR node. These multiple part appearances can

epresent local variations such as different styles of the wheel of a

ar, different shapes of the tail of a horse, or different rotations of the

ead of a person.

The key insight is that the model can now represent a

uch broader range of object variations combinatorial rather than
inear in the number of model components, with a very modest in-

rease in the number of model parameters (e.g., just twice as many

f two appearance models per part are considered). As we will see in

ection 5, the impact on the inference and learning costs is also very

odest.

Nevertheless, selecting parts independently from each other can

ield unreasonable configurations (e.g., two different wheel styles for

he same car). To improve the model specificity and ultimately its pre-

ision, we consider on top of the AND-OR graph a mechanism to con-

train the part activations to be pairwise compatible. (see Fig. 1(iii)).

hile in Yang and Ramanan [1] the structure of the compatibility

onstraints have the same structure used for deformations, i.e. a tree,

ince our goal is to generic object categories whose structure may

e unknown a-priori, local appearance compatibility is enforced on a

lanar graph instead, where each part is connected to its neighbor-

oods. This structure is a loopy conditional random field (CRF) and

t can be optimized efficiently with combinatorial techniques [29]. In

his way, the actual structure of the object is learned during training

y associating a weight to each pairwise term.

.1. Related work

This section briefly summarizes some of the main development

n the vast literature on object detection, highlighting the methods

hat are most related to our contribution, see Zhang et al. [13] for an

xtensive survey on object detection.

The simplest approach to improve the quality of an object detec-

ion system such as DPM is to improve the underlying image features.

or example, Zhang et al. [14] adds LBP features on top of the stan-

ard HOG representation, Khan et al. [15] incorporates color and Chen

t al. [16] integrates local bag-of-features models and an object mask.

owever, a conscious study on the effect of adding more data and

hanging the structure model based only on HOG [17], reflects the

ecessity that more complex structures can better represent the ob-

ects and therefore increase the recognition performance. A counter

xample is found in Ott and Everingham [18], which allows sharing

f parts between different components, an approach orthogonal to

urs. Unfortunately their results are well below the state-of-the-art

n some international benchmarks. A possible reason is that, in our ex-

erience, sharing the same linear part filters between different DPMs

ields serious calibration issues.

The concept of mixtures-of-parts is first introduced in Yang and

amanan [1]. Here the authors propose a tree-structured model for

uman pose estimation using multiples interchangeable mixtures for

ach part. Unfortunately, their model is valid only for articulated ob-

ects, where the structure and the degree-of-freedom of the parts

re known. Furthermore, part locations are known which make the

roblem easier and a standard learning procedure, like SVMs can be

sed. Recently, other methods have also explored the case of fully-

upervised training, where the part location is known [19,20]. These

eem to trade a higher cost of annotations for a better detection per-

ormance.

Other works have proposed to use multiple part appearances

n contexts other than DPMs, but they usually require a significant

mount of supervision [21], use AND–OR graphs to parse articulated

bjects, but the position of the parts (limbs) is known beforehand.

imilarly, in Rothrock and Zhu [22], the authors make use of produc-

ion scores to capture the co-occurrence costs. Poselets [23] learn a

arge mixture of human parts, each with his own appearance, and

ssociate them to “fragments of pose”. These methods have some in-

eresting properties but require a very large quantity of annotated

ata.

In Viola et al. [24], the authors introduced multiple instance learn-

ng for object modeling by learning automatically the object parts

nd their locations from a set of object bounding boxes. The same

echanism, but implemented by means of latent variables, has been
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used extensively in the learning of DPMs [2], including determining

object bounding boxes, parts, and aspects, and is further extended in

this work to capture multiple part appearances. Finally, the layout of

our baseline model is a simplified version of Zhu et al. [11] where

we use a single layer of parts in a regular grid, still obtaining similar

performance.

