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Abstract

Motion, measured via optical flow, provides a powerful cue to discover and learn
objects in images and videos. However, compared to using appearance, it has some
blind spots, such as the fact that objects become invisible if they do not move. In
this work, we propose an approach that combines the strengths of motion-based and
appearance-based segmentation. We propose to supervise an image segmentation net-
work with the pretext task of predicting regions that are likely to contain simple mo-
tion patterns, and thus likely to correspond to objects. As the model only uses a sin-
gle image as input, we can apply it in two settings: unsupervised video segmentation,
and unsupervised image segmentation. We achieve state-of-the-art results for videos,
and demonstrate the viability of our approach on still images containing novel objects.
Additionally we experiment with different motion models and optical flow backbones
and find the method to be robust to these change. Project page and code available at
https://www.robots.ox.ac.uk/~vgg/research/gwm.

1 Introduction
The motion of objects in a video can be detected by methods such as optical flow and used
to discover and segment them. A key benefit is that optical flow is object-agnostic: because
it relies on low-level visual properties, it can extract a signal even before the objects are
discovered, and can thus be used to establish an understanding of objectness.

The potential of motion as a cue is epitomized in video segmentation problems, where
the input is a generic video sequence and the task is to extract the main object(s) in the
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video. In fact, some methods [57, 90] adopt a motion-only approach to video object segmen-
tation, arguing that motion patterns are much easier to model and interpret than appearance.
However, this approach ignores appearance cues and is ‘blind’ to stationary objects.

Instead, we propose to use motion as supervision to discover objects in videos and still
images without the need for manual annotations. We observe that different objects tend to
generate distinctive optical flow patterns which can be well approximated by small paramet-
ric models, such as affine or quadratic. We use this fact to train a segmentation network that,
given a single RGB frame as input, predicts which image regions are likely to contain such
patterns. The idea is that these regions would then separate the objects from the background.

This approach has several useful properties. First, while motion is used for supervis-
ing the network, the latter implicitly learns the appearance of the objects, regularizing the
segmentation. Second, because the network works with a single image as input, it does not
observe the motion directly. The model must anticipate what could move, extracting objects
even if they are not in motion. Third, the network avoids predicting the objects’ motion
directly, which is a highly-ambiguous task given a single image as input; instead, it predicts
only the support regions of the motion patterns, and the training loss measures the compati-
bility of such regions with the observed motion according to the assumed motion model.

While we are not the first to consider motion as a cue for decomposing an image into
objects, our particular way of modeling motion is simple and versatile, and allows two appli-
cation modes of our approach. First, we consider internal learning for unsupervised motion
segmentation [80]. Given one or more videos as input (without labels), we optimize a net-
work, as described above, to output a segmentation of the videos, effectively ‘observing’
motion via backpropagation. Our approach achieves state-of-the-art performance on stan-
dard benchmarks for unsupervised motion segmentation [90, 92].

The second mode is transductive learning for unsupervised image segmentation, which
is intended to assess the generalization capabilities of our model as an image segmenter. In
this case, the network is first trained on a number of training videos and then evaluated on
a disjoint set of images. Since only appearance information is available at test time, the
problem solved is not motion segmentation, but image segmentation. In this scenario, our
model segments novel objects not observed during training, demonstrating the viability of
our approach.

2 Related Work

Our work aims to combine motion and appearance cues for unsupervised object discovery,
in that motion can be used as a cue to learn a general object segmenter for both videos and
images. As such, there exist several related areas in literature, which we review next.

Unsupervised Video Object Segmentation. The aim of video object segmentation (VOS)
is to densely label objects present in a video. Current VOS benchmarks [45, 63, 66] usually
define the problem as foreground-background separation, where the foreground comprises
the most salient objects. Efforts to reduce the amount of supervision follow two main di-
rections, semi-supervised and unsupervised VOS. Semi-supervised methods require manual
annotations for the object(s) of interest in an initial frame during inference; the goal is to
re-localize these objects across the video [13]. Unsupervised VOS aims to discover object(s)
of interest without the initial targets [25, 30, 46, 53, 65, 78]. However, most unsupervised
VOS methods use, in fact, some form of supervised pre-training on external data.
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Motion Segmentation. In videos, the background is usually relatively static whereas ob-
jects in the scene have independent motion, thus providing a strong ‘objectness’ signal.
Thus, many works approach unsupervised video object segmentation as a motion segmen-
tation problem. Several earlier methods address this problem by grouping point trajecto-
ries [10, 40, 41, 61, 62, 76], motion boundaries [65], voting [25] and layered models [15, 36].
More recently, Lamdouar et al. [44], Xie et al. [89] train motion models on generated scenes
with synthetic 2D objects and generalize to real videos. CIS [92] proposes an adversarial
framework, where an inpainter is tasked with predicting the optical flow of a segment based
on context, while the generator aims to create segments with zero mutual information such
that the context becomes uninformative. DyStaB [93] extends CIS using the segmentation
output of a dynamic model to bootstrap a static one. In contrast to our method, this yields
two separate models to choose from based on the application (i.e., video or static image
segmentation). Instead, AMD [50] employs a single model with separate appearance and
motion ‘pathways’ and performs unsupervised test-time adaptation for video segmentation.
Finally, MG [90] abandons the appearance pathway altogether, directly segmenting optical
flow inputs with a Slot Attention-like architecture [51].

