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Abstract. We present a method for the accurate 3D reconstruction of
partly-symmetric objects. We build on the strengths of recent advances
in neural reconstruction and rendering such as Neural Radiance Fields
(NeRF). A major shortcoming of such approaches is that they fail to
reconstruct any part of the object which is not clearly visible in the
training image, which is often the case for in-the-wild images and videos.
When evidence is lacking, structural priors such as symmetry can be used
to complete the missing information. However, exploiting such priors in
neural rendering is highly non-trivial: while geometry and non-reflective
materials may be symmetric, shadows and reflections from the ambi-
ent scene are not symmetric in general. To address this, we apply a soft
symmetry constraint to the 3D geometry and material properties, having
factored appearance into lighting, albedo colour and reflectivity. We eval-
uate our method on the recently introduced CO3D dataset, focusing on
the car category due to the challenge of reconstructing highly-reflective
materials. We show that it can reconstruct unobserved regions with high
fidelity and render high-quality novel view images.
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1 Introduction

Photogrammetry has made substantial progress with recent advances in neural
rendering [29]. Given a collection of posed images of an object, we can now
use techniques such as COLMAP [25] and NeRF [18] to learn photo-realistic
models of the object from which novel views can be generated. Extensions such
as NeuS [32] and VolSDF [38] can also accurately recover the 3D shape of the
object. Many of these advances arise from using neural networks to represent
the complex functions that describe the geometry and reflectance of the object.

Despite such successes, significant practical limitations remain. While net-
works often have excellent generalisation capabilities, in methods such as NeRF
and NeuS they are overfitted to individual scenes, such as a single 3D object.
As a result, such networks generalise poorly and are unable to predict the parts
of the object that are not visible in the training images; instead, they require a
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Seen (NeuS [32]) Seen (Ours) Unseen (NeuS) Unseen (Ours)

Fig. 1. From a sequence of frames that view a car in passing, our Symmetric Neural
Surfaces (SNeS) model simultaneously learns the parameters of a symmetry transfor-
mation from the data and applies the symmetry as a soft constraint to reconstruct the
model, despite the significantly different view densities between the seen and unseen
sides. The learned symmetry allows SNeS to share information across the model, re-
sulting in more accurate reconstructions and higher-fidelity novel synthesised views.

large number of views capturing uniformly on all sides of the object. This pre-
vents applications in many realistic scenarios where only a limited and biased
set of views is available, such as egocentric video or self-driving vehicles.

Bilateral symmetry is a strong geometric prior that applies approximately
to many man-made and natural objects, and can be used to extrapolate be-
yond the field of view. Unfortunately, symmetry is not directly applicable to
current neural renderers, because they entangle potentially symmetric parts of
the model (geometry, material) with ambient illumination and view-dependent
effects (shadows, specularity, and reflections), which are not symmetric. Our
proposed approach, named Symmetric Neural Surfaces (SNeS), decomposes a
neural renderer’s colour model into several components: material albedo (ab-
sorption), reflectivity, diffuse lighting, and reflected lighting. These components
are combined linearly, inspired by Phong shading [23], and are modelled by
neural networks with different input constraints to ensure that they factorise
correctly. For example, albedo only depends on the position and not on the
viewpoint. During training, we encourage symmetry for only a subset of these
components, albedo and reflectivity, which are material-dependent. We also ap-
ply symmetry to the geometry model, which is a neural surface model based
on a signed distance function (SDF) [39]. Given the emphasis on bilateral sym-
metry and highly-reflective materials, our experiments are focused on vehicle
reconstruction, which presents these unique challenges. Our contributions are:

– an algorithm for reconstructing objects with arbitrary learned symmetries
of a pre-defined type from incomplete observations;

– a technique for disentangling symmetric and asymmetric appearance; and



SNeS: Learning Probably Symmetric Neural Surfaces 3

– a prior for handling violations of geometry and material symmetry.
We demonstrate high fidelity of reconstruction, both in visual appearance and
in the accuracy of surface geometry, for parts of the objects that are unseen dur-
ing training. Our method achieves state-of-the-art results on the CO3D dataset
[24], improving the geometry estimates considerably compared to the baselines,
especially on sequences where the view density between sides is unbalanced.