The grammar framework described in Girshick et al. [3] does not

require ground-truth annotations on the position of the parts. How-

ever, that grammar needs to be carefully hand-tuned to represent the

object of interest (humans). Since grammars cannot yet be learned

automatically, we prefer to choose a model that can be adapted to

any type of class, so we select a general structure based on simple

pairwise connections between the parts, forming a CRF over parts

appearance.

CRFs and latent variables have been used in the modeling of object

categories in Quattoni et al. [25]. There the authors model an object as

a set of patches and activate them by computing a minimum-spanning

tree. However, the representation is too weak to obtain satisfactory

performance on challenging international benchmarks such as the

PASCAL VOC.

While in our work we use multiple appearances to render com-

plex object configurations, rank constraints during learning [26] or a

sparse representation on the learned model [27] are used to represent

the object parts as a linear combination of a reduced set of basis. These

methods contribute to make the inference faster having to evaluate

a reduced set of parts, but does not help on improving detection, as

instead our model does. A similar idea is used in Fidler et al. [28]

to speed up multi-class object detection, by using a coarse-to-fine

taxonomy of parts among classes.

2. Object model

This section introduces our deformable object model combining:

(i) a small number of global components that capture radically differ-

ent object viewpoints (e.g., the front and side of a car), (ii) a number

of movable parts for each component to model deformations and (iii)

a number of appearance models for each part, to represent multiple

variations of their appearance. Next, we give a formal definition of

the model, and we specify the score obtained by matching the model

to an image for a given configuration of the parts.

AND-OR model. Let x be an image. The score Aj(y; x, w) of matching

a single part given its location/scale at rest y = (yx, yy, ys) is obtained

by trading off the cost of a part displacements z = (zx, zy, zs) with the

quality of the resulting appearance match:

A(y; x, w) = max
z

〈ψA(w), φA(x, y + z)〉 + 〈ψD(w), φD(z)〉. (1)

Here φA(x, y + z) is the HOG descriptor extracted from image x at lo-

cation y + z and φD(z) is a descriptor of the deformation (for example

defining φD(z) as the vector of the squared displacements implements

a quadratic spring). The vector w collects the parameters for the part

and the operators ψA and ψD simply extract the blocks of parameters

corresponding respectively to the appearance and the deformation.

Next, we extend w to include multiple part parameters (appear-

ance and deformation) and introduce corresponding operators ψA
k
(w)

to extract them. We can therefore associate each ψA
k
(w) to a learned

appearance for a certain part as represented in Fig. 1. The appearance

with the highest score is used to match the part to the image:

P(y; x, w) = max
k

A
(
y; x,ψA

k (w)
)
. (2)

This has the function of an OR node as shown in Fig. 1. Summing over

a number of parts j ∈ P results in the score for the aspect:

C(y; x, w) =
∑

j

Pj

(
y + hj; x,ψP

j (w)
)

. (3)
his is equivalent to an AND node in Fig. 1. ψP
j

contains therefore the

odel parameters of the multiple appearances and deformations of a

art j, while hj = (hx, hx, hs) is the part anchor, i.e. the location of the

art with respect to the object center. Finally, w is extended one last

ime to include multiple aspects and the score of the whole model is

iven by of the best matching aspect:

(y; x, w) = max
i

Ci

(
y; x,ψC

i (w)
)

. (4)

gain, this correspond to a logical OR over the object aspects modelled

y ψC
i

as represented at the top of the AND-OR tree in Fig. 1. To

ummarize, the score of the model is given by

(y; x, w) = max
i

∑
j

max
k

A(y + hi,j; x,ψi,j,k(w)) (5)

here for compactness we defined ψi,j,k(w) = ψC
i
(ψP

j
(ψA

k
(w))) and

e denoted by hi, j the anchor of the part j of the aspect i.

