
Synthetic Data for Text Localisation in Natural Images

Ankush Gupta Andrea Vedaldi Andrew Zisserman

Dept. of Engineering Science, University of Oxford

{ankush,vedaldi,az}@robots.ox.ac.uk

Abstract

In this paper we introduce a new method for text detec-

tion in natural images. The method comprises two contribu-

tions: First, a fast and scalable engine to generate synthetic

images of text in clutter. This engine overlays synthetic text

to existing background images in a natural way, account-

ing for the local 3D scene geometry. Second, we use the

synthetic images to train a Fully-Convolutional Regression

Network (FCRN) which efficiently performs text detection

and bounding-box regression at all locations and multiple

scales in an image. We discuss the relation of FCRN to the

recently-introduced YOLO detector, as well as other end-to-

end object detection systems based on deep learning. The

resulting detection network significantly out performs cur-

rent methods for text detection in natural images, achiev-

ing an F-measure of 84.2% on the standard ICDAR 2013

benchmark. Furthermore, it can process 15 images per sec-

ond on a GPU.

1. Introduction

Text spotting, namely the ability to read text in natu-

ral scenes, is a highly-desirable feature in anthropocentric

applications of computer vision. State-of-the-art systems

such as [20] achieved their high text spotting performance

by combining two simple but powerful insights. The first

is that complex recognition pipelines that recognise text by

explicitly combining recognition and detection of individ-

ual characters can be replaced by very powerful classifiers

that directly map an image patch to words [13, 20]. The

second is that these powerful classifiers can be learned by

generating the required training data synthetically [19, 44].

While [20] successfully addressed the problem of recog-

nising text given an image patch containing a word, the pro-

cess of obtaining these patches remains suboptimal. The

pipeline combines general purpose features such as HoG

[6], EdgeBoxes [48] and Aggregate Channel Features [7]

and brings in text specific (CNN) features only in the later

stages, where patches are finally recognised as specific

words. This state of affair is highly undesirable for two

FCRN

Synthetic Text in the Wild

real image detected text

Figure 1. We propose a Fully-Convolutional Regression Network

(FCRN) for high-performance text recognition in natural scenes

(bottom) which detects text up to 45× faster than the current state-

of-the-art text detectors and with better accuracy. FCRN is trained

without any manual annotation using a new dataset of synthetic

text in the wild. The latter is obtained by automatically adding text

to natural scenes in a manner compatible with the scene geometry

(top).

reasons. First, the performance of the detection pipeline

becomes the new bottleneck of text spotting: in [20] recog-

nition accuracy for correctly cropped words is 98% whereas

the end-to-end text spotting F-score is only 69% mainly due

to incorrect and missed word region proposals. Second, the

pipeline is slow and inelegant.

In this paper we propose improvements similar to [20] to

the complementary problem of text detection. We make two

key contributions. First, we propose a new method for gen-

erating synthetic images of text that naturally blends text

in existing natural scenes, using off-the-shelf deep learning

and segmentation techniques to align text to the geometry

of a background image and respect scene boundaries. We

use this method to automatically generate a new synthetic

dataset of text in cluttered conditions (figure 1 (top) and

section 2). This dataset, called SynthText in the Wild (fig-

ure 2), is suitable for training high-performance scene text

detectors. The key difference with existing synthetic text

datasets such as the one of [20] is that these only contains

Figure 2. Sample images from our synthetically generated scene-

text dataset. Ground-truth word-level axis-aligned bounding boxes

are shown.

Images # Words
Dataset

Train Test Train Test

ICDAR {11,13,15} 229 255 849 1095

SVT 100 249 257 647

Table 1. Size of publicly available text localisation datasets —

ICDAR [23, 24, 39], the Street View Text (SVT) dataset [43].

Word numbers for the entry “ICDAR{11,13,15}” are from the IC-

DAR15 Robust Reading Competition’s Focused Scene Text Lo-

calisation dataset.

word-level image regions and are unsuitable for training de-

tectors.

The second contribution is a text detection deep ar-

chitecture which is both accurate and efficient (figure 1

(bottom) and section 3). We call this a fully-convolutional

regression network. Similar to models such as the Fully-

Convolutional Networks (FCN) for image segmentation, it

performs prediction densely, at every image location. How-

ever, differently from FCN, the prediction is not just a class

label (text/not text), but the parameters of a bounding box

enclosing the word centred at that location. The latter idea

is borrowed from the You Look Only Once (YOLO) tech-

nique of Redmon et al. [36], but with convolutional regres-

sors with a significant boost to performance.

The new data and detector achieve state-of-the-art text

detection performance on standard benchmark datasets

(section 4) while being an order of magnitude faster than

traditional text detectors at test time (up to 15 images per

second on a GPU). We also demonstrate the importance of

verisimilitude in the dataset by showing that if the detec-

tor is trained on images with words inserted synthetically

that do not take account of the scene layout, then the de-

tection performance is substantially inferior. Finally, due to

the more accurate detection step, end-to-end word recogni-

tion is also improved once the new detector is swapped in

for existing ones in state-of-the-art pipelines. Our findings

are summarised in section 5.