2 Related Work

The field of neural volume rendering has expanded rapidly in the last two years,
with increasing photo-realism and reconstruction quality. We focus on the closest
works, and refer readers to recent review papers for a complete account [28,29].

Neural volume rendering and reconstruction. Neural Radiance Fields
(NeRF) [18] and related approaches [15,41,3,16,40,33] generate images via a
physically-based rendering process, where a ray is traced into the volume and
neural network estimates of colour and density at sample points are integrated
to render the pixel colour. With careful network design or regularisation, such
a model will be able to accurately reconstruct the scene’s geometry as well as
modelling view-dependent effects. NeRF also introduced positional encoding,
allowing MLPs to represent high frequency signals without increasing network
capacity. Our rendering pipeline is similar, but extended to model symmetries.

Many works investigate more sophisticated lighting models that reason about
the transport and scattering of light through the volume, allowing relighting and
material editing [4,27,5,6,43,31]. For example, NeRFactor [43] converts a pre-
trained NeRF model into a surface model, and optimises MLPs to represent light
source visibility, surface normals, albedo, and the BRDF at any point on the sur-
face, in addition to environment lighting, factoring appearance into material and
lighting. Ref-NeRF [31], in contrast, trains a NeRF-like model from scratch, but
replaces its parametrisation of outgoing radiance with one of reflected radiance
to better model light transport, and estimates surface roughness to interpolate
between blurry and sharp reflections. Our model also decomposes appearance
into material properties and lighting, using a Phong colour model [23] and a loss
that encourages the diffusely-lit albedo of a surface point to match the ground
truth on average, integrating over viewing directions. Unlike existing work, this is
motivated by symmetry learning, rather than editing applications, since lighting
is typically asymmetric and impedes symmetry learning if ignored.

Many volume rendering approaches [18,41,3] attempt to concentrate their
samples near surfaces, e.g., by using stratified sampling. Hybrid surface–volume
representations [39,20,2,32,38] take this further by modelling surfaces directly,
albeit implicitly, using occupancy [17] or signed distance function (SDF) [21] net-
works, combined with volume rendering for modelling view-dependent appear-
ance. This was motivated by the observation that NeRF, while able to handle
sudden depth changes, is unable to learn high-fidelity surfaces from its implicit
representation. IDR [39] represents the geometry as an SDF and uses a NeRF-like
view-dependent head to estimate colour, which also receives the surface normal
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to better disentangle geometry and appearance. However, the appearance net-
work only receives one point per ray, at the first surface, which can cause the
model to get stuck in local optima. UNISURF [20] relaxes this by using hierar-
chical sampling with root-finding in an occupancy field, allowing it to spread the
gradient over multiple points, which nonetheless concentrate at the surface as
training progresses. A similar approach is taken by NeuS [32] and VolSDF [38],
which represent surfaces as the zero-level set of an SDF and explore approaches
for mapping signed distances to opacities. Our work is a hybrid surface–volume
approach of this type, since our aim is to reconstruct high-quality symmetric
surfaces. However, unlike previous work, we exploit additional structure in the
data by learning symmetries and use them to share information between views.

Symmetry in 3D reconstruction. Symmetry cues have been used exten-
sively in reconstruction, with shape-from-symmetry enabling single-view recon-
struction by using the reflected image as another view [11,19,8,13,10,30,26,22,7].
Symmetry detection has also been investigated [9,26]. Of particular relevance is
the approach of Wu et al. [36,35,37], who use reflective and rotational symme-
tries to recover shape, material properties and lighting from single images. They
enforce mirror symmetry by flipping internal representations of depth and albedo
in image space, and estimate a confidence mask to allow asymmetries. Our work
is inspired by this use of symmetry for reconstruction, and by the observation
that asymmetric lighting must be removed to reason about appearance sym-
metries. However, we target the task of multi-view reconstruction, apply a soft
symmetry constraint in 3D directly rather than in 2D, and learn the symmetry
parameters to obviate the need for fronto-parallel images.

