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Abstract. We present a technique to fuse inertial and visual informa-
tion for real-time navigation applications. The combined model exhibits
bounded bias, autocalibrates the camera-to-IMU transformation (elimi-
nating the need for precise measurement or construction), and updates
an estimate of the gravity vector. We analyze of the observability of
the combined system, and discuss the implementation of a filter to es-
timate ego-motion from inertial and vision measurements as part of an
integrated sensor system.

1 Introduction

Reliable estimation of the trajectory of a moving body (“ego-motion”) is key
to a number of applications, particularly to autonomous navigation of ground
and air vehicles. Current methods typically employ global positioning measure-
ments, sometimes integrated with inertial sensors. This depends on external
signals, which are unavailable, or of low quality, in some of the most interesting
scenarios (urban environments or indoors.) Integrating vision in the ego-motion
estimation process holds great potential in this area. Vision and inertial sensors
have naturally complementary characteristics, and it is no surprise that they are
present in most animals with high mobility. Despite these promising character-
istics, the potential of integrated vision and inertial navigation has not yet been
realized. In this manuscript we address some of the key issues that have hindered
progress, including managing the gravity vector and the calibration between the
camera and inertial sensors.

While a multitude of filtering techniques may be employed to estimate ego-
motion given all prior visual and inertial measurements, a necessary condition for
any of them to operate correctly is that the underlying model be observable. We
address this issue by showing that, in the presence of known gravity and known
camera-inertial calibration, ego-motion is observable, under certain conditions.

A significant practical difficulty in integrating vision and inertial measure-
ments is the need for accurate calibration of the mutual position and orientation
between the camera and the inertial measurement unit (IMU). In this paper we
show that such a calibration is actually unnecessary.

Any terrestrial system which incorporates accelerometer data is subject to the
effects of gravity. The unavoidable biases in estimating such a large acceleration
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as 9.8m/s2, if not properly handled, compound under double integration to cause
the rapid divergence of motion estimates. Many tricks of the trade have been
employed to minimize the problems associated with gravity, but we show that
when vision measurements are available the gravity vector becomes observable.
Therefore, we simply add it to the state of our model and estimate it on-line in
a straightforward and principled manner.

In addition to our analysis, we present a complete implementation of a non-
linear filter to estimate ego-motion from vision and inertial data. We have tested
our algorithm, both in simulation with ground truth and on real data. Our
experiments are performed on an embedded platform that includes range and
positioning devices for validation.

This manuscript follows a number of attempts in the computer vision com-
munity to build a robust “visual odometry” module, including [15,3,20,4]. More
specifically, some have proposed a variety of models incorporating inertial mea-
surements, either as inputs to the model [17], or as states [16,5].

2 Formalization

Our exposition employs some notation that is standard in the robotics literature;
readers interested in a thorough exposition should consult Chapter 2 of [14]
or [12] for more details. We represent the motion of the (camera/IMU) body
via g = (R, T ) ∈ SE(3), with R ∈ SO(3) a rotation (orthogonal, positive-
determinant) matrix, and T ∈ R3 a translation vector. V̂ b = g−1ġ ∈ se(3) is the
so-called “body velocity,” i.e., the velocity of the moving body relative to the
inertial frame, written in the coordinates of the moving body’s reference frame.
In homogeneous coordinates, we have

g =
[
R T
0 1

]
; V̂ b =

[
ω̂b vb

0 0

]
; V b =

[
ωb

vb

]
(1)

where ω̂ ∈ so(3) is the skew-symmetric matrix constructed from the coordinates
of ω ∈ R3, and v ∈ R3 is the translational velocity. For a motion with constant
rotational velocity ω, we have R(t) = exp(ω̂t) if R(0) = I. The null rigid motion
is e = (I, 0). When writing the change of coordinates from a frame, say “b” for
the moving body, to another frame, say “s” for the spatial (inertial) frame, we
use a subscript gsb, again following [14]. With this notation in place, we proceed
to formalize the problem of estimating body pose and velocity.