oopy CRF model. In order to limit the number of possible part combi-

ations to the ones that are meaningful, a set of additional constraints

n the form of a CRF with loops is introduced. These constraints en-

ourage neighbor parts to be assigned as a compatible appearance, as

utomaticaly estimated from the frequency of co-occurrences on the

raining set. This set of part relations is modeled by a graphG ⊂ P × P
ith an edge per constraint. For each constraint, consider a matrix vmn

here vk1,k2
is the cost of activating the appearance k1 of the first part

ogether with the appearance k2 of the second part. Consider also the

coring function

(k1, k2; v) =
∑

m

∑
n

I(k1 = m)I(k2 = n)vm,n, (6)

here I is the indicator function of an event. Instead of maximising

ndependently over each part appearance as in (2), now the model

ptimizes jointly over all parts, while accounting for the pairwise

onstraints:

CRF(y; x, w) = max
k

∑
j∈P

A(y + hj; x,ψj,kj
(w))

+
∑

(j,l)∈G
B

(
kj, kl; ψ

B
j,l(w)

)
(7)

here k = [k0, k1, . . . , kn] is a vector appearance labels, one for

ach part, and ψj,k(w) = ψP
j
(ψA

k
(w)). Finally ψB

j,l
are the parameters

f the pairwise constraints between the parts (j, l), represented with

dashed line in Fig. 1.

Rewriting the final score for the formulation with pairwise ap-

earance constraints gives

CRF(y; x, w) = max
i,k

∑
j

A(y + hi,j, x,ψi,j,kj
(w))

+
∑

(j,l)∈G
B

(
kj, kl; ψ

B
i,j,l(w)

)
(8)

nferring the model at location y amounts to maximising (8). To do so

fficiently,G is restricted to have a planar structure, where each part is

onnected with its horizontal and vertical neighbors (as in Fig. 1(iii)).

ynamic programming is used to estimate the optimal displacement

f each part first, and sequential reweighted trees [29] are used to

olve the loopy CRF model and jointly estimate the optimal appear-

nce of the parts. Considering that the number of parts is generally

uite small, this does not compromise detection speed compared to

standard DPM.

. Weakly-supervised learning

Learning uses weak supervision and, similarly to Felzenszwalb

t al. [2], requires only bounding boxes around instances of the object
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l

ategory of interest. The aspect, part locations, and part appearance

omponents are not provided and are instead estimated automatically

uring learning as latent variables.

In detail, given a set of input images X = (x0, x1, . . . , xl), a set of

bject locations Y = (y0, y1, . . . , yp), and the locations of the negative

amples N = (n0, n1, . . . , nn) (i.e. , locations that do not overlap with

he ground truth object bounding boxes), the goal is to optimize the

mpirical risk

(w) = 1

2
R(w)+ C

p∑
i=0

L(max
s∈Si

O(s; xl(i), w))

+ C

n∑
i=0

L(−O(ni; xl(i), w)), (9)

here L(z) = max{0, 1 − z} is the hinge loss, xl(i) is the image corre-

ponding to the object location yi, and s denotes a small correction

pplied to the ground truth location estimated to better fit the model

o the training data, similar to Felzenszwalb et al. [2]. In particular, the

djustment is encoded by the (latent) variable s, which is constrained

o be in the vicinity of the ground truth locations, i.e.

i = {s ∈ xl(i) : ovr(s, yi) > T}, (10)

here ovr(s, y) = area(Bs∩By)
area(Bs∪By)

is the overlap score between the bound-

ng boxes at locations s and y respectively, and T is a threshold. Note

hat besides s, the other latent variables are not shown in Eq. (9),

ut are still maximized inside O, as shown in the derivation of O in

ection 2.

.1. Optimization

Since the objective (9) is equivalent to a standard linear SVM (ex-

ept for the treatment of the latent variables, as discussed below),

ptimization uses the fast stochastic gradient descent technique of

inger and Srebro [30]. However, since the number of negative exam-

les is extremely large (there is one negative for each image location

hat does not contain the object), the model is learned in stages, by col-

ecting more and more hard negative examples based on the current

ersion of the model. This procedure, known as constraint genera-

ion, cutting plane, or mining of hard negatives [2], can be shown to

onverge to the optimum of the objective function (9) in polynomial

ime.