3 Disentangled Neural Rendering

In this section, we outline our disentangled neural rendering model that takes a
collection of posed images and produces a signed distance function (SDF) of the
geometry and an appearance model that can be queried from novel viewpoints.
In the subsequent section, we show how this baseline model can be used to learn
symmetric neural surfaces. A flowchart of our full model is shown in Fig. 2.

3.1 Disentangling Geometry and Appearance

Since the release of the NeRF model [18], there has been considerable research
into improving the noisy surface reconstructions it obtains [39,32,20]. These
have focused on replacing NeRF’s density estimation network with a regularised
SDF [39,32] or occupancy [20] network. We use NeuS [32] as our baseline, since
it effectively disentangles geometry and appearance, and is able to model fine
structures. For completeness, we recap the NeuS model now.

Given a set of images {Iℓ} with associated camera poses and intrinsic ma-
trices, the task is to reconstruct the geometry and view-dependent appearance
of the object or scene. The geometry is represented implicitly as a signed dis-
tance function with zero-level set {xi ∈ R3 | ϕSDF(xi) = 0} that coincides with
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Fig. 2. The Symmetric Neural Surfaces (SNeS) model. For an input 3D point xi and
direction vector d, the model estimates the geometry with an SDF network that gen-
erates a signed distance δi, a normal vector ni, and a feature vector fi. The first two
are used to compute the opacity αi according to Eq. (3), which assigns high opacity to
points near surfaces. The feature vector is passed to the appearance networks to com-
pute the material properties of albedo colour cai and reflectivity γr

i , and the lighting
properties of diffuse shading γd

i and specular colour csi. Lastly, the Phong model is used
to compute the colour of the 3D point, and each sample along the ray is combined to
render the pixel with colour ĉ. The subscript s indicates whether the geometry, material
and lighting components were computed with inputs that had undergone a symmetry
transformation (1) or not (0), denoted by the triangular symbol. In each case, the
lighting networks take different parameters θ, since lighting is typically asymmetric.

opaque surfaces in the scene. The map ϕSDF : R3 → R, which converts a 3D
point xi ∈ R3 to a signed distance δi, is estimated with a fully-connected neural
network. The view-dependent appearance is also estimated by fully-connected
neural network layers, parametrising the function ϕcolour : R3 × S3 → R3, which
maps a 3D point and view direction d to a colour ci ∈ [0, 1]3. Unlike NeuS, in
this work the colour is estimated by a composition of functions to disentangle
material and lighting properties, as shall be detailed in Sec. 3.2.

To learn these functions from images, physically-based rendering accumulates
colours along a pixel ray. The ray is parametrised as {x(t) = o+ td | t > 0} for a
ray with camera centre o and view direction d. Rendering is performed by

ĉ(o,d) =

∫ ∞

0

w(t) c(x(t),d) dt, (1)

where w is a weight function that satisfies w(t) ⩾ 0 and
∫∞
0

w(t)dt = 1, and
should be high near opaque surfaces. In particular, w should attain a local max-
imum at the zero-level set of the SDF, and should decay with distance from the
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camera. NeuS derives an appropriate weight function with these properties,

w(t) = exp

(
−
∫ t

0

ρ(u) du

)
ρ(t), with ρ(t) = max

{
0,

−dστ

dt (δ(t))

στ (δ(t))

}
, (2)

where ρ(t) is the opaque density function and στ (x) = (1 + exp(−τx))−1 is the
sigmoid function parametrised by a learned scalar τ > 0. As can be seen, NeuS
does not predict the volume density directly like NeRF, but rather computes
the density using the predicted signed distances in closed form. The learned
scalar τ is proportional to the inverse standard deviation of the weight function
(approximately a logistic density distribution), and controls the spread of the
density about the zero-level crossing. It adapts to the data during training,
resulting in a more concentrated distribution over time. This has two effects:
colours of points near surfaces are assigned an increasingly high weight, and
points are sampled increasingly close to surfaces, via an importance-sampling
strategy. We refer the reader to Wang et al. [32] for a detailed derivation.