1.1. Related Work

Object Detection with CNNs. Our text detection network

draws primarily on Long et al.’s Fully-Convolutional net-

work [31] and Redmon et al.’s YOLO image-grid based

bounding-box regression network [36]. YOLO is part of

a broad line of work on using CNN features for object cate-

gory detection dating back to Girshick et al.’s Region-CNN

(R-CNN) framework [12] combination of region propos-

als and CNN features. The R-CNN framework has three

broad stages — (1) generating object proposals, (2) extract-

ing CNN feature maps for each proposal, and (3) filtering

the proposals through class specific SVMs. Jaderberg et

al.’s text spotting method also uses a similar pipeline for

detection [20]. Extracting feature maps for each region in-

dependently was identified as the bottleneck by Girshick et

al. in Fast R-CNN [11]. They obtain 100× speed-up over

R-CNN by computing the CNN features once and pooling

them locally for each proposal; they also streamline the last

two stages of R-CNN into a single multi-task learning prob-

lem. This work exposed the region-proposal stage as the

new bottleneck. Lenc et al. [29] drop the region proposal

stage altogether and use a constant set of regions learnt

through K-means clustering on the PASCAL VOC data.

Ren et al. [37] also start from a fixed set of proposal, but

refined them prior to detection by using a Region Proposal

Network which shares weights with the later detection net-

work and streamlines the multi-stage R-CNN framework.

Synthetic Data. Synthetic datasets provide detailed

ground-truth annotations, and are cheap and scalable al-

ternatives to annotating images manually. They have been

widely used to learn large CNN models — Wang et al. [44]

and Jaderberg et al. [19] use synthetic text images to train

word-image recognition networks; Dosovitskiy et al. [9]

use floating chair renderings to train dense optical flow re-

gression networks. Detailed synthetic data has also been

used to learn generative models — Dosovitskiy et al. [8]

train inverted CNN models to render images of chairs, while

Yildirim et al. [46] use deep CNN features trained on syn-

thetic face renderings to regress pose parameters from face

images.

Augmenting Single Images. There is a large body of

work on inserting objects photo-realistically, and inferring

3D structure from single images — Karsch et al. [25] de-

velop an impressive semi-automatic method to render ob-

jects with correct lighting and perspective; they infer the

actual size of objects based on the technique of Criminisi

et al. [5]. Hoiem et al. [15] categorise image regions into

ground-plane, vertical plane or sky from a single image and

use it to generate “pop-ups” by decomposing the image into

planes [14]. Similarly, we too decompose a single image

into local planar regions, but use instead the dense depth

prediction of Liu et al. [30].

RGB Depth gPb-UCM Segmentation Text Regions

Sample Scene-Text Images

Figure 3. (Top, left to right): (1) RGB input image with no text instance. (2) Predicted dense depth map (darker regions are closer).

(3) Colour and texture gPb-UCM segments. (4) Filtered regions: regions suitable for text are coloured randomly; those unsuitable retain

their original image pixels. (Bottom): Four synthetic scene-text images with axis-aligned bounding-box annotations at the word level.

2. Synthetic Text in the Wild

Supervised training of large models such as deep CNNs,

which contain millions of parameters, requires a very sig-

nificant amount of labelled training data [26], which is ex-

pensive to obtain manually. Furthermore, as summarised in

Table 1, publicly available text spotting or detection datasets

are quite small. Such datasets are not only insufficient to

train large CNN models, but also inadequate to represent the

space of possible text variations in natural scenes — fonts,

colours, sizes, positions. Hence, in this section we develop

a synthetic text-scene image generation engine for building

a large annotated dataset for text localisation.

Our synthetic engine (1) produces realistic scene-text

images so that the trained models can generalise to real

(non-synthetic) images, (2) is fully automated and, is (3)

fast, which enables the generation of large quantities of

data without supervision. The text generation pipeline can

be summarised as follows (see also Figure 3). After ac-

quiring suitable text and image samples (section 2.1), the

image is segmented into contiguous regions based on local

colour and texture cues [2], and a dense pixel-wise depth

map is obtained using the CNN of [30] (section 2.2). Then,

for each contiguous region a local surface normal is esti-

mated. Next, a colour for text and, optionally, for its outline

is chosen based on the region’s colour (section 2.3). Fi-

nally, a text sample is rendered using a randomly selected

font and transformed according to the local surface orienta-

tion; the text is blended into the scene using Poisson image

editing [35]. Our engine takes about half a second to gener-

ate a new scene-text image.

This method is used to generate 800,000 scene-text im-

ages, each with multiple instances of words rendered in dif-

ferent styles as seen in Figure 2. The dataset is available at:

http://www.robots.ox.ac.uk/∼vgg/data/text

2.1. Text and Image Sources

The synthetic text generation process starts by sampling

some text and a background image. The text is extracted

from the Newsgroup20 dataset [27] in three ways — words,

lines (up to 3 lines) and paragraphs (up to 7 lines). Words

are defined as tokens separated by whitespace characters,

lines are delimited by the newline character. This is a rich

dataset, with a natural distribution of English text inter-

spersed with symbols, punctuation marks, nouns and num-

bers.

To favour variety, 8,000 background images are ex-

tracted from Google Image Search through queries related

to different objects/scenes and indoor/outdoor and natu-

ral/artificial locales. To guarantee that all text occurrences

are fully annotated, these images must not contain text of

their own (a limitation of the Street View Text [43] is that

annotations are not exhaustive). Hence, keywords which

would recall a large amount of text in the images (e.g.