Closer to our approach, another line of work uses various motion models to group image
regions. Early methods [31, 79] consider mixture models of flow to account for the fact that
a region may contain multiple motion patterns. Another line of work [6, 7] segments object
translation directions from motion angle field obtained by correcting for estimated rotation
of the camera. Mahendran et al. [54] employ an affine flow model, using the entropy of
flow magnitude histograms for loss to deal with noisy flow in real world. Meunier et al.
[57] consider affine and quadratic motion models, however their method uses flows as input
which makes it suitable only for videos during inference.

Unsupervised Image Segmentation. While we use motion as a learning signal, our method
yields a general-purpose image segmentation network, separating an image into foreground
and background, without using ground truth masks for supervision. Early work in unsu-
pervised image segmentation makes use of hand-crafted priors, e.g. color contrast [19, 86],
while some recent methods also combine handcrafted heuristics to generate pseudo-masks
and use them to train using deep networks [60, 97, 98]. Others address this problem via
mutual information maximization between different views of the input [32, 64]. A recently
emerging line of work [4, 8, 17, 38, 56, 81] explores generative models to obtain segmen-
tation masks. Many of them [4, 8, 17, 38] are based on the idea of generating foreground
and background as separate layers and combine them to obtain a real image. Others [56, 81]
analyze large-scale unsupervised GANs (e.g. BigGAN [9]) and find implicit foreground-
background structure in them to generate a synthetic annotated training dataset. Alterna-
tive line of work explores feature maps of self-supervised Vision Transformers, such as
DINO [14]. For example, STEGO [28] supports segmenting multiple classes in an image,
performing semantic segmentation, by distilling features and class centroids from DINO. In
Melas-Kyriazi et al. [55] and TokenCut [85], authors model image patches with an affinity
graph based on DINO feature alignment and perform further analysis on this graph to extract
masks. Shin et al. [71] cluster features of a variety of self-supervised backbones to produce
candidate masks, using them to train a segmenter. Instead, our model is trained on video data
using optical flow as a supervisory signal. However, since it only requires a single image as
input at test time, we show that our method is applicable to this task, providing an alternative
approach to unsupervised object segmentation.
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Figure 1: Model Diagram. We train a segmentation network to partition an image into K
components without manual annotations. Our model is trained using individual frames from
video as input and pre-computed optical flow as supervision. The predicted segments are
used to approximate the input flow with piecewise quadratic flow models and the training
loss is formulated as the error between the reconstructed and the input flow. Appearance
features from the backbone are used to merge the predicted K segments into foreground and
background components. Motion information is not required at test time and inference can
be performed on still images. Optical flow is colorized for visualization only.

Unsupervised Object Discovery. While the above methods often aim to segment the most
salient object(s) in an image, unsupervised multi-object segmentation explores the problem
of decomposing a scene into parts, which typically include each individual foreground ob-
ject and the background. The usual approach is to learn structured object-centric representa-
tions, i.e. to model the scene with latent variables (slots) operating on a common representa-
tion [12, 20, 22, 23, 24, 27, 33, 47, 51, 72]. While these methods are image-based, extensions
to video also exist [3, 5, 21, 34, 37, 42, 43, 58, 59, 73, 96]. These methods often operate in an
auto-encoding fashion with inductive bias to separate objects derived from a reconstruction
bottleneck [12], that is often dependent on the architecture and the latent variable model. We
similarly impose a reconstruction bottleneck on the flow but use a simple model grounded
in projective geometry, with a known closed-form solution. It is also important to note that
unsupervised multi-object segmentation appears to be significantly more challenging, with
current methods exploiting the simplicity of synthetic scenes [26, 35], while struggling on
more realistic data [39]. Recently, Bao et al. [2] explore an extension of Slot Attention [51],
guided by an external supervised motion segmentation algorithm, to real-world data. How-
ever, due to the difficulty of the problem, they operate in a constrained domain (autonomous
driving) and consider only a limited number of object categories. We instead focus on wide
variety of categories and settings encountered in common video segmentation datasets and
consider both motion and appearance jointly.