The scoring function O(y; x, w) of the model implicitly maximizes

ver a number of parameters (aspect, part locations, part appearance

elections) energies that are, ultimately, linear in w. Since O(y; x, w)

s the max of convex functions, is itself convex in w, and so is the

omposition with the hinge loss L(−O(ni; xl(i); w)) for the negative

xamples. Unfortunately, for the positive examples the loss turns the

ign the other way around and the composition is not convex. To

ddress this issue, we follow the standard approach of converting the

arameters that O(y; x, w) marginalizes over (aspect, part locations,

art appearances) into latent variables and use the Concave–Convex

rocedure (CCP) [2,11,31] to find a model w which is at least locally

ptimal. The CCP alternates estimating the latent parameters of the

ositive object instances and the model w; in particular, the latent

stimation step can be seen as hallucinating/estimating the model

arameters that would be provided by an annotator in case of strong

upervision.

.2. Regularization

In our model the latent variables are applied at two different lev-

ls. For the parts location, the latent variable is applied at feature level.

hat is, the model displaces each part to select the features that max-

mize its score. Instead, for aspect and part appearance, the latent

ariable is applied at model level, because the model selects which
omponent for aspect and parts appearance better describe the fea-

ures (i.e. maximizes the score).

While latent variables at the feature level can be regularized with

tandard SVM R(w) = ‖w‖2 regularization, for latent variables at

odel level the standard approach would fail. This is because when a

atent variable at model level selects the best component, the others

ould be set to zero to force them to not contribute to the scoring.

his procedure allows the model to represent OR-like nodes, but it

s intrinsically unstable. Imagine that a component, during an itera-

ion of latent variables estimation get assigned more samples than

nother. This would produce a new model, where the corresponding

omponent has gained importance (i.e. its norm is higher). Thus, in

he next iteration of latent variables estimation the component will

robably get assigned even more samples. This would tend to produce

sparse representation with few strong components and the rest set

o zeros and thus ineffective.

We can counterbalance this instability by using as regularizer the

aximum of the squared norm of the parameters of each component

ather than their sum. In Felzenszwalb et al. [32] this procedure was

sed to better balance the final score among the different aspects of

model. Here, as the object parts are totally free to choose any ap-

earance, this procedure becomes fundamental. We found that when

sing latent variables, balancing the various model components (as-

ects, part appearances) is very important. If the latent, using the

tandard SVM regulariser R(w) = ‖w‖2 tends in fact to kill entire

omponents by pushing their parameters to zero, ultimately lower-

ng the performance of the model. Felzenszwalb et al. [32] alleviate

his problem by using as regularizer the maximum of the squared

orm of the parameters of each component rather than their sum.

n this way, there is no advantage in lowering the weights of any of

he components with respect to any other. Since our model includes

omponents at two levels (object and parts), we found that the appro-

riate extension of this idea involves maximizing over components

t both levels, as follows:

(w) = max
i

∑
j

max
k

〈ψi,j,k(w),ψi,j,k(w)〉. (11)

ue to the recursive definition of ψ i, j, k(w), (11) must be computed

ecursively, for example by using dynamic programming. Other than

hat, incorporating it in the SGD solver is trivial as it suffices to com-

ute a sub-gradient with respect to w.

.3. Initialization

The CCP procedure is a local optimization method therefore the

nitialization is very important in order to obtain a good solution. This

mounts to finding a good initial value for the latent variables. As

n the proposed model the latent variables are extended also to part

ppearance, their initialization is fundamental for good results. We

ropose a two steps approach to produce a good initialization for the

arts appearance.

The location of the positive instances (s in (9)) is chosen to max-

mize the overlap between the ground truth bounding box and the

ne associated to the model. Initially deformations are set to be null.

s in Felzenszwalb et al. [32], the model has a flag indicating whether

he object is facing left or right; this is an additional latent variable

hich is initialized by pre-clustering the training examples (denoted

s FLIP).