“street-sign”, “menu” etc.) are avoided; images containing

text are discarded through manual inspection.

2.2. Segmentation and Geometry Estimation

In real images, text tends to be contained in well defined

regions (e.g. a sign). We approximate this constraint by re-

quiring text to be contained in regions characterised by a

uniform colour and texture. This also prevents text from

crossing strong image discontinuities, which is unlikely to

Figure 4. Local colour/texture sensitive placement. (Left) Exam-

ple image from the Synthetic text dataset. Notice that the text is re-

stricted within the boundaries of the step in the street. (Right) For

comparison, the placement of text in this image does not respect

the local region cues.

occur in practice. Regions are obtained by thresholding the

gPb-UCM contour hierarchies [2] at 0.11 using the efficient

graph-cut implementation of [3]. Figure 4 shows an exam-

ple of text respecting local region cues.

In natural images, text tends to be painted on top of

surfaces (e.g. a sign or a cup). In order to approximate

a similar effect in our synthetic data, the text is perspec-

tively transformed according to local surface normals. The

normals are estimated automatically by first predicting a

dense depth map using the CNN of [30] for the regions

segmented above, and then fitting a planar facet to it using

RANSAC [10].

Text is aligned to the estimated region orientations as fol-

lows: first, the image region contour is warped to a frontal-

parallel view using the estimated plane normal; then, a rect-

angle is fitted to the fronto-parallel region; finally, the text is

aligned to the larger side (“width”) of this rectangle. When

placing multiple instances of text in the same region, text

masks are checked for collision against each other to avoid

placing them on top of each other. Not all segmentation

regions are suitable for text placement — regions should

not be too small, have an extreme aspect ratio, or have sur-

face normal orthogonal to the viewing direction; all such

regions are filtered in this stage. Further, regions with too

much texture are also filtered, where the degree of texture

is measured by the strength of third derivatives in the RGB

image.

Discussion. An alternative to using a CNN to estimate

depth, which is an error prone process, is to use a dataset

of RGBD images. We prefer to estimate an imperfect depth

map instead because: (1) it allows essentially any scene

type background image to be used, instead of only the

ones for which RGBD data are available, and (2) because

publicly available RGBD datasets such as NYUDv2 [40],

B3DO [22], Sintel [4], and Make3D [38] have several

limitations in our context: small size (1,500 images in

NYUDv21, 400 frames in Make3D, and a small number

of videos in B3DO and Sintel), low-resolution and mo-

tion blur, restriction to indoor images (in NYUDv2 and

B3DO), and limited variability in the images for video-

based datasets (B3DO and Sintel).

2.3. Text Rendering and Image Composition

Once the location and orientation of text has been de-

cided, text is assigned a colour. The colour palette for text

is learned from cropped word images in the IIIT5K word

dataset [32]. Pixels in each cropped word images are par-

titioned into two sets using K-means, resulting in a colour

pair, with one colour approximating the foreground (text)

colour and the other the background. When rendering new

text, the colour pair whose background colour matches the

target image region the best (using L2-norm in the Lab

colour space) is selected, and the corresponding foreground

colour is used to render the text.

About 20% of the text instances are randomly chosen to

have a border. The border colour is chosen to be either the

same as foreground colour with its value channel increased

or decreased, or is chosen to be the mean of the foreground

and background colours.

To maintain the illumination gradient in the synthetic

text image, we blend the text on to the base image using

Poisson image editing [35], with the guidance field defined

as in their equation (12). We solve this efficiently using

the implementation provided by Raskar1 based on Discrete

Sine Transform.

3. A Fast Text Detection Network

In this section we introduce our CNN architecture for

text detection in natural scenes. While existing text detec-

tion pipelines combine several ad-hoc steps and are slow,

we propose a detector which is highly accurate, fast, and

trainable end-to-end.

Let x denote an image. The most common approach for

CNN-based detection is to propose a number of image re-

gions R that may contain the target object (text in our case),

crop the image, and use a CNN c = φ(cropR(x)) ∈ {0, 1}
to score them as correct or not. This approach, which has

been popularised by R-CNN [12], works well but is slow as

it entails evaluating the CNN thousands of times per image.

An alternative and much faster strategy for object de-

tection is to construct a fixed field of predictors (c,p) =
φuv(x), each of which specialises in predicting the presence

c ∈ R and pose p = (x−u, y−v, w, h) of an object around

a specific image location (u, v). Here the pose parameters

(x, y) and (w, h) denote respectively the location and size

of a bounding box tightly enclosing the object. Each pre-

dictor φuv is tasked with predicting objects which occurs in

some ball (x, y) ∈ Bρ(u, v) of the predictor location.

While this construction may sound abstract, it is actually

a common one, implemented for example by Implicit Shape

Models (ISM) [28] and Hough voting [16]. There a predic-

tor φuv looks at a local image patch, centred at (u, v), and

1Fast Poisson image editing code available at: http://web.media.mit.

edu/∼raskar/photo/code.pdf

tries to predict whether there is an object around (u, v), and

where the object is located relative to it.