3 Method
In this paper, we present a method that uses motion anticipation to discover and segment
objects in images without the need for human annotations (overview in Fig. 1). We use
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optical flow from video sequences as supervision for this problem. However, rather than
predicting the flow directly, we task a general image segmentation network to predict image
regions where motion may be explained by a simple coherent model. Such regions should
align with optical flow patterns produced by objects that could move (but do not have to).

3.1 Segmentation by Motion Anticipation
Let I ∈R3×H×W =(R3)Ω be an RGB image defined on a lattice Ω= {1, . . . ,H}×{1, . . . ,W}.
Assume that the image is a frame in a video sequence and let F ∈ (R2)Ω be the corresponding
optical flow (extracted from the video by means of an off-the-shelf optical flow network, such
as RAFT [77]). The goal is to decompose the image into K components (or regions), which is
a classic segmentation problem. Hence, we learn a segmentation network Φ(I) ∈ ([0,1]K)Ω

that, given the image I as input, assigns each pixel u to one of K components in a soft manner,
with probabilities:

P(mu = k | I,Φ) = [(Φ(I))k]u, u ∈ Ω, k ∈ {1, ...,K}. (1)

mu = k in Eq. (1) denotes the predicted mask corresponding to component k indexed by u.
In particular, we seek to separate the foreground and background, for which one may choose
K = 2, although as we show later (Section 3.2), this need not be the case.

More specifically, we train Φ to partition pixels according to the Gestalt principle of
common fate [74, 82]. This is done by associating each region k ∈ {1, ...,K} to a model θk
of the optical flow observed within it. That is, the optical flow corresponding to an input
frame can be approximated by piece-wise parametric models, representing the motion or
flow pattern, of each component independently. According to the common fate principle,
pixels within the same region are expected to exhibit coherent motion.

A variety of motion models exist for describing the 2D flow of an object ([54, 57]). These
are generally of the form Fu ≈ Au+ b, where parameters A,b can be recovered by solving
a system of linear equations. One common choice is an affine model (where u = [x,y] are
pixel coordinates), which is sufficient if objects are smaller and further away from camera.
The affine model, however, struggles if the depth of an object varies significantly resulting in
more complex flow patterns. To factor out unknown depth information, each object can be
modeled as a plane with a quadratic 8-parameter model [1]. Here, we allow for more com-
plex geometry than planes, by using a simplified 12-parameter quadratic model θk = (Ak,bk)
with Ak ∈ R2×5 and bk ∈ R2 per region k. In this case, u = [x, x2, y, y2, xy] ∈ R5 includes
quadratic and mixed terms of the pixel coordinates to model quadratic dependencies. The
12-parameter model also allows treating each flow direction independently. We assume that
the model predicts the flow up to isotropic i.i.d. Gaussian noise, which results in a simple L2

fitting loss:
− log p(Fu | θk) ∝ ∥Fu −Aku−bk∥2. (2)

Summing over all pixels, learning minimizes the energy function:

L(F | θ , I,Φ) ∝ ∑
u∈Ω

∑
k
∥Fu −Aku−bk∥2 · p(mu = k | I,Φ). (3)

In the expression above, we do not know the flow parameters θk as the network only predicts
the regions’ extent. Instead, we min-out the parameters θk in the loss itself and compute

L(F | I,Φ) = min
θk∈{1,...,K}

L(F | θ , I,Φ). (4)
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The energy in Eq. (2) is quadratic in θk, resulting in a weighted least squares problem that
can be efficiently solved in closed form (see supplementary material).

Our model is learned from a large collection T of video frame-optical flow pairs (I,F),
minimizing the empirical risk:

Φ
∗ = argmin

Φ

1
|T | ∑

(I,F)∈T
L(F | I,Φ) (5)

3.2 Over-segmentation
While the 12-parameter model is more powerful than an affine one, it is still not sufficient
to model arbitrary flow patterns. In complex scenes that contain foreground and background
clutter, we often observe motion parallax effects. Additionally, non-rigid objects and self-
occlusions can result in complex flow patterns within the object that are not captured accu-
rately by the quadratic model.

To account for such complexity, we propose to over-segment the input image into K > 2
regions. Over-segmentation enables the model to use additional regions to explain several
moving objects and to approximate varyingly moving parts of a single non-rigid object as
well as motion parallax. To achieve a binary segmentation output, one needs a criterion to
merge a number of predicted regions down to foreground and background.