We explore two initialization procedures for learning the local

ppearances. In the first, we learn all latent variables at the same time,

y randomly assigning each local appearance to one of the labels. With

his naive approach, we found that the model can easily get stuck in

local minima.

A better strategy is to using a two step sequential procedure

denoted as SEQ). A standard (one appearance) DPM model is first

earned. Then, the learned model is applied again to the training
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Fig. 2. Average precision for the horse and motorbike classes. See explanation in the text.
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images so that a precise and aligned localization of the parts can

be obtained. For each part a k-means clustering on the feature space

is effectuated, where k is the number of appearances that we want to

model. Each cluster is then used as initialization for the appearance

of the multi-appearance model.

The appearance compatibility parameters are initialized to zero

so that initially, any appearance can be chosen. After this, their value

is estimated by the SVM optimization so that compatible parts will

obtain a positive weight while incompatible parts a negative one.

4. Implementation details

We implement our model using HOG features for the object ap-

pearance and quadratic cost for the deformation features. Specifically,

we define the features of an object part as

φI(x, y + z) = H(x, y + z) (12)

where H is a function that given the image x extracts a vector of HOG

features [2] from the given location y + z. The deformation features

are defined as:

φD(z) =
[
z2

x , z2
y , zx, zy

]
(13)

to account for the displacement magnitude and direction. Due to these

choices, the maximization in Yang and Ramanan (1) can be done ef-

ficiently by using the distance transform [4]. Local appearances are

selected in the same maximization, after applying its own displace-

ment penalties.

For detection, the score O(y; x, w) is evaluated at a discrete set of

locations y which match to the layout of the underlying HOG features.

To speed-up the evaluation of the appearance compatibility we pro-

duce an initial set of detection hypotheses without considering the

pair-wise compatibility scores (5), rank them, and compute the full

but more expensive score (8) only at the top 1000 candidates. This

reduces the computational cost of the method without affecting the

detection accuracy.

To get a final list of candidate detections, non-maxima suppres-

sion is run over the candidate list of bounding boxes of the differ-

ent model aspects sorted by decreased confidence score. This proce-

dure is greedy: after selection a new detection, any other detection

that overlaps with it by more than a threshold is removed from the

candidate pool.
The time required to detect an object is dominated by the number

f part filters that need to be evaluated. For example, a model with two

spects, left-right flipping, and two appearances per part, requires 8

Nparts filtering operations. On a single core Xeon 2.4 GHz a model

ith Nparts = 9, evaluating the cost on a PASCAL VOC image takes an

verage of ten seconds.

. Experiments

We evaluate our approach on two standard datasets: INRIA Person

ataset [33] and Pascal VOC 2007 [34]. The variety of the classes helps

o identify the classes where more benefit is obtained by the use of

ultiple local appearances. For evaluation, we use the comparison

ramework of Dollár et al. [35] for INRIA, and the average precision

AP) with the standard Pascal VOC 2007 criterion.

.1. Initialization

First, we evaluate the two initializations of the appearance ex-

lained in Section 3 for the horse and motorbike classes. We begin

ith a model with two components. Although the simplicity of the

andom initialization, the method is able to find two different ap-

earances per part. As shown in Fig. 2(i), a model of horse with 2 local

ppearances (named 2app) with this random initialization gain five

oints over the one appearance model (1app).

Using the same initialization with the left–right models, the

ethod gain is not as high as expected, and only improves in one

oint with respect to the flipped version. This is because the left-right

rientation and the local appearances compete each other to estimate

he same object appearance. An interesting example of this is shown

n Fig. 3(i), where it is illustrated the object model of a horse with

andom initialization. Local appearances and left–right model try to

epresent the same appearance, finally resulting in impossible model

onfigurations (i.e. horse with two heads in the top-right model).

nstead, with the SEQ initialization, which sequentially learn the left–

ight prediction and then two latent estimations of local appearances,

btain a much nicer model. In this way, as the model orientation has

lready been learned, the local appearances can now learn different

iews of the object (namely, a quiet or a running horse).