In this paper we propose an extreme variant of Hough

voting, inspired by Fully-Convolutional Network (FCN) of

Long et al. [31] and the You Look Only Once (YOLO) tech-

nique of Redmon et al. [36]. In ISM and Hough voting,

individual predictions are aggregated across the image, in a

voting scheme. YOLO is similar, but avoids voting and uses

individual predictions directly; since this idea can acceler-

ate detection, we adopt it here.

The other key conceptual difference between YOLO and

Hough voting is that in Hough voting predictors φuv(x) are

local and translation invariant, whereas in YOLO they are

not: First, in YOLO each predictor is allowed to pool evi-

dence from the whole image, not just an image patch cen-

tred at (u, v). Second, in YOLO predictors at different loca-

tions (u, v) 6= (u′, v′) are different functions φuv 6= φu′v′

learned independently.

While YOLO’s approach allows the method to pick up

contextual information useful in detection of PASCAL or

ImageNet objects, we found this unsuitable for smaller and

more variable text occurrences. Instead, we propose here a

method which is in between YOLO and Hough voting. As

in YOLO, each detector φuv(x) still predicts directly object

occurrences, without undergoing an expensive voting accu-

mulation process; however, as in Hough voting, detectors

φuv(x) are local and translation invariant, sharing parame-

ters. We implement this field of translation-invariant and lo-

cal predictors as the output of the last layer of a deep CNN,

obtaining a fully-convolutional regression network (FCRN).

3.1. Architecture

This section describes the structure of the FCRN. First,

we describe the first several layers of the architecture, which

compute text-specific image features. Then, we describe the

dense regression network built on top of these features and

finally its application at multiple scales.

Single-scale features. Our architecture is inspired by

VGG-16 [41], using several layers of small dense filters;

however, we found that a much smaller model works just

as well and more efficiently for text. The architecture com-

prises nine convolutional layers, each followed by the Recti-

fied Linear Unit non-linearity, and, occasionally, by a max-

pooling layer. All linear filters have a stride of 1 sample,

and preserve the resolution of feature maps through zero

padding. Max-pooling is performed over 2×2 windows

with a stride of 2 samples, therefore halving the feature

maps resolution.2

Class and bounding box prediction. The single-scale fea-

2The sequence of layers is as follows: 64 5×5 convolutional filters +

ReLU (CR-64-5×5), max pooling (MP), CR-128-5×5, MP, CR128-3×3,

CR-128-3×3-conv, MP, CR-256-3×3, CR-256-3×3, MP, CR-512-3×3,

CR-512-3×3, CR-512-5×5.

tures terminate with a dense feature field. Given that there

are four downsampling max-pooling layers, the stride of

these features is ∆ = 16 pixels, each containing 512 feature

channels φf
uv(x) (we express uv in pixels for convenience).

Given the features φf
uv(x), we can now discuss the con-

struction of the dense text predictors φuv(x) = φr
uv◦φ

f (x).
These predictors are implemented as a further seven 5 × 5
linear filters (C-7-5×5) φr

uv , each regressing one of seven

numbers: the object presence confidence c, and up to six

object pose parameters p = (x−u, y−v, w, h, cos θ, sin θ)
where x, y, w, h have been discussed before and θ is the

bounding box rotation.

Hence, for an input image of size H×W , we obtain a

grid of H
∆
×W

∆
predictions, one each for an image cell of

size ∆×∆ pixels. Each predictor is responsible for detect-

ing a word if the word centre falls within the correspond-

ing cell.3 YOLO is similar but operates at about half this

resolution; a denser predictor sampling is important to re-

duce collisions (multiple words falling in the same cell) and

therefore to increase recall (since at most one word can be

detected per cell). In practice, for a 224×224 image, we

obtain 14×14 cells/predictors

Multi-scale detection. Limited receptive field of our con-

volutional filters prohibits detection of large text instances.

Hence, we get the detections at multiple down-scaled ver-

sions of the input image and merge them through non-

maximal suppression. In more detail, the input image is

scaled down by factors {1, 1/2, 1/4, 1/8} (scaling up is an

overkill as the baseline features are already computed very

densely). Then, the resulting detections are combined by

suppressing those with a lower score than the score of an

overlapping detection.

Training loss. We use a squared loss term for each of the
H
∆
×W

∆
×7 outputs of the CNN as in YOLO [36]. If a cell

does not contain a ground-truth word, the loss ignores all

parameters but c (text/no-text).

Comparison with YOLO. Our fully-convolutional regres-

sion network (FCRN) has 30× less parameters than the

YOLO network (which has ∼90% of the parameters in the

last two fully-connected layers). Due to its global nature,

standard YOLO must be retrained for each image size, in-

cluding multiple scales, further increasing the model size

(while our model requires 44MB, YOLO would require

2GB). This makes YOLO not only harder to train, but also

less efficient (2× slower that FCRN).

4. Evaluation

First, in section 4.1 we describe the text datasets on

which we evaluate our model. Next, we evaluate our model

on the text localisation task in section 4.2. In section 4.3,

3For regression, it was found beneficial to normalise the pose parame-

ters as follows: p̄ = ((x− u)/∆, (y − v)/∆, w/W, h/H, cos θ, sin θ).