We represent with Xi
0 ∈ R3 the generic point in the inertial frame, and

yi(t) ∈ R2 its projection onto the (moving) image plane. Along with the pose
gsb of the body relative to the spatial frame and (generalized) body velocity V bsb,
these quantities evolve via{

Ẋi
0 = 0, i = 1, . . . , N

ġsb(t) = gsb(t)V̂ bsb(t), gsb(0) = e
(2)

which can be broken down into the rotational and translational components
Ṙsb(t) = Rsb(t)ω̂bsb(t) and Ṫsb(t) = Rsb(t)vbsb(t). The translational component of
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body velocity, vbsb, can be obtained from the last column of the matrix d
dt V̂

b
sb(t).

That is, v̇bsb = ṘTsbṪsb+RTsbT̈sb = −ω̂bsbvbsb+RTsbT̈sb
.= −ω̂bsbvbsb+αbsb, which serves

to define αbsb
.= RTsbT̈sb. An ideal inertial measurement unit would measure ωbsb(t)

and αbsb(t)−RTsb(t)γ where γ denotes the gravity vector in the inertial frame. An
ideal vision algorithm capable of maintaining correspondence and overcoming
occlusions would measure yi(t) = π

(
RTsb(t)(X

i
0 − Tsb(t))

)
. To summarize,

Ẋi
0 = 0, i = 1, . . . , N

Ṙsb(t) = Rsb(t)ω̂bsb(t), Rsb(0) = I

Ṫsb(t) = Rsb(t)vbsb(t), Tsb(0) = 0
v̇bsb(t) = −ω̂bsb(t)vbsb(t) + αbsb(t)

yimu(t) =

[
ωbsb(t)

αbsb(t)−RTsb(t)γ

]
yi(t) = π

(
RTsb(t)(X

i
0 − Tsb(t))

)
.

(3)

These equations can be simplified by defining a new linear velocity, vsb, which
is neither the body velocity vbsb nor the spatial velocity vssb, but instead vsb

.=
Rsbv

b
sb. Consequently, we have that Ṫsb(t) = vsb(t) and v̇sb(t) = Ṙsbv

b
sb+Rsbv̇

b
sb =

T̈sb
.= αsb(t) where the last equation serves to define the new linear acceleration

αsb; as one can easily verify we have that αsb = Rsbα
b
sb. The vision measurements

remain unaltered, whereas the linear component of the inertial measurements
become RTsb(t)(αsb(t) − γ). If we model rotational acceleration w(t) .= ω̇bsb and
translational jerk xi(t) .= α̇sb(t) as Brownian motions, our random walk model,
with biases and noises, and with all subscripts removed, is

Ẋi
0 = 0, i = 1, . . . , N

Ṙ(t) = R(t)ω̂(t), R(0) = I

Ṫ (t) = v(t), T (0) = 0
ω̇(t) = w(t)
v̇(t) = α(t)
α̇(t) = ξ(t)

yimu(t) =

[
ω(t)

RT (t)(α(t)− γ)

]
+

[
ωbias

αbias

]
+ nimu(t)

yi(t) = π
(
RT (t)(Xi

0 − T (t))
)

+ ni(t).

(4)

where v .= vsb
.= Rsbv

b
sb and α .= αsb

.= Rsbα
b
sb. In reality, the frames of the IMU

and the camera do not coincide, and the IMU measurements are replaced with

yimu(t) = RTbi

[
ω(t)

RT (t)(α(t)− γ + R̈(t)Tbi)

]
+
[
ωbias
αbias

]
+ nimu(t) (5)

where gbi denotes the (constant) body-to-camera transformation, since we attach
the body frame to the camera. Our choice of the camera frame as the body origin
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slightly complicates this model, but simplifies the following analysis. The results,
of course, are identical whether derived in the camera or the IMU reference frame.

Both (3) and (4) are dynamical models with noise inputs which can be used
to determine the likelihood of their outputs; estimating body pose gsb(t) and
velocities vbsb, ω

b
sb is equivalent to inferring the state of such a model from mea-

sured outputs. This is a filtering problem [7] when we impose causal processing,
that is, the state at time t is estimated using only those measurements up to t,
as is necessary in closed-loop applications. These requirements admit a variety
of estimation techniques, including sum-of-Gaussian filters [1], numerical inte-
gration, projection filters [2], unscented filters [9], and extended Kalman filters
[7]. The condition which must be satisfied for any one of these approaches to
work is that the model be observable. We address this issue in the next section.

