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Abstract
Convolutional Neural Networks (CNNs) are ex-
tremely efficient, since they exploit the inherent
translation-invariance of natural images. How-
ever, translation is just one of a myriad of use-
ful spatial transformations. Can the same effi-
ciency be attained when considering other spa-
tial invariances? Such generalized convolutions
have been considered in the past, but at a high
computational cost. We present a construction
that is simple and exact, yet has the same com-
putational complexity that standard convolutions
enjoy. It consists of a constant image warp fol-
lowed by a simple convolution, which are stan-
dard blocks in deep learning toolboxes. With
a carefully crafted warp, the resulting architec-
ture can be made equivariant to a wide range of
two-parameter spatial transformations. We show
encouraging results in realistic scenarios, includ-
ing the estimation of vehicle poses in the Google
Earth dataset (rotation and scale), and face poses
in Annotated Facial Landmarks in the Wild (3D
rotations under perspective).

1. Introduction
A crucial aspect of current deep learning architectures is the
encoding of invariances. This fact is epitomized in the suc-
cess of convolutional neural networks (CNN), where equiv-
ariance to image translation is key: translating the input
results in a translated output. When invariances are present
in the data, encoding them explicitly in an architecture pro-
vides an important source of regularization, which reduces
the amount of training data required for learning.

Invariances may also be used to improve the efficiency of
implementations. For instance, a convolutional layer re-
quires orders of magnitude less memory (by reusing filters
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across space) and less computation (due to their limited
support) compared to a fully-connected layer. Its local and
predictable memory access pattern also makes better use of
modern hardware’s caching mechanisms.

The success of CNNs indicates that translation invariance
is an important property of images. However, this does
not explain why translation equivariant operators work well
for image understanding. The common interpretation is
that such operators are matched to the statistics of nat-
ural images, which are well known to be translation in-
variant (Hyvärinen et al., 2009). However, natural image
statistics are also (largely) invariant to other transforma-
tions such as isotropic scaling and rotation, which suggests
that alternative neural network designs may also work well
with images. Furthermore, in specific applications, invari-
ances other than translation may be more appropriate.

Therefore, it is natural to consider generalizing convolu-
tional architectures to other image transformations, and this
has been the subject of extensive study (Kanazawa et al.,
2014; Bruna et al., 2013; Cohen & Welling, 2016). Unfor-
tunately these approaches do not possess the same memory
and speed benefits that CNNs enjoy. The reason is that, ul-
timately, they have to transform (warp) an image or filter
several times (Kanazawa et al., 2014; Marcos et al., 2016;
Dieleman et al., 2015), incurring a high computational bur-
den. Another approach is to consider a basis of filters
(analogous to eigen-images) encoding the desired invari-
ance (Cohen & Welling, 2014; Bruna et al., 2013; Cohen
& Welling, 2016). Although they are able to handle trans-
formations with many pose parameters, in practice most
recent proposals are limited to very coarsely discretized
transformations, such as horizontal/vertical flips and 90◦

rotations (Dieleman et al., 2015; Cohen & Welling, 2014).

In this work we consider generalizations of CNNs that
overcome these disadvantages. Well known constructions
in group theory enable the extension of convolution to gen-
eral transformation groups (Folland, 1995). However, this
generality usually comes at an increased computational
cost or complexity. Here we show that, by making ap-
propriate assumptions, we can design convolution opera-
tors that are equivariant to a large class of two-parameter
transformations while reducing to a standard convolution
in a warped image space. The fixed image warp can be
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implemented using bilinear resampling, a simple and fast
operation that has been popularized by spatial transformer
networks (Jaderberg et al., 2015; Heckbert, 1989) and is
part of most deep learning toolboxes. Unlike previous pro-
posals, the proposed warped convolutions can handle con-
tinuous transformations, such as fine rotation and scaling.

This makes generalized convolution easily implementable
in neural networks, reusing fast convolution algorithms on
GPU hardware, such as Winograd (Lavin, 2015) or the Fast
Fourier Transform (Lyons, 2010).