PASCAL Eval DetEval

IC11 IC13 SVT IC11 IC13 SVT

F P R RM F P R RM F P R RM F P R F P R F P R

Huang [17] - - - - - - - - - - - - 78 88 71 - - - - - -

Jaderberg [20] 77.2 87.5 69.2 70.6 76.2 86.7 68.0 69.3 53.6 62.8 46.8 55.4 76.8 88.2 68.0 76.8 88.5 67.8 24.7 27.7 22.3

Jaderberg

(trained on SynthText)
77.3 89.2 68.4 72.3 76.7 88.9 67.5 71.4 53.6 58.9 49.1 56.1 75.5 87.5 66.4 75.5 87.9 66.3 24.7 27.8 22.3

Neumann [33] - - - - - - - - - - - - 68.7 73.1 64.7 - - - - - -

Neumann [34] - - - - - - - - - - - - 72.3 79.3 66.4 - - - - - -

Zhang [47] - - - - - - - - - - - - 80 84 76 80 88 74 - - -

FCRN single-scale 60.6 78.8 49.2 49.2 61.0 77.7 48.9 48.9 45.6 50.9 41.2 41.2 64.5 81.9 53.2 64.3 81.3 53.1 31.4 34.5 28.9

FCRN multi-scale 70.0 78.4 63.2 64.6 69.5 78.1 62.6 67.0 46.2 47.0 45.4 53.0 73.0 77.9 68.9 73.4 80.3 67.7 34.5 29.9 40.7

FCRN + multi-filt 78.7 95.3 67.0 67.5 78.0 94.8 66.3 66.7 56.3 61.5 51.9 54.1 78.0 94.5 66.4 78.0 94.8 66.3 25.5 26.8 24.3

FCRNall + multi-filt 84.7 94.3 76.9 79.6 84.2 93.8 76.4 79.6 62.4 65.1 59.9 75.0 82.3 91.5 74.8 83.0 92.0 75.5 26.7 26.2 27.4

Table 2. Comparison with previous methods on text localisation. Precision (P) and Recall (R) at maximum F-measure (F) and the maximum

recall (RM) are reported.

to investigate which components of the synthetic data gen-

eration pipeline are important, we perform detailed ablation

experiments. In section 4.4, we use the results from our

localisation model for end-to-end text spotting. We show

substantial improvements over the state-of-the-art in both

text localisation and end-to-end text spotting. Finally, in

section 4.5 we discuss the speed-up gained by using our

models for text localisation.

4.1. Datasets

We evaluate our text detection networks on standard

benchmarks: ICDAR 2011, 2013 datasets [24, 39] and the

Street View Text dataset [43]. These datasets are reviewed

next and their statistics are given in Table 1.

SynthText in the Wild. This is a dataset of 800,000 train-

ing images generated using our synthetic engine from sec-

tion 2. Each image has about ten word instances annotated

with character and word-level bounding-boxes.

ICDAR Datasets. The ICDAR datasets (IC011, IC013) are

obtained from the Robust Reading Challenges held in 2011

and 2013 respectively. They contain real world images of

text on sign boards, books, posters and other objects with

world-level axis-aligned bounding box annotations. The

datasets largely contain the same images, but shuffle the test

and training splits. We do not evaluate on the more recent

ICDAR 2015 dataset as it is almost identical to the 2013

dataset.

Street View Text. This dataset, abbreviated SVT, consists

of images harvested from Google Street View annotated

with word-level axis-aligned bounding boxes. SVT is more

challenging than the ICDAR data as it contains smaller and

lower resolution text. Furthermore, not all instances of text

are annotated. In practice, this means that precision is heav-

ily underestimated in evaluation. Lexicons consisting of 50

distractor words along with the ground-truth words are pro-

vided for each image; we refer to testing on SVT with these

lexicons as SVT-50.

4.2. Text Localisation Experiments

We evaluate our detection networks to — (1) compare

the performance when applied to single-scale and multiple

down-scaled versions of the image and, (2) improve upon

the state-of-the-art results in text detection when used as

high-quality proposals.

Training. FCRN is trained on 800,000 images from our

SynthText in the Wild dataset. Each image is resized to a size

of 512×512 pixels. We optimise using SGD with momen-

tum and batch-normalisation [18] after every convolutional

layer (except the last one). We use mini-batches of 16 im-

ages each, set the momentum to 0.9, and use a weight-decay

of 5−4. The learning rate is set to 10−4 initially and is re-

duced to 10−5 when the training loss plateaus.

As only a small number (1-2%) of grid-cells contain text,

we weigh down the non-text probability error terms initially

by multiplying with 0.01; this weight is gradually increased

to 1 as the training progresses. Due to class imbalance, all

the probability scores collapse to zero if such a weighting

scheme is not used.

Inference. We get the class probabilities and bounding-box

predictions from our FCRN model. The predictions are fil-

tered by thresholding the class probabilities (at a threshold

t). Finally, multiple detections from nearby cells are sup-

pressed using non-maximal suppression, whereby amongst

two overlapping detections the one with the lower probabil-

ity is suppressed. In the following we first give results for a

conservative threshold of t = 0.3, for higher precision, and

then relax this to t = 0.0 (i.e., all proposals accepted) for

higher recall.

Evaluation protocol. We report text detection performance

using two protocols commonly used in the literature —

(1) DetEval [45] popularly used in ICDAR competitions

for evaluating localisation methods, and (2) PASCAL VOC

style intersection-over-union overlap method (≥ 0.5 IoU for

a positive detection).