3 Observability Analysis

The observability of a model refers to the possibility of uniquely determining
the state trajectory (in our case the body pose) from output trajectories (in our
case, point feature tracks and inertial measurements). Observability is indepen-
dent of the amount of (input or output) noise, and it is a necessary condition
for any filtering algorithm to converge [7]. When the model is not observable,
the estimation error dynamics are necessarily unstable. It has been shown that
pose is not observable from vision-only measurements [3], because of an arbi-
trary gauge transformation (a scaling and a choice of Euclidean reference frame
[13]). The model can be made observable by fixing certain states, or adding
pseudo-measurement equations [3]. It is immediate to show that pose is also
not observable from inertial-only measurements, since the model consists essen-
tially of a double integrator, and there has been extensive work to make the
estimation error explode “slowly enough” that a platform can reach its target.
For the purpose of analysis, we start with a simplified version of (4) with no
camera-IMU calibration (see Sect. 3.2), no biases ωbias = 0;αbias = 0, no noises
ξ(t) = 0;w(t) = 0; nimu(t) = 0;ni(t) = 0, since they have no effect on observ-
ability, and known gravity (see Sect. 3.3 otherwise).

The observability of a linear model can be determined easily with a rank test
[10]. Analysis of non-linear models is considerably more complex [6], but essen-
tially hinges on whether the initial conditions of (4) are uniquely determined by
the output trajectories {yimu(t), yi(t)}t=1,...,T ;i=1,...,N . If it is possible to deter-
mine the initial conditions, the model (4) can be integrated forward to yield the
state trajectories. On the other hand, if two different sets of initial conditions
can generate the same output trajectories, then there is no way to distinguish
their corresponding state trajectories based on measurements of the output.

3.1 Indistinguishable trajectories

As a gentle introduction to our analysis we first show that, when only inertial
measurements are available, the model (4) is not observable. To this end, consider
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an output trajectory yimu(t) generated from a particular acceleration α(t). We
integrate the model to obtain v(t) =

∫ t
0
α(τ)dτ + v̄, and we can immediately

see that any initial velocity v̄ will give rise to the same exact output trajectory.
Hence, from the output, we will never be able to determine the translational
velocity, and therefore the position of the body frame, uniquely.

Claim (Inertial only). Given inertial measurements {yimu(t)}t=1,...,T only, the
model (4) is not observable. If {R(t), T (t), ω(t), v(t), α(t) 6= 0} is a state trajec-
tory, then for any v̄, T̄ , R̄ identical measurements are produced by

R̃(t) = R̄R(t)
T̃ (t) = R̄T (t) + v̄t+ T̄

ṽ(t) = R̄v(t) + v̄

α̃(t) = R̄α(t)
γ̃ = R̄γ.

(6)

If the gravity vector γ is known, then from γ̃ = γ we get that R̄ = exp(γ̂), so the
rotational ambiguity reduces to one degree of freedom. The claim can be easily
verified by substitution to show that R̃T (t)(α̃(t) − γ̃) = RT (t)(α(t) − γ), and
assumes that ‖γ̃‖ = ‖γ‖ is enforced. Note that if we impose R̃(0) = R(0) = I,
then R̄ = I, and T̄ = 0, but we still have the ambiguity T̃ (t) = exp(γ̂)T (t) + v̄t,
ṽ(t) = exp(γ̂)v(t)+v̄ and α̃(t) = exp(γ̂)α(t). We will discuss the case α(t) = 0 ∀ t
shortly. The volume of the unobservable set grows with time even if we enforce
(R(0), T (0)) = (I, 0), as ‖T (t) − T̃ (t)‖ = ‖(I − R̄)T (t) − v̄t − T̄‖ = ‖v̄t‖ → ∞.
Vision measurements alone are likewise unable make the model observable.

Claim (Vision only). Given only vision measurements {yi(t)}i=1,...,N ;t=1,...,T of
N points in general position [3], the model (4) is not observable. Given any
state trajectory {X0, R(t), T (t), ω(t), v(t), α(t)}, for any rigid motion (R̄, T̄ ) and
positive scalar λ > 0, identical measurements are produced by

X̃i
0 = λ(R̄Xi

0 + T̄ )
R̃(t) = R̄R(t)
T̃ (t) = λ(R̄T (t) + T̄ )
ṽ(t) = λR̄v(t)
α̃(t) = λR̄α(t)

(7)

This can be verified by substitution. Note that ˙̃Xi
0 = 0, so λ, R̄, T̄ are arbitrary

constants. Even if we enforce (R(0), T (0)) = (I, 0), the unobservable set can grow
unbounded, for instance ‖T̃ (t)− T (t)‖ = ‖(I − λR̄)T (t)− λT̄‖ = |1− λ|‖T (t)‖.