2. Generalizing convolution
2.1. Discrete and continuous convolution

We start by looking at the basic building block of CNNs,
i.e. the convolution operator. This operator computes the
inner product of an image I ∈ RN×N with a translated
version of the filter F ∈ RM×M , producing a new image
as output:

(I ∗ F )(j) =
∑
k

I(k)F (j − k), (1)

where k, j ∈ Z2 are two-dimensional vectors of indexes,
and the summation ranges inside the extents of both arrays.
Over the next sections it will be more convenient to trans-
late the image I instead of the filter F . This alternative
form of eq. (1) is obtained by the substitution k ← j + k:

(I ∗ F )(j) =
∑
k

I(j + k)F (−k) (2)

In the neural network literature, this is often written using
the cross-correlation convention (Goodfellow et al., 2016),
by considering the reflected filter F−(j) = F (−j):

(I ∗ F )(j) =
∑
k

I(j + k)F−(k). (3)

To handle continuous deformations of the input, it is more
natural to express eq. (2) as an integral over continuous
rather than discrete inputs:

(I ∗ F )(y) =

ˆ
I(y + x)F (−x) dx, (4)

where I, F : R2 → R are functions of continuous inputs
in R2. The real-valued 2D vectors x, y ∈ R2 now play the
role of the indexes k ∈ Z2. Equation (4) reduces to the
discrete case of eq. (1) if we define I and F as the sum of
delta functions on grids (Dirac comb). Intermediate values
can be obtained by interpolation, such as bilinear (which
amounts to convolution of the delta functions with a trian-
gle filter (Jaderberg et al., 2015)). Importantly, such con-
tinuous images can be deformed by a rich set of continuous
transformations of the input coordinates, whereas strictly
discrete operations would be more limiting.

2.2. Convolution on groups

The standard convolution operator of eq. (4) can be inter-
preted as applying the filter to translated versions of the
image. We wish to replace translations with other image
transformations g, belonging to a group G. In the con-
text of machine learning models for images, this general-
ized (group) convolution can be understood to exhaustively
search for a pattern at various poses g ∈ G (e.g. rotation
angles or scale factors) (Dieleman et al., 2015; Kanazawa
et al., 2014).

Following standard derivations (Folland, 1995), the most
common way of generalising convolution to transforma-
tions other than translations starts from the Haar integral.
Given a measure µ over a group G, one can define the inte-
gral of a real function Ĩ : G→ R, written:

ˆ
G

Ĩ(g) dµ(g).

The (left) Haar measure is the most natural choice for µ;
it is the only measure (up to scaling factors) that is (left)
invariant to group translation. In other words, µ satisfies
the equation:

∀h ∈ G :

ˆ
G

Ĩ(hg) dµ(g) =

ˆ
G

Ĩ(g) dµ(g).

Mirroring eq. (4), the group convolution of two functions Ĩ
and F̃ is defined as1

(Ĩ ∗
G
F̃ )(t) =

ˆ
Ĩ(tg)F̃ (g−1) dµ(g). (5)

From the viewpoint of statistical learning, a key property of
convolution is equivariance. Consider the (left) translation
operator

Lh(Ĩ) : t 7−→ Ĩ(h−1t). (6)

Then:

Lemma 1. (Folland, 1995) Convolution is equivariant with
group translations, in the sense that Lh commutes with ∗

G
:

Lh(Ĩ ∗
G
F̃ )(t) = (Lh(Ĩ) ∗

G
F̃ )(t).

1Due to the Haar invariance property, this definition is equiva-
lent to the following one, also commonly found in the literature:

(Ĩ ∗
G
F̃ )(t) =

ˆ
Ĩ(g)F̃ (g−1t) dµ(g).

The equivalence mirrors the one between eq. (1) and eq. (2), and
can be easily proved:

(Ĩ ∗
G
F̃ )(t) =

ˆ
Ĩ(tg)F̃ ((tg)−1t) dµ(g)

=

ˆ
Ĩ(tg)F̃ (g−1) dµ(g).
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Proof. Lh(Ĩ ∗
G
F̃ )(t) =

´
Ĩ((h−1t)g)F̃ (g−1) dµ(g) =´

Ĩ(h−1(tg))F̃ (g−1) dµ(g) = (Lh(Ĩ) ∗
G
F̃ )(t).