A discrete approximation of the weight function follows from the quadra-
ture technique used in NeRF [18]. For n sampled points {xi = o + tid | i =
1, . . . , n; ti < ti+1} along the ray, their weights are given by

wi = αi

i−1∏
j=1

(1− αj), with αi = max

{
0,

στ (δ(ti))− στ (δ(ti+1))

στ (δ(ti))

}
, (3)

where the product term is the accumulated transmittance, and αi is the discrete
opacity. Note that to obtain the signed distance δ(ti), the model uses the gradient
(normal) vector to adjust the value of the nearest sampled signed distance. The
final colour is then rendered as ĉ =

∑n
i=1 wici.

3.2 Disentangling Material and Lighting Properties

It is well-known that the NeRF colour formation model under-constrains the
geometry, exhibiting a shape–radiance ambiguity where the training images can
be perfectly explained by arbitrary geometry [41]. To impose a more realistic
inductive bias on colour formation, without losing the flexibility and representa-
tion power of the unconstrained model, we disentangle the material and lighting
properties using a Phong model [23]. As we shall show, this is also a necessary
requirement for learning symmetric geometries from the data.

We separate the apparent colour into material and lighting properties. Specif-
ically, albedo colour and reflectivity (or inverse roughness) represent material,
and diffuse shading (assuming a white diffuse illuminant) and specular colour
represent lighting. Here, we define the albedo as the average colour of a 3D point
across viewpoints, under the scene lighting. Our colour formation model is

ci = fPhong

(
γd
i , c

a
i , γ

r
i , c

s
i

)
= γd

i (xi,ni) c
a
i (xi) + γr

i (xi) c
s
i(xi,ni,di), (4)

where ci ∈ [0, 1]3 is the estimated colour of the 3D point xi, γ
d
i ∈ [0, 2] is the

diffuse lighting coefficient, cai ∈ [0, 1]3 is the lighting-invariant albedo colour of
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the material, γr
i ∈ [0, 1] is the material reflectivity, and csi ∈ [0, 1]3 is the spec-

ular colour of the reflected light. We see that the material properties depend
on the geometry only, while the lighting depends additionally on the normal
vector (diffuse lighting with self-shadows) and the viewing direction (specular
colour). A more constrained parametrisation would learn the specular colour
from the viewing ray reflected about the surface normal [31]. However, we found
that this significantly over-smoothed the SDF model. While this colour model
has the capacity to disentangle material and lighting properties, it needs to be
regularised in order to do so. However, some objects, such as cars, are highly spec-
ular, making it undesirable to regularise the reflectivity. We instead encourage
the diffusely-lit colour γd

i c
a
i , rendered along the ray, to match the ground-truth

colour, as we shall detail in the next section. This acts to average the colour
of a surface location across all viewing directions. In practice, the appearance
networks also depend on a feature vector from the SDF network, encoding the
geometric context of the 3D point [39].

4 Symmetric Neural Surfaces

The model described thus far is unable to take advantage of known or suspected
symmetries. We define a symmetry as an arbitrary coordinate transformation,
especially an affine transformation such as a reflection, rotation, translation, or
scaling, that confers an invariance. To share information across symmetries, we
explicitly model and optimise the transformation parameters and use the map
induced by the symmetry to aggregate information in 3D. However, not all in-
formation is symmetric. Cars, for example, tend to have a bilateral symmetry
in their geometry and material properties, but the lighting of the scene is rarely
symmetric. There are also exceptions that break the geometric and material
symmetry, such as asymmetrically-positioned spare tyres (geometric) and stick-
ers (material colour), as shown in Fig. 3 (c). Due to these real-world partial
symmetries, it is best implemented as a soft constraint mediated by loss func-
tions, rather than a hard constraint. Our framework has the flexibility to handle
multiple arbitrary and localised symmetries. Spatially-restricted symmetries can
be useful for modelling parts of an object or scene that are locally-symmetric,
like the wheels of a car. In this work we focus on the common case of reflection
(bilateral) symmetry, and localise the predicted symmetry to the unit sphere,
to avoid symmetrising the background. A diagram of our approach is shown in
Fig. 3. In the following, we denote the original ray, and everything computed with
respect to it, as “source”, and the symmetry-transformed ray as “transformed”.