We now fix the global reference frame, or equivalently the initial conditions
(R(0), T (0)), by constraining three directions on the image plane, as described
in [3]. In the combined vision-inertial system, this is sufficient to simultaneously
restrain the motion of the IMU (given that the camera and IMU move together
as a rigid body). This leaves us with an ambiguity in the scale factor only; that
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is, R̃ = R and T̃ = λT (therefore ω̃ = ω and α̃ = λα). We do not yet have
constraints on gravity, nor the transformation between camera and IMU. We
seek to determine what, if any substitutions λ, g̃bi, and γ̃ can be made for the
true values 1, gbi, and γ while leaving the measurements (5) unchanged.

Let us define the ambiguities R̄ .= R̃biR
T
bi and T̄ .= λ(T̃bi− R̄Tbi). This allows

us to write R̃bi = R̄Rbi and T̃bi = R̄Tbi + λT̄ without loss of generality. The
constraint ω̃ = ω and the IMU’s measurement of angular velocity tell us that
RTbiω(t) = R̃Tbiω̃(t) = RTbiR̄

Tω(t), so ω(t) = R̄Tω(t). Hence R̄ is forced to be a
rotation around the ω axis; it is easy to verify that this implies

R̄ω̂ = ω̂R̄. (8)

The accelerometer measurements require that

RTbiR
T (t)

(
α(t)− γ + R̈(t)Tcb

)
= R̃TbiR

T (t)
(
α̃(t)− γ̃ + R̈(t)T̃bi

)
. (9)

This is satisfied only by assigning

γ̃ = RR̄RT (t)γ +
(
λI −R(t)R̄RT (t)

)
α(t) + R̈(t)λT̄ . (10)

Note that RT (t)R̈(t) = ˆ̇ω(t) + ω̂2(t), so (8) allows us to write R̄RT (t)R̈(t) =
RT (t)R̈(t)R̄. This identity may be used to verify (10) by substitution into (9).
We can now fully describe the ambiguities of the system.

Claim (Observability of Combined Inertial-Vision System). Provided the global
reference frame is fixed as in [3], two state trajectories for the system (4-5) are
indistinguishable if and only if, for constants λ ∈ R and (R̄, T̄ ) ∈ SE(3),

X̃i
0 = λXi

0

R̃(t) = R(t)
T̃ (t) = λT (t)
R̃bi = R̄Rbi

T̃bi = R̄Tbi + λT̄

ω̃(t) = ω(t) = R̄ω(t)
γ̃ = RR̄RT (t)γ + (λI −R(t)R̄RT (t))α(t) + R̈(t)λT̄ ,

(11)

We now examine a few scenarios of interest. First, in a simple case when
gravity and calibration are known, the ambiguity reduces to 0 = (λ − 1)α(t),
which tells us that scale is determined so long as acceleration is non-zero.

Claim (Inertial & Vision). The model (4) is locally observable provided that
α(t) 6= 0 and that the initial conditions (R(0), T (0)) = (I, 0) are enforced.

We emphasize that unless the global reference is fixed by saturating the
filter along three visible directions, following the analysis in [3], the choice of
initial pose is not sufficient to make the model observable since it is not actively
enforced by the filter.

The term “locally observable” refers to the fact that infinitesimal measure-
ments are sufficient to disambiguate initial conditions; local observability is a
stronger condition than global observability.
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3.2 Observability with unknown calibration

Measuring the transformation between the IMU and camera precisely requires
elaborate calibration procedures, and maintaining it during motion requires tight
tolerances in mounting. To the best of our knowledge there is no study that char-
acterizes the effects of camera-IMU calibration errors on motion estimates. Con-
sider the simplified case of known gravity, and correct rotational calibration, but
a small translational miscalibration (for example, due to expansion or contrac-
tion of metals with temperature). Our constraint becomes (1−λ)α(t) = R̈(t)λT̄ ,
where T̄ is the miscalibration. For general motion, this is clearly not satisfiable,
and can cause divergence of the filter. In this section we show that such errors can
be made to have a negligible effect; indeed, we advocate forgoing such a calibra-
tion procedure altogether. Instead, a filter should be designed to automatically
calibrate the camera and IMU.