2.3. From groups to images

The functions Ĩ and F̃ above have been defined on groups.
In applications, however, we are interested in images, i.e.
functions I : Ω→ R defined on a subset Ω of the real plane
R2.

The connection between the two function types is easy to
establish. The assumption is that G acts2 on the image do-
main Ω (i.e. G is a group of transformations of Ω). We can
then define the ·̃ operator as:

Ĩ(g) = I(gx0)

where x0 ∈ Ω is an arbitrary pivot point. Note that the
values of Ĩ depend only on the values of I on the orbit of
x0, i.e. the set Gx0 = {gx0 : g ∈ G}. Therefore we
typically set the domain Ω of I to be equal to Gx0.

By this definition, left translation of Ĩ by h corresponds to
warping the image I by the transformation h:

Lh(Ĩ)(t) = I((h−1t)x0) = I(h−1(tx0)) = ˜(I ◦ h−1)(t).

We can then update eq. (5) to express group convolution as
a function of images on the real plane:

(I ∗
G
F )(t) =

ˆ
I(tgx0)F (g−1x0) dµ(g). (7)

2.4. Standard convolutions with exponential maps

In the definitions of sections 2.2 and 2.3, while we could
reduce the functions Ĩ and F̃ to images I and F , the re-
sult of convolution is still a function defined over a group.
One needs therefore to understand how to represent such
functions and calculate the corresponding integrals.

We note here that the simplest case is when G is a
Lie group parameterised by the exponential map exp :
V → G, where V is a subset of RP , in such a way
that exp is smooth, bijective and additive (exp(u + v) =
exp(u) exp(v)). Then:

ˆ
G

Ĩ(g) dµ(g) =

ˆ
V

Ĩ(exp(u)) du.

Hence we can define the warped image

Iw(u) = Ĩ(exp(u)) = I(exp(u)x0), u ∈ V.
2This means that g defines a mapping Ω 7→ Ω and that

the group multiplication hg corresponds to function composition
(hg)x = h(gx).

and group convolution reduces to the standard notion of
convolution ∗

V
on V :

(Ĩ ∗
G
F̃ )(exp(v)) =

ˆ
V

Iw(v + u)Fw(−u) du. (8)

We refer to this standard convolution in warped space
(eq. (8)) as warped convolution.

Discussion. Note that the result is an image whose dimen-
sionality P is that of the vector space V ; in the following,
we mainly work in the case P = 2. By far, the strongest
requirement is that the map is additive: this is the same as
requiring the transformation group G to be Abelian, in the
sense that transformations commute (hg = gh). In sec-
tion 5 we will show a variety of useful image transforma-
tions that respect this property. The advantage of intro-
ducing this restriction is that calculations simplify tremen-
dously, ultimately enabling a simple and efficient imple-
mentation of the operator as discussed below.

3. Warped convolutions
Our main contribution is to note that certain group convo-
lutions can be implemented efficiently by a standard con-
volution, by pre-warping the input image and filter appro-
priately. The warp is the same for any image, depending
solely on the nature of the relevant transformations, and
can be written in closed form. This result allows one to
implement very efficient group convolutions using simple
computational blocks, as shown in section 3.2.

3.1. Warped convolution layer

We can now reinterpret these results in terms of a new neu-
ral network convolutional layer. The input of the layer is an
image I and the learnable parameters are the coefficients of
the filter Fw. The output is a new “image” C(I;Fw)(v) de-
fined on the vector space V . This image is obtained by first
warping I using the exponential map and then by convolv-
ing the result with Fw in the standard sense:

C(I;Fw)(v) = (I(exp(·)x0) ∗
V
Fw)(v). (9)

The most important property of this layer is equivariance:
if we warp the image by the transformation h = exp(u),
then the convolution result translates by u:

C(I ◦ h−1;Fw) = C(I;Fw)(v − u), h = exp(u).