4.1 Parametrising Symmetry

We parametrise a symmetry as a coordinate transformation with form T−1
c STc,

where Tc =
(
Rc tc
0 1

)
is the learned rigid transformation matrix from world co-

ordinates to the canonical coordinates of the symmetry, defining its plane or
axis, and S is the symmetry transformation in canonical coordinates. In this
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Foreground

Background

(a) Symmetry transformation

(b) 3D reconstruction with asymmetry

(c) Novel view with asymmetry

Fig. 3. (a) Applying a symmetry transformation for physically-based rendering. The
SNeS algorithm scales the object of interest to fit inside the unit sphere, where it is mod-
elled by an SDF network with appearance heads, while the region outside the sphere
is represented by a NeRF++ background model [41]. Here, yellow dots denote points
sampled coarsely along the ray, small blue dots denote points importance-sampled near
dominant surfaces, green dots denote points inversely-sampled in the background, and
the horizontal dashed line denotes the plane of (reflection) symmetry. The symmetry
induces a transformation on the point samples inside the sphere, and the transformed
points are used to compute the geometry and material properties. These components
are combined with the diffuse and specular lighting estimates from the source ray to
form a colour estimate. If the symmetry holds, and is accurately estimated, the re-
sulting colour should match the source colour. (b) SNeS reconstruction showing that
geometry asymmetries (spare tyre, slightly-open door) are conserved. (c) SNeS novel
view showing that appearance asymmetries (windshield sticker, lighting) are conserved.

work, we consider a single bilateral reflection symmetry about the XZ plane in
canonical coordinates, and so the symmetry transformation matrix is given by
S = I − 2e2e

T
2 , where ei is the ith 4D unit basis vector. We apply the transfor-

mation to the source points xh
0 in homogeneous coordinates. The direction vec-

tors dh
0 also undergo a symmetry transformation, although they are translation-

invariant. This is implemented by the homogeneous coordinates, since directions
are points at infinity with final coordinate equal to 0. Thus we obtain

xh
i1 = T−1

c STcx
h
i0 (5)

dh
i1 = T−1

c STcd
h
i0. (6)

4.2 Learning Symmetric Geometry and Material

To encourage symmetric points to have the same geometry and material proper-
ties, we compute these quantities at both the source and transformed points, and
compose them with predictions from the corresponding lighting model. Thus, for
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each point, we obtain the source colour ci00 = γd
i0c

a
i0+γr

i0c
s
i0 and the symmetry-

transformed colour ci11 = γd
i1c

a
i1 + γr

i1c
s
i1. The lighting models for the source

and symmetry-transformed paths do not share weights, since lighting is rarely
symmetric. The resulting point colours are rendered along the ray, and com-
pared to the ground-truth source pixel colour. If symmetry is valid at that pixel,
and is accurately estimated, the error should be low. However, most objects and
scenes are not perfectly symmetric, and so symmetry should not be enforced
when better visual evidence is available. Therefore, we penalise the error of the
symmetry-transformed colour at a discount compared to the source colour.

We also mix the source and the transformed components, generating hy-
brid colours. This acts to supervise the transformed lighting network to emulate
the source lighting network, up to the symmetry transformation. Without these
terms, the lighting networks may diverge, allowing the network to explain away
deviations from symmetry as fake perturbations in lighting. Specifically, we form
the hybrid point-wise colours ci01 = γd

i1c
a
i0 + γr

i0c
s
i1 and ci10 = γd

i0c
a
i1 + γr

i1c
s
i0,

render these along the ray, and compute the colour error as before.
It is important to disentangle the material and lighting, since the former is

usually asymmetric. This means that simply applying symmetry to the NeRF
colour model would not work, since the colour is entangled with a systematic
nuisance variable. Another strategy to help estimate the symmetry parameters
is to learn the ground plane simultaneously and enforce orthogonality between
the ground plane and the symmetry plane. To do so, we model the foreground as
a joint SDF, which consists of the minimum of the object’s SDF and a ground
plane SDF (an infinite plane). This allows the SDF network to spend more
capacity on the object, and enables ground removal without post-processing.