Single & multi-scale detection. The “FCRN single-scale”

recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
r
e
c
i
s
i
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jaderberg

F AP Rmax

FCRN multi
 scale

69.5 60.4 67.0

84.2 78.2 79.6

76.7 68.5 71.4

76.2 67.1 69.3

FCRNall+
multi-filt

Jaderberg
(SynthText)

Figure 5. Precision-Recall curves for various text detection meth-

ods on IC13. The methods are: (1) multi-scale application of

FCRN (“FCRN-multi”); (2) The original curve of Jaderberg et

al. [20]; (3) Jaderberg et al. [20] retrained on the SynthText in the

Wild dataset; and, (4) “FCRNall + multi-filt” methods. Maximum

F-score (F), Average Precision (AP) and maximum Recall (Rmax)

are also given. The gray curve at the bottom is of multi-scale detec-

tions from our FCRN network (max. recall = 85.9%), which is fed

into the multi-filtering post-processing to get the refined “FCRNall

+ multi-filt” detections.

entry in Table 2 shows the performance of our FCRN model

on the test datasets. The precision at maximum F-measure

of single-scale FCRN is comparable to the methods of Neu-

man et al. [33, 34], while the recall is significantly worse by

12%.

The “FCRN multi-scale” entry in Table 2 shows per-

formance on multi-scale application of our network. This

method improves maximum recall by more than 12% over

the single-scale method and outperforms the methods of

Neumann et al.

Post-processing proposals. Current end-to-end text spot-

ting (detection and recognition) methods [1, 20, 44] boost

performance by combining detection with text recognition.

To further improve FCRN detections, we use the multi-

scale detections from FCRN as proposals and refine them

by using the post-processing stages of Jaderberg et al. [20].

There are three stages: first filtering using a binary text/no-

text random-forest classifier; second, regressing an im-

proved bounding-box using a CNN; and third recognition

based NMS where the word images are recognised using

a large fixed lexicon based CNN, and the detections are

merged through non-maximal suppression based on word

identities. Details are given in [20]. We use code provided

by the authors for fair comparison.

We test this in two modes — (1) low-recall: where only

high-scoring (probability > 0.3) multi-scale FCRN detec-

tions are used (the threshold previously used in the single-

and multi-scale inference). This typically yields less than

30 proposals. And, (2) high-recall: where all the multi-

scale FCRN detections (typically about a thousand in num-

ber) are used. Performance of these methods on text detec-

recall

Colour/Texture
Regions

F AP Rmax

Random
Placement

60.3

Perspective
distortion
+ regions

61.9

62.4 54.5

53.7

50.6 68.2

75.0

75.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
r
e
c
i
s
i
o
n

Figure 6. Precision-Recall curves text localisation on the SVT

dataset using the model “FCRNall+multi-filt” when trained on in-

creasingly sophisticated training sets (section 4.3).

tion are shown by the entries named “FCRN + multi-filt”

and “FCRNall + multi-filt” respectively in Table 2. Note

that the low-recall method achieves better than the state-of-

the-art performance on text detection, whereas high-recall

method significantly improves the state-of-the-art with an

improvement of 6% in the F-measure for all the datasets.

Figure 5 shows the Precision-Recall curves for text de-

tection on the IC13 dataset. Note the high recall (85.9%) of

the multi-scale detections output from FCRN before refine-

ment using the multi-filtering post-processing. Also, note

the drastic increase in maximum recall (+10.3%) and in

Average Precision (+11.1%) for “FCRNall + multi-filt” as

compared to Jaderberg et al.

Further, to establish that the improvement in text detec-

tion is due to the new detection model, and not merely due

to the large size of our synthetic dataset, we trained Jader-

berg et al.’s method on our SynthText in the Wild dataset

– in particular, the ACF component of their region proposal

stage.4 Figure 5 and Table 2 show that, even with 10× more

(synthetic) training data, Jaderberg et al.’s model improves

only marginally (+0.8% in AP, +2.1% in maximum recall).

A common failure mode is text in unusual fonts which

are not present in the training set. The detector is also

confused by symbols or patterns of constant stroke width

which look like text, for example road-signs, stick figures

etc. Since the detector does not scale the image up, ex-

tremely small sized text instances are not detected. Finally,

words get broken into multiple instances or merged into one

instance due to large or small spacing between the charac-

ters.

4.3. Synthetic Dataset Evaluation

We investigate the contribution that the various stages

of the synthetic text-scene data generation pipeline bring to

4Their other region proposal method, EdgeBoxes, was not re-trained;

as it is learnt from low-level edge features from the Berkeley Segmentation

Dataset, which is not text specific.