We devise a criterion based on appearance cues to avoid the ambiguity associated with
merging regions based on motion. To this end, we use a pre-trained self-supervised image
encoder, such as DINO-ViT [14], to obtain dense features for the input image and merge
the segments predicted by Φ based on feature similarity. Formally, let Vu denote the fea-
ture vector of pixel u obtained by the self-supervised encoder. Then, V̄k = ∑u Vu p(mu =
k | I,Φ)/∑v p(mv = k | I,Φ) is the average feature vector for segment k, where pixels are
weighed by their probability with which they belong to the segment. We compute the pair-
wise similarities of different regions via an affinity matrix Π ∈ RK×K , where entries corre-
sponding to segments i and j are set as

(Π)i j = max
(

ε,

〈
V̄i

||V̄i||2
,

V̄j

||V̄j||2

〉)
, (6)

where only feature vectors pointing in the same direction are considered and ε = 10−12

is a small constant that keeps the graph connected. We then perform spectral clustering
[16, 55, 69] into two components using the affinity Π.

3.3 Two Scenarios: Motion vs Image Segmentation
We experiment with two modes of application of our model. The first scenario is internal
learning for unsupervised video segmentation, where the network is evaluated on the same
video sequences that have been used for optimization. This is effectively an unsupervised
motion segmentation algorithm because the network not only receives as input appearance
information, but incorporates motion information via backpropagation, observing indirectly
optical flow too. While not explicitly stated in the respective papers, prior motion segmen-
tation works such as [57, 90] also operate in this mode, while directly observing moving
objects, often using optical flow as input.

The second scenario is transductive learning for image segmentation. In this case, the
network is first trained using a number of unlabelled videos, and then used for single-image
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Inf. Input Input Flow Runtime DAVIS STv2 FBMS
RGB Flow Resolution Method sec ↓ J ↑ J ↑ J ↑

[84] SAGE ✓ ✓ – LDOF [11] 0.9 42.6 57.6 61.2
[25] NLC ✓ ✓ – SIFTFlow [48] 11 55.1 67.2 51.5
[40] CUT ✓ ✓ – LDOF [11] 103 55.2 54.3 57.2
[65] FTS ✓ ✓ – LDOF [11] 0.5 55.8 47.8 47.7
[92] CIS ✓ ✓ 192×384 PWCNet [75] 0.1 59.2 45.6 36.8
[50] AMD ✓ ✗ 128×224 ✗ – 57.8 57.0 47.5
[90] MG ✗ ✓ 128×224 RAFT [77] 0.012 68.3 58.6 53.1
[57] EM ✗ ✓ 128×224 RAFT [77] – 69.3 55.5 57.8
[89] OCLR ✓ ✓ 480×832 RAFT [77] – 78.9 71.6 68.7
[94] DS‡ ✓ ✓ 240×426 RAFT [77] 1800 (22.5)‡ 79.1 72.1 71.8

Ours (UNet) ✓ ✗ 128×224 RAFT [77] 0.027 78.3 76.8 72.0
Ours (MaskFormer) ✓ ✗ 128×224 RAFT [77] 0.059 79.5 78.3 77.4

[92] CIS† ✓ ✓ 192×384 PWCNet [75] 11 71.5 62.0 63.5
[93] DyStaB†* ✓ ✓ 192×384 RAFT [77] – 80.0 74.2 73.2

Ours† (w/ CRF) ✓ ✗ 128×224 RAFT [77] 3.73 80.7 78.9 78.4

Table 1: Unsupervised video segmentation on DAVIS2016, SegTrack-v2 (STv2), and FBMS59.
† denotes the usage of CRFs and other extra significant post-processing (e.g., multi-step flow, multi-
crop, temporal smoothing for CIS [92]). ‡ DS is optimized per sequence; authors report 30 min training
time for 80-frame video. * DyStaB utilises supervised pre-training.

foreground object segmentation on an independent validation/test set of still images. In this
scenario, motion is only used as a supervisory signal: when the network is applied at test
time, motion is not considered anymore and the network operates purely as an image-based
segmenter. As for any transductive learning setting, the goal is to assess the generalization
performance of the network on new images.

4 Experiments

As discussed above, our formulation allows us to evaluate our method in two settings: video
object segmentation and general image/object segmentation. We show that learning a net-
work that guesses what moves not only results in state-of-the-art performance in video seg-
mentation, but also generalizes to image segmentation without further training.

4.1 Experimental Setup

Architecture. Our formulation enables us to use any standard image segmentation archi-
tecture for the model Φ. This has two main benefits: while training the model needs optical
flow (and thus video data), inference can be performed on single images alone just like any
image segmentation method. Second, using a standard architecture allows us to benefit from
(self-)supervised pretraining, ensuring better convergence and broader generalization. We
experiment with both convolutional and transformer-based architectures.

Datasets. For the video segmentation task, we use three popular datasets: DAVIS2016
(DAVIS) [66], SegTrackV2 (STv2) [45], as well as FBMS [63]. For the image segmenta-
tion task, we consider the Caltech-UCSD Birds-200 (CUB) dataset [87] and three saliency
detection benchmarks: DUTS [83], ECSSD [70], and DUT-OMRON [91].
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Figure 2: Qualitative Comparison on DAVIS, STv2, and FBMS. †– indicates use of CRF.
Our method correctly segments objects in challenging conditions including strong parallax
(2nd , 3rdseq.), small objects (4th), background motion (5th), camouflaged appearance (6th),
non-rigid motion (7th) or no motion at all (8th seq.). In the failure cases, our method is
confused by ripples and reflection in the water, the front wheel rotating in a different direction
and multiple disconnected objects.