4.3 Loss functions

To fit our model, we minimise the error between the rendered and ground-truth
pixels while regularising the SDF. No 3D supervision is used, beyond the known
camera poses. We optimise the network parameters, symmetry transformation
parameters, and the scalar τ that controls the variance of the density near sur-
faces. The per-pixel colour loss is given by

Lcolour
jk = 1

3∥ĉjk − c∥1, (7)

where c is the ground-truth colour and ĉjk is the predicted colour. The indices jk
indicate whether the colour prediction uses the source or symmetry-transformed
geometry and material properties (j), and lighting (k). This is the mechanism by
which symmetry is encouraged in regions with visual evidence to the contrary.

We also use two additional losses with the same form as Eq. (7). The first
is a diffuse colour loss Ldiffuse

jk where the predicted colour is rendered without
the specular components, that is, the pixel colour is rendered from point colours
cdiffusei = γd

i c
a
i . This encourages the network to disentangle the diffuse and spec-

ular components, setting the diffuse colour of a given surface location to the
average colour across all viewing directions. This is important for symmetry,
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since the specular colour is usually not symmetric, so assisting the network to
disentangle it can speed up convergence. The second is a symmetric lighting loss
Llighting
jk that applies a weak prior to the model to prefer symmetric lighting in

the absence of contrary evidence. It applies the same colour loss as Eq. (7), but
with the source lighting networks receiving symmetry-transformed inputs. This
acts to apply symmetric lighting, which is generally incorrect, except at midday.
Nonetheless, in the absence of image evidence, this prior provides a more nat-
uralistic appearance. However, this loss should not be applied for quantitative
analysis of unseen sides, because applying the symmetric lighting model is likely
to be more detrimental than applying a baseline lighting model. For example, it
may apply direct sunlight and specular reflections on the shadowed side of the
object, which may look qualitatively convincing, but will be quantitatively poor.

Finally, we regularise the SDF network by applying an Eikonal loss [12] at
the n sampled points along the ray, which encourages a unit gradient SDF:

Leikonal
j =

1

n

n∑
i

(∥∇ϕSDF(xij)∥2 − 1)2. (8)

The total per-pixel loss is given by

L =
∑
j,k

(1 + (λ λ− 1)j)
(
Lcolour
jk + λdLdiffuse

jk + λlLlighting
jk + λeLeikonal

j

)
, (9)

where λ λ∈ [0, 1] is the symmetricity factor that determines a prior on how
symmetric an object or scene is expected to be, and the other λ factors denote
the weights assigned to the remaining losses.

5 Results

5.1 Experimental Setup

Dataset. We evaluate our method on the cars subset of the recent Common
Objects in 3D (CO3D) dataset [24], released under the BSD License. CO3D is a
large-scale multi-view image dataset with ground-truth camera pose, intrinsics,
depth map, object mask, and 3D point cloud annotations, collected in-the-wild
by outdoor video capture. This real-world dataset is particularly challenging for
reconstruction algorithms, having highly reflective (non-Lambertian) and low-
textured surfaces, such as mirrors, dark windows, and metallic paint. Moreover,
only 64% of the test sequences circumnavigate the object, with many seeing
only one side of the car. This incomplete data motivates the use of symmetry
for completing the reconstruction of partially-symmetric objects. Additional nui-
sance factors include significant motion blur from the handheld cameras, auto-
exposure, and adverse weather, including fog and rain. One of the consequences
of this challenging data is that the ground-truth point clouds and depth maps
are sparse, very noisy, and contain many outliers, and 8% of test object masks
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entirely miss the object. This makes evaluating the reconstructed geometry, es-
pecially fine details, quite difficult. For the task of single-scene 3D reconstruction
and novel view synthesis, the ‘car’ category has 22 test scenes with 102 frames
each. We present results on other partly-symmetric categories in the appendix.

Metrics. We report five metrics to measure visual and geometric quality: the
peak signal-to-noise ratio (PSNR), the mean squared colour error (MSE), and
the perceptual LPIPS distance [42] between the masked predicted and ground-
truth novel-view images; the mean absolute error (MAE) between the masked
predicted and ground-truth depth maps; and the intersection-over-union (IoU)
between the predicted and ground-truth object masks.