Note that the output action equivalent to warping the input
is simply to translate the result, as for standard convolu-
tion. The second most important property is that this oper-
ator can be implemented efficiently as the combination of
warping and standard convolution.
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3.2. Implementation and intuition

The warp (exponential map) that is applied to the input im-
age eq. (9) can be implemented as follows. We start with
an arbitrary pivot point x0 in the image, and then sample
all possible transformations of that point, {gx0 : g ∈ G}.
For discrete images, G will be implemented as a 2D grid of
discrete transformations (e.g. rotations and scales at regu-
lar intervals), and {gx0} will be a 2D grid as well, referred
to as the warp grid. Finally, sampling the input image at the
points {gx0} (for example, by bilinear interpolation) yields
the warped image.

An illustration is given in fig. 1, for various transformations
(each one is discussed in more detail in section 5). The red
dot shows the pivot point x0, and the two arrows pointing
away from it show the original axes of the sampled grid
of parameters. The grids were generated by sampling the
transformation parameters at regular intervals. Note that
the warp grids are independent of the image contents – they
can be computed once offline and then applied to any im-
age.

The steps for implementing a warped convolution block are
outlined in algorithm 1. The main advantage of implement-
ing group convolution as warped convolution is that it re-
places a large number of warping operations (one per group
element) with a single warp.

4. Discussion
4.1. Interpretation as a filtering operator in image

space

When V ⊂ R2, we can often interpret group convolution
as an integration over image space, instead of over group
elements. For this, we introduce the map η(v) = exp(v)x0

and assume that it is smooth, invertible, and surjective on
the image domain Ω. Surjectivity means that G acts tran-
sitively on Ω, in the sense that every point x ∈ Ω can be
reached from x0 by a transformation g. Injectivity means
that this transformation is unique.

Next, let h = exp(v) and note that exp(v + u) =
exp(v) exp(u) = h exp(u). Hence

(Ĩ ∗
G
F̃ )(h) =

ˆ
V

Iw(v + u)Fw(−u) du

=

ˆ
V

I(h exp(u)x0)F (exp(−u)x0) du.

Let the filter F− be the reflection3 of F around the pivot
point x0 by the group G, i.e. F−(gx0) = F (g−1x0). It

3This is well defined because η is invertible. In fact, if x =
gx0 = exp(u)x0 = η(u), then u = η−1(x) and F−(x) =
F (η(−η−1(x))).

Algorithm 1 Warped Convolution

Grid generation (offline)

• Compute the 2D warp grid w = gu(x0) by apply-
ing a two-parameter spatial transformation g : R2 ×
R2 → R2 to a single pivot point x0, using a 2D
grid of parameters u = {(u1 + iδ1, u2 + jδ2) : i =
0, . . . ,m, j = 0, . . . , n}.

Warped convolution

1. Resample input image I using the warp grid w, by
bilinear interpolation.

2. Convolve warped image Iw with a learned filter Fw.

By eq. (8), and for appropriate transformations, these steps
are equivalent to group convolution (which performs an ex-
haustive search across the pose-space of transformations),
but at a much lower computational cost.

follows that:

(Ĩ ∗
G
F̃ )(h) =

ˆ
V

I(h exp(u)x0)F−(exp(u)x0) du.

We can now use the change of variable u ← η−1(x) to
write

(Ĩ ∗
G
F̃ )(h) =

ˆ
V

I(hη(u))F−(η(u)) du (10)

=

ˆ
Ω

I(hx)F−(x)

∣∣∣∣dη−1

dx

∣∣∣∣ dx. (11)

Thus we see that the group convolution amounts to apply-
ing a certain filter F− to the warped image I ◦ h. The filter
elements are reweighed by the determinant of the Jacobian
of η−1, which accounts for the stretching and shrinking of
space due to the non-linear map. In practice, both the re-
flection and Jacobian can be absorbed into a learned filter,
making such calculations unnecessary. Nevertheless, they
offer a complementary view of warped convolutions.