First consider the ambiguity in rotational calibration, R̄. Since R̄ω(t) = ω(t),
R̄ must be the identity when ω(t) is fully general.1 This reduces the second
constraint to (1 − λ)α(t) = R̈λT . If α(t) is non-zero and not a function of R̈,
then λ = 1 and the model is observable.

Claim (Observability of calibration). The model (4), augmented with (5) and
Tbi, Rbi added to the state with constant dynamics, is locally observable, so long
as motion is sufficiently exciting and the global reference frame is fixed.

3.3 Dealing with gravity

We now turn our attention to handling the unknown gravity vector. Because γ
has a rather large magnitude, even small estimation errors in Rsb will cause a
large innovation residual nimu(t). Dealing with gravity is an art of the inertial
navigation community, with many tricks of the trade developed over the course
of decades of large scale applications. We will not review them here; the inter-
ested reader can consult [11]. Rather, we focus on the features of vision-inertial
integration. Most techniques already in use in inertial navigation, from error
statistics to integration with positioning systems, can be easily incorporated.

Our approach is to simply add the gravity vector to the state of the model (4)
with trivial dynamics γ̇ = 0 and small model error covariance. Note that this is
not equivalent to the slow-averaging customarily performed in navigation filters
– the disambiguation of the gravity vector comes from the coupling with vision
measurements. Assuming known calibration, we have that γ̃ = γ + (λ− 1)α(t).
Since γ and γ̃ are constants, λ must be unity as long as α(t) is non-constant.

Claim (Observability of gravity). The gravity vector, if added to the state of
(4) with trivial dynamics γ̇ = 0, is locally observable provided that α(t) is not
constant and the global reference frame is fixed.

1 Special cases include not only ω(t) = 0, but also ω(t) spanning less than two inde-
pendent directions.
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3.4 Summary and notes

The claims just made may be combined if gravity and calibration are unknown.

Claim (Observability of calibration and gravity). The model (4-5) and Tbi, Rbi,
γ added to the state with constant dynamics, is locally observable, so long as
motion is sufficiently exciting and the global reference frame is fixed.

When we describe a motion as “sufficiently exciting”, this means that the
motion is varied enough to span the entirety of the state space. This condition
is typically assumed to hold asymptotically in off-line identification problems.

This condition may not be satisfied in common cases of practical import; for
example, most ground navigation occurs approximately on a plane with rotation
primarily about a single axis. “Cruising”, with zero angular velocity and zero
linear acceleration is also common. A number of other special cases will allow
the constraints (11) to be satisfied. The following experiments demonstrate “cal-
ibration sequences” complex enough that we can estimate all parameters. A full
derivation of the constraints and a more complete analysis of degenerate cases
are available in [8].

4 Experiments

The model we use to design a filter is a modified discrete-time version of (4):

yi0(t+ 1) = yi0(t) + ni0(t) i = 4, . . . , N(t)
ρi(t) = ρi(t) + niρ(t) i = 1, . . . , N(t)
T (t+ 1) = T (t) + v(t), T (0) = 0
Ω(t+ 1) = LogSO(3)(exp(Ω̂(t)) exp(ω̂(t)), R(0) = I

v(t+ 1) = v(t) + α(t)
ω(t+ 1) = ω(t) + w(t)
α(t+ 1) = α(t) + ξ(t)
ξ(t+ 1) = ξ(t) + nξ(t)
w(t+ 1) = w(t) + nw(t)
γ(t+ 1) = γ(t) + nγ(t)
Tcb(t+ 1) = Tcb(t) + nTcb

(t)
Ωcb(t+ 1) = Ωcb(t) + nΩcb

(t)

yi(t) = π
(
e

bΩcb(t)(e− bΩ(t)(e− bΩcb(t)(yi0(t)eρ
i(t) − Tcb(t))− T (t))) + Tcb(t)