Baselines. We compare with two state-of-the-art baselines for novel-view syn-
thesis and 3D reconstruction in unbounded, real-world scenes: NeRF++ [41]
and NeuS [32]. We do not compare with the state-of-the-art classical multi-view
stereo algorithm COLMAP [25], because the dataset’s ground-truth point clouds
and depth maps were obtained using this algorithm and are extremely noisy and
sparse for this reflective and low-texture category. We focus on two strong and
well-regarded baselines to avoid the evaluation becoming prohibitively expensive
(each baseline trains for at least 24h on a single GPU).

Implementation details. Following prior art [39,32], we implement the SDF
network ϕSDF as an 8-layer MLP with hidden dimension 256, position-encoded
inputs (6 frequencies) [18], and geometric initialisation for the network weights [1].
The material, diffuse, and specular networks are also implemented as MLPs with
4/2/4 hidden layers, with a 4-frequency positional encoding on the normal and
view directions. NeRF++ [41] is used as the background model. We follow the
hierarchical sampling strategy of NeuS [32] with 64 coarse, 64 fine, and 32 back-
ground samples per ray, with 1024 rays sampled per batch. We optimise the
network with Adam [14] and an initial learning rate of 5e-4 and train for 300K
iterations on a single GPU. Unless otherwise stated, we use the hyperparame-
ters [λ λ, λd, λl, λe] = [0.1, 0.01, 0.001, 0.1]. Complete implementation details are
reported in the appendix, and code is available at github.com/eldar/snes.

5.2 Random Test Split

For this experiment, we use the train–test split provided by the dataset for single
scene experiments (“test known” and “test unseen”) [24], assigned at random
from the frames of the video. This evaluates the model’s ability to interpolate
between a dense set of views. This is the standard mode for evaluating novel view
synthesis algorithms. Note that only 64% (14) of the video sequences entirely
encircle the object of interest, with the remainder having coverage of as little as
135◦. Our method is able to reconstruct the unseen sides, though we are unable
to evaluate this as the requisite ground-truth is not present in the dataset. The
results are shown in Tab. 1, and indicate that applying symmetry does not harm
the performance of the baseline model, and indeed improves the geometry. This
suggests that the model is able to learn the symmetry and integrate information
from both sides of the object to improve the geometry estimate.

github.com/eldar/snes
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Table 1. Results on the random and structured test splits of the CO3D cars
dataset [24]. We report the peak signal-to-noise ratio (PSNR), mean squared error
(MSE), and LPIPS distance between the estimated and ground-truth masked images,
the mean absolute error (MAE) between the estimated and ground-truth masked depth
maps, and the intersection-over-union (IoU) of the estimated and ground-truth masks.

Random Split (overlapping views) Structured Split (biased views)
PSNR MSE LPIPS MAE IoU PSNR MSE LPIPS MAE IoU
RGB RGB RGB Depth Mask RGB RGB RGB Depth Mask

Method ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↑

NeRF++[41] 21.4 0.007 0.407 0.222 – 13.9 0.041 0.581 0.177 –
NeuS [32] 23.3 0.005 0.355 0.108 0.523 13.4 0.046 0.556 0.105 0.566
SNeS (ours) 23.3 0.005 0.348 0.086 0.787 14.1 0.039 0.503 0.077 0.906

NeuS SNeS NeuS SNeS

Fig. 4. Qualitative results on the structured test split of the CO3D cars dataset [24].
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Fig. 5. Novel view renderings of the partly-observed (left) and fully-observed (right)
sides. Top row: NeuS. Middle row: SNeS. Bottom row: SNeS albedo maps.

5.3 Structured Test Split

We propose a new train–test split that simulates the common situation where
one side of an object is observed more thoroughly than the other. This tests the
model’s ability to handle variable view densities and incomplete information.
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Table 2. Ablation study on a random subset of our structured test split of the CO3D
cars dataset [24]. We report the peak signal-to-noise ratio (PSNR), mean squared error
(MSE), and LPIPS distance between the estimated and ground-truth masked images,
the mean absolute error (MAE) between the estimated and ground-truth masked depth
maps, and the intersection-over-union (IoU) of the estimated and ground-truth masks.