4.2. Efficiency vs. generality

By reducing to standard convolution, warped convolu-
tion allows one to take full advantage of modern convo-
lution implementations (Lavin, 2015; Lyons, 2010), in-
cluding those with lower computational complexity (e.g.
FFT (Lyons, 2010)). However, while warped convolution
works with an important class of transformations (includ-
ing the ones considered in previous works Kanazawa et al.
(2014); Cohen & Welling (2014); Marcos et al. (2016)),
non-trivial restrictions are imposed on the transformation
group: it must be Abelian and have only two parameters.

By contrast, the group-theoretic convolution operator
of eq. (5) does not make (almost) any restriction on the
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(a) translation (b) scale/aspect ratio (c) scale/rotation (d) 3D rotation (yaw/pitch)

Figure 1. First row: Sampling grids that define the warps associated with different spatial transformations. Second row: An example
image (a) after warping with each grid (b-d). Third row: A small translation is applied to each warped image, which is then mapped
back to the original space (by an inverse warp). Translation in one axis of the appropriate warped space is equivalent to (b) horizontal
scaling; (c) planar rotation; (d) 3D rotation around the vertical axis.

transformation group. Unfortunately, it is in general signif-
icantly more difficult to compute efficiently than the special
case we consider here. To understand some of the imple-
mentation challenges, consider specializing eq. (7) to a dis-
crete group G such as a discrete set of planar rotations. In
this case the Haar measure is trivial and equal to 1, and one
has:

(I ∗
G
F )(t) =

∑
g∈G

I(tgx0)F (g−1x0).

Direct computation of this equation has complexity
O(|G|2) where |G| is the cardinality of the discrete group.
Assuming that |G| is in the order ofO(N2) where N is the
resolution of the input image (as it would be for standard
convolution), one would obtain a complexity ofO(N4). In
practice, since usually the support of aM×M filter is much
smaller than the image, this complexity might reduce to
O(N2M2), which is the complexity for the spatial domain

implementation of convolution; however, compared to the
standard case, this has two major disadvantages. First, the
image is sampled in a spatially-varying manner, using bi-
linear or other interpolation, which foregoes the benefit of
the regular, predictable, and local pattern of computations
in standard convolution. This makes high-performance im-
plementation of the naive algorithm difficult, particularly
on GPUs. Secondly, it precludes the use of faster convolu-
tion routines such as Winograd’s algorithm (Lavin, 2015)
or the Fast Fourier Transform (Lyons, 2010), the later hav-
ing lower computational complexity than exhaustive search
(O(N2 logN)). The development of analogues of the FFT
for other general groups remains the subject of active re-
search (Tygert, 2010; Li & Yang, 2016), which we sidestep
by reusing highly optimized standard convolutions.

In practice, most recent works focus on very coarse trans-
formations that do not change the filter support and can
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be implemented strictly via permutations, like horizon-
tal/vertical flips and 90◦ rotations (Dieleman et al., 2015;
Cohen & Welling, 2014). Such difficulties may explain
why group convolutions are not as widespread as CNNs.

5. Examples of spatial transformations
We now give some concrete examples of two-parameter
spatial transformations that obey the conditions of sec-
tion 2.4, and can be useful in practice.

5.1. Scale and aspect ratio

Visual object detection tasks require predicting the extent
of an object as a bounding box. While the location can
be found accurately by a standard CNN, which is equivari-
ant to translation, the size prediction could similarly benefit
from equivariance to horizontal and vertical scale (equiva-
lently, scale and aspect ratio).

Such a spatial transformation, from which a warp can be
constructed, is given by:

gu(x) =

[
x1s

u1

x2s
u2

]
(12)

The s constant controls the total degree of scaling applied.
Notice that the output must be exponential in the scale pa-
rameters u; this ensures the additive structure of the expo-
nential map (exp(v + u) = exp(v) exp(u)). The resulting
warp grid can be visualized in fig. 1-b. In this case, the do-
main of the image must be Ω ∈ R2

+, since a pivot x0 in one
quadrant cannot reach another quadrant by any amount of
(positive) scaling.