This is shown in Fig. 3(ii). We add the two appearances to the

odel, once the flip variables has been estimated, which represents
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(i)

(ii)
Fig. 3. Effects of different multiple appearance initializations on the horse class. Left and right models represent the two appearances that each part can represent. In (i), all latent

variables are estimated from the beginning. In (ii), local appearances are learnt sequentially, after an initial model has been learnt. Note that in (i) the top right horse has modeled

two heads in the same model, and that in (ii) the horse is better modeled by its movements (quiet or in movement).

Table 1

AP on Pedestrian INRIA Database. Comparison

of the usage of multiple local or global appear-

ances. Notice how overfitting kicks in when in-

creasing the multiple components used, while

this does not occur when adding more local ap-

pearances.

1(%) 2(%) 3(%)

Global components 86.8 86.7 86.0

Local appearances 86.8 87.8 88.0
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Fig. 4. Evaluation on INRIA. Comparison with other state of the art methods on the

Inria Person Dataset. Our method using only HOG features is on par with most of the

other methods that use color and other more sophisticated features. For a complete

explanation of the evaluation criteria and the methods see [35].

a

8

c

d

s

r

f

he current state of the art for deformable HOG based models. Again,

he multiple local appearances increase the performance, pushing the

P up to 60.1% which is already four points over the state of the art.

inally, learning the compatibility of the local appearances further

ncrease the AP of more than one point reaching an AP of 61.7%. This

s mainly due to less false detections are found, hence higher precision

s achieved.

.2. Inria pedestrian dataset

We next evaluate our approach on the INRIA Person Dataset [33].

or evaluation, we use the framework of Dollár et al. [35].

In Table 1, we evaluate different configurations of our model. The

aseline is shown in column one and is a model with only one ap-

earance per part and one global component with left–right facing

like a traditional DPM). In the first row we show the effect of in-

reasing the number components. It produces a slight decrement on

P, probably due to the statistical independence of each component.

n practice increasing the global components reduces the number of

amples available for each component and therefore the generaliza-

ion capability of the learned model. In contrast, using more local
ppearances yields better accuracy, and the model reaches an AP of

8% when using a model with three appearances for each part.

In Fig. 4 we compare the model with three appearances with the

urrent state of the art in pedestrian detection. As pedestrians assume

ifferent poses, local deformations are quite important. For this rea-

on the DPM model (in the table is referred as LatSvm-V2) performs

elatively well, even if other models use multiple and more expensive

eatures like color or convolutional features. However, pedestrians
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Fig. 6. Appearance distribution. Each of the part configuration can be represented by 29 possible combinations. Here we show the number of times each configuration has been

used to represent a car. Without the appearance factorization only two configurations can be selected.
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a class.
can also wear different clothes or assume very specific positions that

cannot be explained with simple parts displacement. Under this con-

dition the proposed model is better indicated. This is reflected on the

evaluation, where our method combining deformation and a mul-

timodal representation of the object parts clearly outperform DPM

and is on par with most of the state of the art approaches which are

specifically optimized for the task of pedestrian detection.

5.3. PASCAL VOC 2007

Our method is general enough to be used to learn any object class,

not only pedestrians. In this sense we perform several experiments

on the challenging VOC 2007 [34], where 20 different classes should

be learned using the same settings.

We evaluate for each class the importance of the two main con-

tributions of this work: (i) we compare local parts versus global com-

ponents and (ii) we evaluate the effect of the pairwise constraints on

the parts appearance. As reference we consider the AP of our model

trained using two components and two local appearances as reported

in the first row of Table 2.

The second row of the table reports the AP for a new model

trained with exactly the same configuration of our reference model

but without using the pairwise appearance constraints. In average the

model without appearance constraints is inferior to the complete one.