Optical Flow. Our method derives its learning signal from optical flow. We estimate opti-
cal flow for all frames on DAVIS, STv2, and FBMS following the practice of MotionGroup-
ing [90]. We employ RAFT [77] (supervised) using the original resolution for our main
experiments. Please see the supplement for experiments with other flow methods.

Training Details. We use MaskFormer [18] as our segmentation network, and use only
the segmentation head. For the backbone and appearance features V , we leverage a ViT-B
transformer, pre-trained on ImageNet [68] in a self-supervised manner using DINO [14] to
avoid any external sources of supervision. We set the number of components to K = 4 unless
otherwise noted. Please see the supplement for all details and hyper-parameter settings.

4.2 Unsupervised Video Segmentation
In Table 1 we report our performance on the DAVIS, STv2, and FBMS datasets and compare
to other unsupervised video segmentation approaches. Our method achieves state-of-the-art
performance, even without CRF post-processing. Fig. 2 provides a qualitative comparison of
the results. Our model provides better segmentation with sharper boundaries despite complex
non-rigid motion, parallax effects or lack-of-motion. However, on challenging scenarios our
method still struggles to segment small details or non-connected instances.

Our method is not restricted to a specific segmentation architecture. To investigate,
MaskFormer is replaced with a simple convolutional U-Net architecture [67], as in EM [57],
and trained from scratch for a fair comparison. The U-Net based model achieves compara-
ble results on DAVIS and FBMS and 76.8 on STv2 (Table 1), outperforming earlier methods
even without transformers.

4.3 Flow Model and Number of Components
Using DAVIS, we now study the effectiveness of the individual components of the method.
In Table 2 we evaluate the performance of the model under different flow models: constant,
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Flow Model K DAVIS (J ↑) DAVIS (Joracle↑)

Constant (A = 0) 4 76.8 77.7
Affine (u = [x, y]) 4 77.1 78.8
Quadratic (Eq. (2)) 4 79.5 81.5

Quadratic (Eq. (2)) 2 74.5 74.5
Quadratic (Eq. (2)) 3 77.8 79.5
Quadratic (Eq. (2)) 4 79.5 81.5
Quadratic (Eq. (2)) 5 76.0 79.9

Table 2: Flow Model and Number of Components. We ablate the choice of flow model
and the number of components K. More complex flow models improve performance, and
over-segmentation helps until the assignment problem between components and the final
binary segmentation becomes too difficult at K = 5. To evaluate the quality of the clustering
of components we also report the oracle clustering performance as an upper bound.

affine, and quadratic. We find that more complex models lead to improved performance,
likely due to the fact that manny scenes in the DAVIS benchmark are highly dynamic with
complex objects and backgrounds. Additionally, in the same table we evaluate how the num-
ber of components, K, influences the final performance after clustering. With K = 2 the
model directly performs foreground-background separation but needs to model each with a
single component which is often difficult, e.g. due to complex motions of deformable ob-
jects and/or parallax effects. Increasing the number of components is beneficial up to K = 4,
after which the assignment problem from over-segmentation to foreground and background
becomes too difficult for simple spectral clustering. This can be seen by evaluating the seg-
mentation performance under an optimal oracle assignment of the components to foreground
and background (oracle column in Table 2). In all cases K <= 4, spectral clustering nearly
reaches oracle performance.

CUB DUTS ECSSD OMRON

Acc J ↑ maxFβ ↑ Acc J ↑ Fβ ↑ Acc J ↑ Fβ ↑ Acc J ↑ Fβ ↑

[81] Voynov et al. 94.0 71.0 80.7 88.1 51.1 60.0 90.6 68.4 79.0 86.0 46.4 53.3
[50] AMD – – – – – 60.2 – – – – – –
[56] Kyriazi et al. 92.1 66.4 78.3 89.3 52.8 61.4 91.5 71.3 80.6 88.3 50.9 58.3
[55] Kyriazi et al. – 76.9 – – 51.4 – – 73.3 – – 56.7 –
[93] DyStaB† – – – – – – – – 88.1 – – 73.9
[85] TokenCut – – – 90.3 57.6 – 91.8 71.2 – 88.0 53.3 –
[71] SelfMask – – – 92.3 62.6 – 94.4 78.1 – 90.1 58.2 –

Ours 93.5 64.6 80.9 91.5 49.2 65.6 88.5 56.1 74.3 89.3 41.31 56.3

Table 3: Unsupervised object segmentation benchmark CUB and three saliency detection
benchmarks: DUTS, ECSSD, and DUT-OMRON (OMRON). † DyStaB uses CRF post-
processing, supervised pre-training, and self-training on each dataset. (SoTA only table -
please see the supplement for a complete version of this table including many older methods.)