Method PSNR RGB ↑ MSE RGB ↓ LPIPS RGB ↓MAE Depth ↓ IoU Mask ↑

SNeS (ours) 14.3 0.0372 0.564 0.0706 0.894

+Llighting 13.7 0.0425 0.585 0.0685 0.914

−Ldiffuse 14.3 0.0372 0.566 0.0722 0.917

−Lcol 13.7 0.0422 0.576 0.0782 0.906

Ground-truth Ours +Llighting −Ldiffuse −Lcol

Fig. 6. Qualitative ablation study. Novel view renderings of the unseen side.

To do so, we select the 14 test scenes where the camera circumnavigates the
object, and define a test split that sets aside all camera poses within a 130◦

sector emanating from the object’s centre, approximately perpendicular to the
plane of bilateral symmetry. Thus, one side of the car is only seen obliquely.
From the set aside poses, we systematically sample 8 test frames. This setting
makes it possible for existing methods to reconstruct both sides of the object,
but tests how well they are able to reconstruct the side that is viewed less
fully. The results are shown in Tab. 1. Our method consistently outperforms the
NeuS baseline on the novel view synthesis metrics and significantly improves the
depth accuracy on the unseen side, validating the effectiveness of our approach.
Qualitative comparisons are shown in Figs. 4 and 5, demonstrating high-fidelity
reconstructions and synthesised views on the unseen side. We include additional
high-resolution qualitative results in the supplementary material, including a
comparison of the different appearance components (material and lighting).

5.4 Ablation Study

To investigate the effect of different components, we ablate our model’s per-
formance on 4 randomly selected scenes from our structured test split of the
CO3D cars dataset, as shown in Tab. 2 and Fig. 6. We ablate with respect to
the model without the lighting loss (ours), since this loss is designed to produce
qualitatively convincing renders in the absence of image evidence, but is unlikely
to be quantitatively accurate in those areas. We indeed see that the symmetric
lighting loss has a detrimental effect on the image-based results, predominantly
in situations where direct sunlight is applied to the shadowed side of the car and
vice versa. However, the resulting renders are qualitatively preferable, as shown
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at high resolution in the appendix. We verify that removing the diffuse colour
loss harms the geometry, since it helps decouple the symmetric and asymmetric
properties facilitating symmetry learning. Finally, we show that removing the
symmetry loss Lcol significantly reduces the visual and geometric quality.

6 Discussion and Limitations

One limitation of the approach is that it is only beneficial for objects or scenes
with significant symmetries. However, this is not as restrictive as it might seem.
While the natural world rarely has large-scale symmetries, they abound in the
human environment, in architecture and object design. For example, out of the
CO3D dataset, 90% of the categories have at least one major symmetry, such
as ball, baseball bat, bench, bicycle, book, bottle, and bowl. More significant
limitations of the approach, then, are that the type and number of symmetries
must be specified in advance, that the symmetry has to be significant enough to
be learnable from the data, and that the initialisation of the symmetry plane or
axis must be good enough to avoid the network getting trapped in a local opti-
mum. An alternative approach, such as multiple initialisations, may be necessary
to prevent the latter in some cases. Another limitation of the approach is that
it requires a significant number of views, even with the reductions facilitated
by the symmetry. This is because it can be difficult to optimise the symmetry
parameters, such as finding the reflection plane, without reasonable view cover-
age. This could be mitigated by learning about symmetries from a collection of
scenes, such that a single view may be enough to partially constrain the symme-
try plane parameters [44]. Our approach also relies on good camera estimates.
While this requirement can be relaxed [34], additional unknown variables are
likely to make the symmetry parameters more difficult to estimate. Finally, our
approach does not explicitly handle symmetries that are present at different
scales or resolutions. For example, a decorated cake or a pizza is symmetric at
one scale, but may violate that symmetry when considering the finer details.

7 Conclusion

We have presented a 3D reconstruction and novel-view synthesis method for
partly-symmetric objects, which learns symmetry parameters from a collection
of posed images and uses the learned symmetry to share information across the
model. This reduces the need for dense multi-view coverage of the object, making
it suitable for use on in-the-wild data like the CO3D dataset. We demonstrated
our algorithm on objects that exhibit bilateral symmetry at most locations—
cars—and show that it can reconstruct unobserved regions with high fidelity.
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