This confirms our hypothesis that learning the pairwise compatibility
etween parts helps to improve the detection accuracy, see Fig. 5. Al-

hough the average difference between the two models is relatively

mall (0.7) for certain classes enforcing compatibility among parts

an provide a neat improvement of more than two points.

In the third row of the table we train a new model with four global

omponents. Doing so, the number of parameter to learn is similar to

he model with two components and two appearances. However, in

he four components model, each component is totally separate from

he other. This can be considered an advantage because the model

voids to mix-up appearances and it will probably generates fewer

alse positives. Still, the model cannot share parts which reduces its

apability to generalize. In this experiment the advantage of using

ultiple local parts is evident. The four components model obtains

lower AP in almost every class and it has a mAP more than three

oints lower than the model with multiple appearances.

In Fig. 6 we visualize the occurrence of each possible configu-

ation of parts for the class car. As the model is composed by nine

arts and each has two local appearances, a total of 29 different con-

gurations can be expressed. This is much higher than the 4 repre-

entations of a traditional DPM with independent components. From

he histogram we can see that there are few configurations that are

ost used. However, most of the configurations are used at least one

ime. This shows that the model is really using its capability to com-

ine different part appearances to represent the different instances of
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Fig. 7. Top scoring detection for each appearance of each part of a car. Note that the two appearances are interchangeable.

Fig. 8. Top scoring detection for each appearance of each part the class horse. Note the differences that we capture in the appearance of the head and the legs, or in the rider.
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In Table 3 we report the AP of the DPM model as reference and the

P of our deformable model with one, two and three appearances. Our

aseline is around two points below the DPM score form [32]. This is

ainly due to our implementation choice. A strategic placement of the

arts can highly enhance the performance of the detector. However,

s we use connections among nearby parts, we prefer to use a uniform

istribution of the parts. Instead, in DPM they use a greedy procedure

o find the best placement for the parts. Furthermore, the DPM is

omposed of a low-resolution and rigid model and on top of it several

arts.

In our simplified model, we do not use the low resolution repre-

entation because we are mainly interested in the role of the parts

nd their interaction. Assuming that, we consider ours a strong base-

ine. Our baseline obtains a mAP of 29.6. The performance of the same

odel with two appearances per each part and pairwise compatibil-

ty constraints scores a mAP of 31.6 such that the gap with DPM is

lready almost canceled.

Moving to three appearances per part leads to an additional im-

rovement of 0.6 points as reported in the last row of the table. In

igs. 7 and 8, we show the different appearances learned for the

arts of cars and horses, respectively, together with the top five

est scoring detections for each part. We can see how, despite de-

cribing the same object, each appearance learns a quite different
odel. d
.4. Discussion

In this paper we have shown how to increase the representational

apability of DPM by adding multiple local part appearances that can

e combined in an exponential number of possible representations

ith a limited computational cost. However, to obtain this model to

ork properly some important parts of the DPM algorithm had to be

odified and improved.

First of all, as explained in Section 3.2, when dealing with multiple

ompeting representations, especially at multiple levels, (as aspects

nd parts in our case), it is fundamental to apply a regularization that

ends to keep the corresponding models balanced, so that one does

ot “steal” all samples. We notice that this problem becomes more and

ore important while increasing the number of appearances. In our

etting we limit our experiments to three part appearances mostly for

esources reasons (i.e. memory). However, we believe that further in-

reasing the number of appearances can give a limited improvement

lso due to the competing representations problem.

Another very important factor for good results is initialization.

n particular, clustering aligned parts can make a big difference in

he final results (see Fig. 2(i) in Section 5). Applying the clustering

o fixed part locations (before alignment) would produce splits that

epresent the different displacements that the part can assume in

ifferent object instances. Therefore the resulting multi-appearance
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Table 2

Different configurations on PASCAL VOC 2007. First row reports AP values with our standard method with 2 components and 2 appearances per part. Second row report results for a model with exactly the same configuration but

without using the appearance constraints introduced in section 2. The last row reports results for a model with 4 different components but a single appearance.