4.4 Unsupervised Image Segmentation
While the main aim of our work is object segmentation in videos, we also assess the image
segmentation performance on common image segmentation and saliency benchmarks: CUB,
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Figure 3: Qualitative Comparison. Our method can extract salient object in various envi-
ronments and works even for novel object that were not included in the training data.

DUTS, DUT-OMRON, and ECSSD. For this experiment, we train our model on all three
motion segmentation datasets (DAVIS, FBMS and STv2) jointly and apply the resulting
network to the image segmentation benchmarks without any further fine-tuning. In Table 3,
we report the performance of our method and compare to the current state of the art. It is
worth noting that most prior work (except [55, 56, 85]) relies on dataset-specific training,
self-training, post-processing or supervised pre-training to achieve image segmentation.

Finally, we evaluate the model qualitatively in Fig. 3 on all four benchmarks. We observe
our model works well on a diverse set of classes, such as buildings, certain animals and
plants, even though they were not part of the foreground (moving) objects in the training
data.

5 Conclusions
We have proposed a simple approach to exploit the synergies between motion in videos and
objectness for segmenting visual objects without supervision. The key idea is using motion
anticipation as a learning signal: we train an image segmentation network to predict regions
that likely contain simple optical flow patterns, as these have a high chance to correspond to
objects. We find that the complexity of the motion model is important to model complicated
flow patters that can arise even for rigid objects. Our results show that this approach achieves
state-of-the-art performance in video segmentation benchmarks. Future work could thus
consider extensions to more sophisticated motion models, accounting for the 3D shape of
objects, and to separate multiple objects.
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Supplementary Material
In this supplementary material, we provide further details on our training parameters in Ap-
pendix A. Appendix B contains the closed form solution of the fitting of the flow model
θ . Expanded experiments and ablations are found in Appendix C. Finally, more qualitative
results are presented in Appendix D. See the project page, https://www.robots.ox.
ac.uk/~vgg/research/gwm, for additional visualizations, code and models.

A Experimental Setup
Network. We use MaskFormer [18] as our segmentation network1, and use only the seg-
mentation head. As MaskFormer predicts masks at 4 times lower resolution than input, we
modify the PixelDecoder by appending [Conv(3), UpsampleNN(2), Conv(1)]×2 to its
output layers to bring the masks back up to the input resolution.

For the backbone and appearance features V , we leverage a ViT-8 transformer, pre-
trained on ImageNet [68] in a self-supervised manner using DINO [14] to avoid any external
sources of supervision. For the hierarchical backbone features to decoder we use the key
feature outputs from layers 6, 8, 10, 12.

The input RGB images are interpolated (bi-cubic) to 128×224 resolution for input to the
network. We interpolate (nearest neighbor) the optical flow to 480×854 for the loss. Output
segmentation logits are up-sampled using bi-linear interpolation to the flow resolution for
training and again to annotation resolution for evaluation.

Training Hyperparameters. The networks are optimised using AdamW [52], with learn-
ing rate of 1.5×10−4, a schedule of linear warm-up from 1.0×10−6 to 1.5×10−4 over 1.5k
iteration and polynomial decay afterwards. We use batch size of 8 and train for 15k itera-
tions. We additionally employ gradient clipping when the 2-norm exceeds 0.01 for stability.
The loss multiplier is 0.03.

UNet. For experiments using U-Net2, we use the standard 4-layer version. The batch-size
is increased to 16 and learning rate to 7.0× 10−4. We also clip the gradients only when
2-norm exceeds 5.0. All other settings, including optimizer and learning rate schedules, are
kept the same. U-Net is not pre-trained and trained from scratch.

Optical Flow. Our method derives its learning signal from optical flow estimated using
off-the-shelf frozen networks. We estimate optical flow for all frames on DAVIS, STv2,
and FBMS following the practice of MotionGrouping [90]. We employ RAFT [77] (super-
vised) using the original resolution for our main experiments, and gaps between frames of
{−2,−1,1,2} for DAVIS and STv2, and {−6,−3,3,6} on FBMS. When multiple flows are
associated with a single frame (multiple gaps), we sample one at random for each iteration.