5.2. Scale and rotation (log-polar warp)

Planar scale and rotation are perhaps the most obvious
spatial transformations in images, and are a natural test
case for works on spatial transformations (Kanazawa et al.,
2014; Marcos et al., 2016). Rotating a point x by u1 radians
and scaling it by u2, around the origin, can be performed
with

gu(x) =

[
su2 ‖x‖ cos(atan2(x2, x1) + u1)
su2 ‖x‖ sin(atan2(x2, x1) + u1)

]
, (13)

where atan2 is the standard 4-quadrant inverse tangent
function (atan2). The domain in this case must exclude
the origin (Ω ∈ R2 \ {0}), since a pivot x0 = 0 cannot
reach any other points in the image by rotation or scaling.

The resulting warp grid can be visualized in fig. 1-c. It
is interesting to observe that it corresponds exactly to the
log-polar domain, which is used in the signal processing

I Warp CNN Soft argmax Scale+bias û
Iw

Figure 2. Equivariant pose estimation strategy used in the experi-
ments (section 6). With an appropriate warp and a standard CNN,
the shaded block becomes equivalent to a group-equivariant CNN,
which performs exhaustive searches across pose-space instead of
image-space.

literature to perform correlation across scale and rotation
(Tzimiropoulos et al., 2010; Reddy & Chatterji, 1996). In
fact, it was the source of inspiration for this work, which
can be seen as a generalization of the log-polar domain to
other spatial transformations.

5.3. 3D sphere rotation under perspective

We will now tackle a more difficult spatial transformation,
in an attempt to demonstrate the generality of our result.
The transformations we will consider are yaw and pitch ro-
tations in 3D space, as seen by a perspective camera. In
the experiments (section 6) we will show how to apply it to
face pose estimation.

In order to maintain additivity, the rotated 3D points must
remain on the surface of a sphere. We consider a simplified
camera and world model, whose only hyperparameters are
a focal length f , the radius of a sphere r, and its distance
from the camera center d. The equations for the spatial
transformation corresponding to yaw and pitch rotation un-
der this model are in appendix A.

The corresponding warp grid can be seen in fig. 1-d. It can
be observed that the grid corresponds to what we would ex-
pect of a 3D rendering of a sphere with a discrete mesh. An
intuitive picture of the effect of the warp grid in such cases
is that it wraps the 2D image around the surface of the 3D
object, so that translation in the warped space corresponds
to moving between vertexes of the 3D geometry.

6. Experiments
6.1. Architecture

As mentioned in section 2.2, group convolution can per-
form an exhaustive search for patterns across spatial trans-
formations, by varying pose parameters. For tasks where
invariance to that transformation is important, it is usual to
pool the detection responses across all poses (Marcos et al.,
2016; Kanazawa et al., 2014).

In the experiments, however, we will test the framework in
pose prediction tasks. As such, we do not want to pool the
detection responses (e.g. with a max operation) but rather
find the pose with the strongest response (i.e., an argmax
operation). To perform this operation in a differentiable
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manner, we implement a soft argmax operation, defined as
follows:

s1(a) =

mn∑
ij

i

m
σij(a), s2(a) =

mn∑
ij

j

n
σij(a), (14)

where σ(a) ∈ Rm×n is the softmax over all spatial loca-
tions, and σij(a) indexes the element at (i, j). The out-
puts are the two spatial coordinates of the maximum value,
s(a) ∈ R2.

Our base architecture then consists of the following blocks,
outlined in fig. 2. First, the input image is warped with a
pre-generated grid, according to section 4.1. The warped
image is then processed by a standard CNN, which is now
equivariant to the spatial transformation that was used to
generate the warp grid. A soft argmax (eq. (14)) then finds
the maximum over pose-space. To ensure the pose predic-
tion is well registered to the reference coordinate system, a
learnable scale and bias are applied to the outputs; multi-
ple predictions can be linearly combined into a single one
at this stage. Training proceeds by minimizing the L1 loss
between the predicted pose and ground truth pose.