Cmp Ap Crf Aero Bike Bird Boat Bott Bus Car Cat Chair Cow Tab Dog Hors Moto Pers Plant Sheep Sofa Train tv mean

2 2 Y 35.5 59.6 9.6 11.3 30.0 54.3 55.8 13.8 20.5 30.2 23.0 10.3 58.4 45.6 36.2 12.3 26.0 18.7 42.2 39.2 31.6

2 2 N 32.8 60.5 4.9 11.9 29.6 52.9 53.9 10.5 19.9 30.4 23.3 10.4 58.4 44.8 35.9 11.7 25.8 18.6 43.4 39.9 30.9

4 1 - 32.1 57.6 4.5 11.2 26.8 56.0 49.4 11.0 18.0 23.3 13.1 3.7 55.2 41.2 34.9 12.3 24.9 12.7 42.1 37.5 28.4

Table 3

PASCAL VOC 2007 Detection results. The first row reports results from [32] without bounding box estimation. Our model results are reported for one two and three local appearances.

Aero Bike Bird Boat Bott Bus Car Cat Chair Cow Tab Dog Hors Moto Pers Pant Sheep Sofa Train Tv mean

DPM [32] 29.6 57.3 10.1 17.1 25.2 47.8 55.0 18.4 21.6 24.7 23.3 11.2 57.6 46.5 42.1 12.2 18.6 31.9 44.5 40.9 31.8

1 App 34.3 57.5 9.2 13.2 26.4 50.7 52.3 11.2 19.1 27.2 21.5 5.2 58.1 44.6 34 11.3 22.6 16.6 37.0 40.5 29.6

2 App 35.5 59.6 9.6 11.3 30.0 54.3 55.8 13.8 20.5 30.2 23.0 10.3 58.4 45.6 36.2 12.3 26.0 18.7 42.2 39.2 31.6

3 App 37.6 61.9 9.5 12.8 28.9 53.8 55.0 13.8 20.5 31.0 23.0 10.6 60.4 46.0 36.0 13.0 27.1 19.1 44.6 39.5 32.2
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odel of each part would represent almost the same appearance

ultiple times (would learnt displaced parts) which lead to a poor

nitialization, and the model would get also stuck. Instead, with our

ligned initialization we assure that the split in the clustering would

odel different appearances of the same part. Even though the pro-

osed initialization performs already much better than a naive one,

e still believe that the initialization of the parts is one of the key

oints to further improve results. Specifically, for classes where the

ody deformation are relevant, like cats and dogs, a better initializa-

ion based on the real part location can produce much better results

s shown in [19].

Finally, it is interesting to notice that, as the model capacity in-

reases, for example in our case allowing combination of parts, the

pace of search of the negative examples also increases, which di-

ectly translates into a slower convergence. For example a training of

deformable model with one appearance needs an average of 4−5

terations of negatives to converge in the first iteration. If we move

o two local appearances the number of iterations grows to 5−15

hile for three appearances it is necessary from 10 to 20 iterations.

espite the training time increases, during testing time, the method

rows linearly with the number of appearances. In this sense methods

ike [26,27,36–38] can be used to reduce the computational cost for

etection.

. Conclusions

We have presented a new extension of the deformable parts model

hat can be used to learn multiple local appearances at a reasonable

omputational cost.

Compared to a traditional mixture of DPMs, our model (i) can

xpress a very large set of different object appearances with a very

mall increase in the number of parameters, (ii) can learn the same

mount of variation from far less training data by better exploiting

he statistical dependencies between different object appearances,

nd (iii) is still very discriminative because the CRF constraints can

eject unlikely part configurations.

Compared with multiple independent models, our approach can

pproximate an exponentially rich combination of appearances main-

aining the same model representation. In addition, to limit our rep-

esentation to only the feasible configuration of local parts, we intro-

uce pairwise potential between appearances. We are also investi-

ating the possibility to introduce the concept of occluded parts to

he model as another local appearance, which can help on learning

learer parts.
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