B Quadratic Flow Model: Closed Form Solution
Consider one of K regions m and define wu ∝ P(mu = k|I,Φ) the posterior probability for that
region, normalized so that ∑u∈Ω wu = 1 (the scaling factor does not matter for the purpose of

1Implementation from https://github.com/facebookresearch/MaskFormer.
2Implementation from https://github.com/milesial/Pytorch-UNet.
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finding the minimizer). We can obtain the minimizer (A∗,b∗) and minimum of the energy

E(A,b) = ∑
u∈Ω

wu∥Fu −Au−b∥2 (7)

as follows. Defining

ū :=
[

u
1

]
, M :=

[
A b

]
∈ R2×6

allows rewriting the energy as

E(M) = ∑
u∈Ω

wu∥Fu −Mū∥2 = tr
(

ΛFF −MΛ
Ω̄F −ΛFΩ̄

M⊤+MΛ
Ω̄Ω̄

M⊤
)
,

where

ΛFF = ∑
u∈Ω

wuFuF⊤
u , ΛFΩ̄

= ∑
u∈Ω

wuFuū⊤, Λ
Ω̄F = Λ

⊤
FΩ̄

, Λ
Ω̄Ω̄

= ∑
u∈Ω

wuūū⊤.

are the (uncentered) second moment matrices of the flow Fu and homogeneous coordinate
vectors ū. By inspection of the trace term, the gradient of the energy is given by:

dE(M)

dM
= 2(ΛFΩ̄

−MΛ
Ω̄Ω̄

)

Hence, the optimal regression matrix M∗ and corresponding energy value are

M∗ = ΛFΩ̄
Λ
−1
Ω̄Ω̄

, E(M∗) = tr(ΛFF −M∗
ΛΩF̄) .

Somewhat more intuitive results can be obtained by centering the moments and resolving
for A and b instead of M. Specifically, define:

µΩ := ∑
u∈Ω

wuu, µF := ∑
u∈Ω

wuFu.

The covariance matrices of the vectors are:

ΣFF = ∑
u∈Ω

wu(Fu −µF)(Fu −µF)
⊤, ΣFΩ = ∑

u∈Ω

wu(Fu −µF)(u−µΩ)
⊤,

ΣΩF = Λ
⊤
FΩ, ΣΩΩ = ∑

u∈Ω

wu(u−µΩ)(u−µΩ)
⊤.

It is easy to check that

ΛFF = ΣFF +µF µ
⊤
F , ΛFΩ̄

=
[
ΣFΩ +µF µ⊤

Ω
µF

]
, Λ

Ω̄Ω̄
=

[
ΣΩΩ +µΩµ⊤

Ω
µΩ

µ⊤
Ω

1

]
.

From this:

M∗ = ΛFΩ̄
Λ
−1
Ω̄Ω̄

=
[
ΣFΩ +µF µ⊤

Ω
µF

][ΣΩΩ +µΩµ⊤
Ω

µΩ
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Ω

1
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=
[
ΣFΩ +µF µ⊤

Ω
µF

][ Σ
−1
ΩΩ

−Σ
−1
ΩΩ

µΩ

−µ⊤
Ω

Σ
−1
ΩΩ

1+µ⊤
Ω

Σ
−1
ΩΩ

µΩ
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=
[
ΣFΩΣ

−1
ΩΩ

µF −ΣFΩΣ
−1
ΩΩ

µΩ

]
=
[
A∗ b∗

]
.

Hence, the optimal regression coefficients and energy value are also given by:

A∗ = ΣFΩΣ
−1
ΩΩ

, b∗ = µF −A∗
µΩ.
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Model Flow DAVIS (J ↑) FBMS (J ↑)

[50] AMD (100 steps) ✗ 57.8 47.5
Ours (Zero shot) ARFlow 62.5 65.4
Ours (20 steps) ARFlow 65.2 67.6

[57] EM RAFT 69.3 57.8
Ours (Zero shot) RAFT 66.8 73.2
Ours (20 steps) RAFT 76.3 77.1

Table 4: Generalization performance on unseen videos. Few unsupervised methods oper-
ate in this setting. AMD trains on YT-VOS, followed by 100 test-time adaptation steps, while
EM trains on FlyingThings3D using flow as input. We use (fully unsupervised) ARFlow for
fair comparison with AMD. Our method shows better performance after observing motion.
(Test-time adaptation uses the training loss. No GT is involved at any point.)

Backbone Backbone DAVIS STv2 FBMS
model pretraining Sup. J ↑ J ↑ J ↑

ViT-8 ImageNet DINO ✗ 79.5 78.3 77.4
UNet None ✗ 78.3 76.8 72.0

SWIN-tiny ImageNet MOBY ✗ 78.3 77.4 74.6
SWIN-tiny ImageNet CLS ✓ 78.9 77.7 75.5
SWIN-tiny None ✗ 78.3 75.2 68.8
Resnet-50 ImageNet CLS ✓ 77.5 75.8 72.9

Table 5: Effect of Pretraining/Backbone. Our method with MaskFormer benefits from pre-
training, with slight improvement offered by supervised (CLS) over unsupervised (MOBY)
pretraining (usng SWIN transformer). Comparable results can be obtained with training
from scratch. Best results are obtained using DINO features.