)
+ ni(t)

yimu(t) =

[
ω(t) + ωbias

e−
bΩ(t)(α(t)− γ(t)) + αbias

]
+ nimu(t)

normγ = ‖γ(t)‖
(12)

where all noises are assumed to be white, zero-mean Gaussian processes, with
covariances set in a tuning procedure. Where the analysis was simplified by
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attaching the body frame to the camera, our implementation is simplified by
attaching the body frame to the IMU. Thus gbi has been supplanted by gcb and
the vision measurements are transformed rather than the IMU measurements.
The last (pseudo-)measurement sets the norm of gravity to a constant, with
degenerate (zero) covariance. Notice that the number of visible features N(t)
can change with time, and the index i in the first equation (describing point
feature positions in the camera at time t) starts from 4. Fixing the first three
points2 is equivalent to fixing three directions in space, which fixes the global
reference as described in [3]. Depths are represented using the exponential map
to ensure that their estimates are positive. We remind the reader that ω = ωbsb,
whereas v = vsb and α = αsb are defined as in (4).

To overcome failures of the low-level feature tracking module, we employ a
robust version of an extended Kalman filter (EKF), similar to [19], which allows
a variable number of points. We have implemented our filter in simulation as
well as on an embedded platform which we developed.

4.1 Simulation platform

Our simulation platform follows the parameters of [3], allowing us to generate
point tracks and inertial measurements with ground truth reference. We gener-
ated sets of 10 repeated trials for each of 100,000 combinations of parameters,
generating over 1M test results. Obviously we cannot summarize all the results
in the space available, so we limit ourselves to reporting representative trials to
validate the analysis we have performed.

Fig. 2 shows a typical outcome when the covariance of the vision measure-
ments is inflated, so that only the inertial measurements are used. Gravity and
calibration are assumed known, but a small error in the gravity direction is re-
flected in a non-zero mean component of the innovation. This is intentionally left
uncorrected in order to emphasize the resulting drift in the estimated trajectory,
which is significant even though the innovation remains substantially white. In
Fig. 3 we show the results of a similar experiment where vision measurements
are used along with inertial. The non-zero component of the innovation is still
visible, but now the bias is substantially reduced. The bias affects both the esti-
mated trajectory and the estimated positions of the points in space, seen as red
crosses. Scale is estimated correctly.

4.2 Autocalibration

In Fig. 4 we report a representative example that illustrates the proposed ap-
proach to deal with unknown camera-imu calibration and estimate gravity.3 All

2 We choose the first three points for simplicity; in practice one may want to choose
three points that are sufficiently far apart to ensure stability of the fixed frame.

3 Note that throughout this paper, autocalibration refers to the camera-to-IMU cali-
bration, not to the intrinsic parameters of the camera – those can be inferred through
standard calibration procedures as customary in this application domain [18].
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Figure 1: Simple experiment. We simulate a vehicle moving around a circle of radius R = 3 [m]. The vehicle
starts from a still state and then accelerates up to about 10 [km/h]. The camera is mounted 2 [m] above the IMU
and points slightly downwards and towards the center of motion (as opposed to the motion direction). Both the
IMU and SFM measurements are affected by noise. (a) Motion estimate plus IMU innovation. (b) SFM estimate
of the feature depths (note the features added at later times). (c) Estimate of the vehicle trajectory (blue) using
IMU+SFM compared to ground truth (red) and another estimate obtained by the IMU alone (the other blue curve).
Notice that the SFM improve dramatically the estimate.

1.4 Experiments

Figure 1 illustrates a run of the SFM+IMU filter. It is easily seen that the SFM has the potential of improving
quite significantly the performance of the IMU. Unfortunately most of the time the current implementation fail to
converge, as the SFM filter is rather delicate. In those cases, the actual estimate can be much worst with the SFM
than with the IMU alone.

4

Fig. 1. We simulate a vehicle moving around a circle. The vehicle starts from still
and then accelerates up to about 10km/h. The camera is mounted 2m above the
IMU and points slightly downward and toward the center of motion (as opposed
to the heading direction). Both the IMU and vision measurements are affected
by noise. (a) Motion estimate plus IMU innovation. (b) Vision estimate of the
point feature depths (note the features added at later times). (c) Estimate of
the vehicle trajectory (blue) using inertial and vision measurements, compared
to ground truth (red) and another estimate obtained by the IMU alone (other
blue curve).

the model parameters (Ωcb, Tcb, γ) are observable only under the assumption of
sufficiently exciting input sequences as discussed previously. Once the parame-
ters have converged during appropriate types of motion, standard covariance-
scheduling procedures can be adopted to “fix” the parameter values (calibration
and gravity) during degenerate motion. The interplay between acceleration and
gravity results in slower convergence. However, the innovation eventually settles
to a moderately colored process with small mean and covariance on the same
order of magnitude as the measurement noise. More extensive experiments are
reported in [8].