6.2. Google Earth

For the first task in our experiments, we will consider aerial
photos of vehicles, which have been used in several works
that deal with rotation invariance (Liu et al., 2014; Schmidt
& Roth, 2012; Henriques et al., 2014).

Dataset. The Google Earth dataset (Heitz & Koller, 2008)
contains bounding box annotations, supplemented with an-
gle annotations from (Henriques et al., 2014), for 697 vehi-
cles in 15 large images. We use the first 10 for training and
the rest for validation. Going beyond these previous works,
we focus on the estimation of both rotation and scale pa-
rameters. The object scale is taken to be the diagonal length
of the bounding box. Due to its small size, we augment the
dataset during training, by randomly rotating the images
uniformly over 360◦ and scaling them by up to 20%.

Implementation. A 48 × 48 image is cropped around
each vehicle, and then fed to a network for pose predic-
tion. The proposed method, Warped CNN, follows the ar-
chitecture of section 6.1 (visualized in fig. 2). The CNN
block contains 3 convolutional layers with 3 × 3 filters,
with 50, 20 and 50 output channels respectively. We use
dilation factors of 2, 4 and 8 respectively (à trous convo-
lution (Chen et al., 2015)), which increases the receptive
field and resolution without adding paramenters. There is
a batch normalization and ReLU layer after each convo-
lution, and a 3 × 3 max-pooling operator (stride 2) after
the second one. The CNN block outputs response maps

Table 1. Results of scale and rotation pose estimation of vehicles
in the Google Earth dataset (errors in pixels and degrees, resp.).

ROT. ERR. SCALE ERR.

CNN+FC 22.54 5.04
CNN+SOFTARGMAX 9.36 4.87
WARPED CNN 8.29 4.79
(DIELEMAN ET AL., 2015) 31.11 4.29

over 2D pose-space, which in this case consists of rotation
and scale. All networks are trained for 40 epochs using
the ADAM solver (Kingma & Ba, 2015) and implemented
in MatConvNet (Vedaldi & Lenc, 2015). Angular error is
taken modulo 180◦ due to annotation ambiguity. We report
the average validation error over 3 runs.

Baselines and results. The results of the experiments are
presented in table 1, which shows angular and scale er-
ror in the validation set. To verify whether the proposed
warped convolution is indeed responsible for a boost in per-
formance, rather than other architectural details, we com-
pare it against a number of baselines with different compo-
nents removed. The first baseline, CNN+softargmax, con-
sists of the same architecture but without the warp (sec-
tion 5.2). This is a standard CNN, with the soft argmax at
the end. Since CNNs are equivariant to translation, rather
than scale and rotation, we observe a drop in performance.
For the second baseline, CNN+FC, we replace the soft
argmax with a fully-connected (FC) layer, to allow a pre-
diction that is not equivariant with translation. Due to the
larger number of parameters, there is overfitting and a large
drop in performance. We also compare against the method
of (Dieleman et al., 2015), which applies the same CNN to
90◦ rotations and flips of the image, combining the result
with a FC layer. Just like with CNN+FC, there is overfit-
ting on this small dataset, which requires very fine angu-
lar predictions. The proposed Warped CNN achieves the
best results, except for scale prediction where (Dieleman
et al., 2015) performs better. Our method has the same run-
time performance as the CNN baselines, since the cost of a
single warp is negligible, however (Dieleman et al., 2015)
is 16× slower, since it applies the same CNN to multiple
transformed images.

6.3. Faces

We now turn to face pose estimation in unconstrained pho-
tos, which requires handling more complex 3D rotations
under perspective.

Dataset. For this task we use the Annotated Facial Land-
marks in the Wild (AFLW) dataset (Koestinger et al.,
2011). It contains about 25K faces found in Flickr pho-
tos, and includes yaw (left-right) and pitch (up-down) an-
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Table 2. Results of yaw and pitch pose estimation of faces on the
AFLW dataset (error in degrees).

YAW ERR. PITCH ERR.