Model IC11 IC11* IC13 SVT SVT-50

Wang [42] - - - - 38

Wang & Wu [44] - - - - 46

Alsharif [1] - - - - 48

Neumann [34] - 45.2 - - -

Jaderberg [21] - - - - 56

Jaderberg [20] 76 69 76 53 76

FCRN + multi-filt
80.5

(77.8)

75.8

(73.5)

80.3

(77.8)
54.7 68.0

FCRNall + multi-filt
84.3

(81.2)

81.0

(78.4)

84.7

(81.8)
55.7 67.7

Table 3. Comparison with previous methods on end-to-end text

spotting. Maximum F-measure% is reported. IC11* is evaluated

according to the protocol described in [34]. Numbers in parenthe-

sis are obtained if words containing non-alphanumeric characters

are not ignored – SVT does not have any of these.

localisation accuracy: We generate three synthetic training

datasets with increasing levels of sophistication, where the

text is (1) is placed at random positions within the image,

(2) restricted to the local colour and texture boundaries, and

(3) distorted perspectively to match the local scene depth

(while also respecting the local colour and texture bound-

aries as in (2) above). All other aspects of the datasets were

kept the same — e.g. the text lexicon, background images,

colour distribution.

Figure 6 shows the results on localisation on the SVT

dataset of our method “FCRNall+multi-filt”. Compared

to random placement, restricting text to the local colour

and texture regions significantly increases the maximum re-

call (+6.8%), AP (+3.85%), and the maximum F-measure

(+2.1%). Marginal improvements are seen with the addi-

tion of perspective distortion: +0.75% in AP, +0.55% in

maximum F-measure, and no change in the maximum re-

call. This is likely due to the fact that most text instances in

the SVT datasets are in a fronto-parallel orientation. Sim-

ilar trends are observed with the ICDAR 2013 dataset, but

with more contained differences probably due to the fact

that ICDAR’s text instances are much simpler than SVT’s

and benefit less from the more advanced datasets.

4.4. EndtoEnd Text Spotting

Text spotting is limited by the detection stage, as state-

of-the-art cropped word image recognition accuracy is over

98% [19]. We utilise our improvements in text localisation

to obtain state-of-the-art results in text spotting.

Evaluation protocol. Unless otherwise stated, we follow

the standard evaluation protocol by Wang et al. [42], where

all words that are either less than three characters long or

contain non-alphanumeric characters are ignored. An over-

lap (IoU) of at least 0.5 is required for a positive detection.

Table 3 shows the results on end-to-end text spotting task

using the “FCRN + multi-filt” and “FCRNall + multi-filt”

Total Time

Region

Proposal

Proposal

Filtering

BB-regression

& recognition

FCRN+multi-filt 0.30 0.07 0.03 0.20

FCRNall+multi-filt 2.47 0.07 1.20 1.20

Jaderberg et al. 7.00 3.00 3.00 1.00

Table 4. Comparison of end-to-end text-spotting time (in seconds).

methods. For recognition we use the output of the interme-

diary recognition stage of the pipeline based on the lexicon-

encoding CNN of Jaderberg et al. [19]. We improve upon

previously reported results (F-measure): +8% on the IC-

DAR datasets, and +3% on the SVT dataset. Given the high

recall of our method (as noted before in Figure 5), the fact

that many text instances are unlabelled in SVT cause pre-

cision to drop; hence, we see smaller gains in SVT and do

worse on SVT-50.

4.5. Timings

At test time FCRN can process 20 images per second

(of size 512×512px) at single scale and about 15 images

per second when run on multiple scales (1,1/2,1/4,1/8) on

a GPU. When used as high-quality proposals in the text lo-

calisation pipeline of Jaderberg et al. [20], it replaces the

region proposal stage which typically takes about 3 sec-

onds per image. Hence, we gain a speed-up of about 45

times in the region proposal stage. Further, the “FCRN +

multi-filt” method, which uses only the high-scoring detec-

tions from multi-scale FCRN and achieves state-of-the-art

results in detection and end-to-end text spotting, cuts down

the number of proposals in the later stages of the pipeline by

a factor of 10: the region proposal stage of Jaderberg et al.

proposes about 2000 boxes which are quickly filtered using

a random-forest classifier to a manageable set of about 200

proposals, whereas the high-scoring detections from multi-

scale FCRN are typically less than 30. Table 4 compares

the time taken for end-to-end text-spotting; our method is

between 3× to 23× faster than Jaderberg et al.’s, depend-

ing on the variant.

5. Conclusion

We have developed a new CNN architecture for gen-

erating text proposals in images. It would not have been

possible to train this architecture on the available annotated

datasets, as they contain far too few samples, but we have

shown that training images of sufficient verisimilitude can

be generated synthetically, and that the CNN trained only on

these images exceeds the state-of-the-art performance for

both detection and end-to-end text spotting on real images.

Acknowledgements. We are grateful for comments from

Jiri Matas. Financial support was provided by the UK EP-

SRC CDT in Autonomous Intelligent Machines and Sys-

tems Grant EP/L015987/2, EPSRC Programme Grant See-

bibyte EP/M013774/1, and the Clarendon Fund scholarship.

References

[1] O. Alsharif and J. Pineau. End-to-end text recognition with

hybrid HMM maxout models. ArXiv e-prints, Oct 2013.
[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE PAMI,

33:898–916, 2011.
[3] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In Proc. CVPR,

2014.
[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In Proc. ECCV, 2014.
[5] A. Criminisi, I. D. Reid, and A. Zisserman. Single view

metrology. In Proc. ICCV, pages 434–442, 1999.
[6] N. Dalal and B. Triggs. Histogram of Oriented Gradients for

Human Detection. In Proc. CVPR, volume 2, pages 886–

893, 2005.
[7] P. Dollar, R. Appel, and S. Belongie. Fast feature pyramids

for object detection. IEEE PAMI, 36(8):1532–1545, 2014.
[8] A. Dosovitskiy and T. Brox. Inverting visual representations

with convolutional networks. In Proc. CVPR, 2016. To ap-

pear.
[9] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. Smagt, D. Cremers, and T. Brox. Flownet:

Learning optical flow with convolutional networks. In Proc.