4.3 An embedded vision-inertial module

We implemented an optimized version of our full filter which recovers ego-motion
from inertial measurements and video on a modern CPU faster than the sensor
data arrives (30 Hz for images and 100 Hz for inertial). The overall system is
shown in Fig. 5 and includes various cameras (omni-directional, binocular and
trinocular), as well as a BEI-Systems IMU, with the filter implemented on a
custom computer running on batteries. A laser range finder and a GPS are used
for validation. The experiments we have run on indoor and outdoor scenes do not
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Fig. 2. Inertial-only. Left: Estimated trajectory of the camera (red solid) com-
pared to ground truth (blue dotted) seen from the bird’s eye view; significant
drift occurs as a result of double integration and bias; the positions of the points
in space (blue circles) are not used in this scenario and are displayed only as a
reference. Right: Innovation; it can be seen that there is a small DC component
due to simulated bias and alignment error with respect to gravity.

have accurate enough ground truth, and show the same qualitative behaviour
(innovation statistics and state error covariances) as the simulation, except for
significantly smaller inertial biases since these are explicitly modeled and handled
by the inertial unit. We are in the process of running ground-truth experiments
on known 3-D structures, that will be reported in a follow-up technical report.

5 Discussion

We have shown that vision can play an important role in inertial navigation,
since it can make pose observable, relative to the initial frame. It can also make
the gravity vector observable, and therefore render delicate registration and cal-
ibration procedures unnecessary.

We have developed a complete filter based on these conclusions, which we
tested extensively in simulation to validate our analysis. Last, but not least, we
have implemented an embedded system that runs the proposed vision-inertial
filters in real-time. The platform can be mounted on wheels, on a vehicle, or
carried by a human, and includes additional instruments (GPS and lidar) for
validation.

All the analysis is valid “locally” to the extent in which visual features re-
main visible. In an experiment where at least 5 features are visible throughout
the sequence, positioning relative to the initial frame is possible to the extent
described by the analysis. If the initial frame is geo-referenced, so is the en-
tire trajectory that follows. Where visual features disappear, for instance during
long forward motion without recognizable landmarks, a bias is accumulated in
both visual and inertial measurements, and therefore the benefit of using the
two modalities is incremental (i.e. a reduced drift) as opposed to absolute (i.e.
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Fig. 3. Vision-Inertial. Left: The use of vision measurements helps reduce
the bias, and enables the estimation of the positions of feature points in space
(red crosses; compare with ground truth in blue circles). Notice that the small
bias, accumulated during transient, is reflected both in the trajectory and in
the reconstruction of the points in space. If known landmarks are visible, this
can be used to correct the reconstruction and thus eliminate the bias. Right:
The innovation still shows the small bias in acceleration residuals due to the
misalignment of gravity.

the total elimination of drift). Even in this case, however, the important differ-
ence between using inertial-only measurements is that the ensuing filter remains
observable, rather than diverging – however slowly – as in inertial navigation,
and the volume of the unobservable subset remains bounded. We have verified
empirically that the estimate of the error covariance remains bounded so long
as enough features (typically 30 or more) survive with enough overlap (typically
30 frames or more) throughout the sequence. In sharp turns, where all visual
features are lost, inertial measurements provide a valuable transition modality
to initialize new features.
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Fig. 4. Autocalibration and gravity. Cal-
ibration parameters and gravity are observ-
able provided that the motion sequence is
“generic,” which entails non-constant accel-
eration and rotation about an axis spanning
at least two independent directions. All pa-
rameters converge to their nominal values.
More experiments are discussed in [8], includ-
ing experiments for pathological but common
motion sequences.
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Fig. 5. Embedded platform. A view
of our embedded platform, including
monocular-omnidirectional (red), binoc-
ular (gold) and trinocular (black) cam-
eras, inertial unit, a custom computer,
as well as a lidar and GPS for ground
truth generation. Processing is done on
a custom computer, and power is drawn
from battery packs. The platform can be
mounted on one’s shoulders with straps,
or on top of a vehicle with suction cups,
or on a mobile wheeled base with Velcro.
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