CNN+FC 12.56 6.59
STN (JADERBERG ET AL., 2015) 13.65 7.22
WARPED CNN 7.07 5.28

notations. We removed 933 faces with yaw larger than 90
degrees (i.e., facing away from the camera), resulting in a
set of 24,384 samples. 20% of the faces were set aside for
validation.

Implementation. The region in each face’s bounding box
is resized to a 64 × 64 image, which is then processed by
the network. Recall that our simplified 3D model of yaw
and pitch rotation (section 5.3) assumes a spherical geom-
etry. Although a person’s head roughly follows a spherical
shape, the sample images are centered around the face, not
the head. As such, we use an affine Spatial Transformer
Network (STN) (Jaderberg et al., 2015) as a first step, to
center the image correctly. Similarly, because the optimal
camera parameters (f , r and d) are difficult to set by hand,
we let the network learn them, by computing their deriva-
tives numerically (which has a low overhead, since they are
scalars). The rest of the network follows the same diagram
as before (fig. 2). The main CNN has 4 convolutional lay-
ers, the first two with 5×5 filters, the others being 9×9. The
numbers of output channels are 20, 50, 20 and 50, respec-
tively. A 3× 3 max-pooling with a stride of 2 is performed
after the first layer, and there are ReLU non-linearities be-
tween the others. As for the STN, it has 3 convolutional
layers (5 × 5), with 20, 50 and 6 output channels respec-
tively, and 3×3 max-pooling (stride 2) between them. The
remaining experimental settings are as in section 6.2.

Baselines and results. The angular error of the proposed
equivariant pose estimation, Warped CNN, is shown in ta-
ble 2, along with a number of baselines. The goal of
these experiments is to demonstrate that it is possible to
achieve equivariance to complex 3D rotations. To compare
with non-equivariant models, we test two baselines with
the same CNN architecture, where the softargmax is re-
placed with a fully-connected (FC) layer. We include the
Spatial Transformer Network (Jaderberg et al., 2015) and
CNN+FC, which is a standard CNN of equivalent (slightly
larger) capacity. We observe that neither the FC or the STN
components account for the performance of the warped
convolution, which better exploits the natural 3D rotation
equivariance of the data.

7. Conclusions
In this work we show that it is possible to reuse highly opti-
mized convolutional blocks, which are equivariant to image
translation, and coax them to exhibit equivariance to other
operators, including 3D transformations. This is achieved
by a simple warp of the input image, implemented with off-
the-shelf components of deep networks, and can be used
for image recognition tasks involving a large range of im-
age transformations. Compared to other works, warped
convolutions are simpler, relying on highly optimized con-
volution routines, and can flexibly handle many types of
continuous transformations. Studying generalizations that
support more than two parameters seems like a fruitful di-
rection for future work. In addition to the practical aspects,
our analysis offers some insights into the fundamental rela-
tionships between arbitrary image transformations and con-
volutional architectures.

A. Spatial transformation for 3D sphere
rotation under perspective

Our simplified model consists of a perspective camera with
focal length f and all other camera parameters equal to
identity, at a distance d from a centered sphere of radius
r (see fig. 1-d).

A 2D point x in image-space corresponds to the 3D point

p = (x1, x2, f). (15)

Raycasting it along the z axis, it will intersect the sphere
surface at the 3D point

q =
p

‖p‖

(
k −

√
k2 − d2 + r2

)
, k =

fd

‖p‖
. (16)

If the argument of the square-root is negative, the ray does
not intersect the sphere and so the point transformation is
undefined. This means that the domain of the image Ω
should be restricted to the sphere region. In practice, in
such cases we simply leave the point unmodified. Then,
the yaw and pitch coordinates of the point q on the surface
of the sphere are

φ1 = cos−1
(
−q2

r

)
, φ2 = atan2

(
− q1

d− q3

)
. (17)

These polar coordinates are now rotated by the spatial
transformation parameters, φ′ = φ + u. Converting them
back to a 3D point q′

q′ = (r sinφ′1 sinφ′2,−r cosφ′1, r sinφ′1 cosφ′2−d) (18)

Finally, projection of q′ into image-space yields

gu(x) = − f
q′3

(q′1, q
′
2) . (19)
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