ICCV, 2015.
[10] M. A. Fischler and R. C. Bolles. Random sample consensus:

A paradigm for model fitting with applications to image anal-

ysis and automated cartography. Comm. ACM, 24(6):381–

395, 1981.
[11] R. B. Girshick. Fast R-CNN. In Proc. ICCV, 2015.
[12] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In Proc. CVPR, 2014.
[13] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet.

Multi-digit number recognition from street view imagery us-

ing deep convolutional neural networks. In Proc. ICLR,

2014.
[14] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo

pop-up. In Proc. ACM SIGGRAPH, 2005.
[15] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context

from a single image. In Proc. ICCV, 2005.
[16] P. V. C. Hough. Method and means for recognizing complex

patterns. US Patent 3,069,654, 1962.
[17] W. Huang, Y. Qiao, and X. Tang. Robust scene text detection

with convolution neural network induced mser trees. In Proc.

ECCV, 2014.
[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

Proc. ICML, 2015.
[19] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.

Synthetic data and artificial neural networks for natural scene

text recognition. In Workshop on Deep Learning, NIPS,

2014.
[20] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.

Reading text in the wild with convolutional neural networks.

IJCV, 2015.
[21] M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep features

for text spotting. In Proc. ECCV, 2014.
[22] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz,

K. Saenko, and T. Darrell. A category-level 3-d object

dataset: Putting the kinect to work. In ICCV Workshop on

Consumer Depth Cameras in Computer Vision, 2011.
[23] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh,

A. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R.

Chandrasekhar, S. Lu, et al. ICDAR 2015 robust reading

competition. In Proc. ICDAR, pages 1156–1160, 2015.
[24] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, S. R. Mestre,

J. Mas, D. F. Mota, J. A. Almazan, L. P. de las Heras, et al.

ICDAR 2013 robust reading competition. In Proc. ICDAR,

pages 1484–1493, 2013.
[25] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem. Rendering

synthetic objects into legacy photographs. ACM Transac-

tions on Graphics, 30(6):157, 2011.
[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, pages 1106–1114, 2012.
[27] K. Lang and T. Mitchell. Newsgroup 20 dataset, 1999.
[28] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-

egorization and segmentation with an implicit shape model.

In Workshop on Statistical Learning in Computer Vision,

ECCV, May 2004.
[29] K. Lenc and A. Vedaldi. R-CNN minus R. In Proc. BMVC.,

2015.
[30] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields

for depth estimation from a single image. In Proc. CVPR,

2015.
[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proc. CVPR, 2016.
[32] A. Mishra, K. Alahari, and C. Jawahar. Scene text recogni-

tion using higher order language priors. Proc. BMVC., 2012.
[33] L. Neumann and J. Matas. Real-time scene text localization

and recognition. In Proc. CVPR, volume 3, pages 1187–

1190, 2012.
[34] L. Neumann and J. Matas. Scene text localization and recog-

nition with oriented stroke detection. In Proc. ICCV, pages

97–104, December 2013.
[35] P. Perez, M. Gangnet, and A. Blake. Poisson image editing.

ACM Transactions on Graphics, 22(3):313–318, 2003.
[36] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection. In

Proc. CVPR, 2016. To appear.
[37] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2016.
[38] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning

3d scene structure from a single still image. IEEE PAMI,

31(5):824–840, 2009.
[39] A. Shahab, F. Shafait, and A. Dengel. ICDAR 2011 robust

reading competition challenge 2: Reading text in scene im-

ages. In Proc. ICDAR, pages 1491–1496, 2011.
[40] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

Proc. ECCV, 2012.
[41] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015.
[42] K. Wang, B. Babenko, and S. Belongie. End-to-end scene

text recognition. In Proc. ICCV, pages 1457–1464, 2011.
[43] K. Wang and S. Belongie. Word spotting in the wild. In

Proc. ECCV, 2010.
[44] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end

text recognition with convolutional neural networks. In Proc.

ICPR, pages 3304–3308, 2012.
[45] C. Wolf and J. M. Jolion. Object count/area graphs for the

evaluation of object detection and segmentation algorithms.

International Journal on Document Analysis and Recogni-

tion, 8(4):280–296, 2006.
[46] I. Yildirim, T. D. Kulkarni, W. A. Freiwald, and J. B. Tenen-

baum. Efficient and robust analysis-by-synthesis in vision:

A computational framework, behavioral tests, and modeling

neuronal representations. In Annual Conference of the Cog-

nitive Science Society, 2015.
[47] Z. Zhang, W. Shen, C. Yao, and X. Bai. Symmetry-based

text line detection in natural scenes. In Proc. CVPR, 2015.
[48] C. L. Zitnick and P. Dollar. Edge boxes: Locating object pro-

posals from edges. In Proc. ECCV, pages 391–405, 2014.