C Further Experiments

C.1 Generalization in Unsupervised Video Segmentation

We also test our model in a video generalization setting. In contrast to the protocol of [90,
92], where evaluation set is observed together with training to infer masks jointly3, here we
train only on frames from the training set. We report performance on unseen videos. In this
case, our method independently segments a collection of frames from a new video, with no
way to incorporate motion information.

To “observe” motion on unseen inputs, we also report results after taking 20 test-time
adaptation steps (using our unsupervised loss) for each evaluation sequence in isolation (c.f.
AMD [50] takes 100 test-time adaptations steps). That is after training, we follow our train-
ing setup (optimizer, rate, batch size) and feed frames from the evaluation video and corre-
sponding optical flow, calculate loss and take gradient steps. Despite other methods using
much larger training sets, our approach shows better performance (Table 4).

C.2 Ablation Studies

3Note, no annotations are observed at any point.
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DAVIS STv2 FBMS
Model K Merge J ↑ J ↑ J ↑

Ours K = 4 ✓ 79.5 78.3 77.4

Spectral clustering K = 2 ✗ 15.79 14.89 27.45

K-Means K = 4 ✓ 41.79 34.84 48.80
K-Means K = 2 ✗ 20.24 21.14 38.25

Table 6: Feature Clustering without Motion. We experiment with offline clustering of
DINO features to assess the importance of our motion-based formulation. Simply clustering
DINO features using K-Means or spectral clustering [55] into 2 clusters performs worse.
Over-clustering and merging using our cluster-merging approach performs better but still
fails to reach our performance.

Opt. Flow Sup. DAVIS (J ↑)

[49] ARFlow ✗ 66.9
[75] PWCNet ✓ 74.9
[77] RAFT ✓ 79.5

Table 7: Choice of Optical Flow Method.
Measuring the influence of the method to ex-
tract optical flow.

Method DAVIS (J ↑)

[90] MG 53.2
[50] AMD 57.8

Ours 66.9

Table 8: Fully Unsupervised Video Ob-
ject Segmentation. Comparison to the state
of the art in unsupervised VOS without re-
liance on any supervision

Pretraining. Compared to recent methods for video segmentation [57, 90], one of the ben-
efits of our formulation is that we can leverage unsupervised pretraining for the segmentation
network (e.g., for the ViT backbone of MarkFormer). This enables our method to be trained
in only 15k iterations. Here, we investigate the importance of the backbone. To this end
we replace ViT with Swin-tiny pretrained using MOBY (self-supervised) in Table 5. The
performance differences are small.

Additionally, we investigate the effect of other pretraining strategies on the performance.
Switching to a model pretrained on ImageNet with image-level supervision (i.e. a classi-
fication task) only slightly improves performance showing that the method does not need
to rely on supervised pre-training. Finally, we train the model using same settings for 20k
iterations from scratch, without any pre-training. This results in comparable performance
on DAVIS but reduced performance on the smaller datasets. Comparing backbones without
pre-training, UNet gives better results than SWIN-tiny, likely due to smaller networks being
easier to train on small datasets.

Feature Clustering without Motion. To demonstrate the potential of using motion for
discovering objects, in Table 6, we compare to additional baselines that only rely on cluster-
ing visual features. Spectral feature clustering with K = 2 (based on [55]), on the same visual
features we use to merge segments (i.e., DINO) after over-clustering, shows (somewhat un-
surprisingly) that learning from motion is important for motion segmentation. Similarly,
K-means (K = 2) on the same features also falls behind our method. Yet, we show that
K-means also benefits from over-clustering (K = 4) and then merging.
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CUB DUTS ECSSD OMRON

Acc J ↑ maxFβ ↑ Acc J ↑ Fβ ↑ Acc J ↑ Fβ ↑ Acc J ↑ Fβ ↑

[88] WNet† – 24.8 – – – – – – – – – –
[32] IIC-seg – 36.5 – – – – – – – – – –

[8] PertGAN – 38.0 – – – – – – – – – –
[17] ReDO 84.5 42.6 – – – – – – – – – –
[38] UISB – 44.2 – – – – – – – – – –

[4] OneGAN – 55.5 – – – – – – – – – –
[95] DRC – 56.4 – – – – – – – – – –
[29] GANSeg – 62.9 – – – – – – – – – –
[81] Voynov et al. 94.0 71.0 80.7 88.1 51.1 60.0 90.6 68.4 79.0 86.0 46.4 53.3
[50] AMD – – – – – 60.2 – – – – – –
[56] Kyriazi et al. 92.1 66.4 78.3 89.3 52.8 61.4 91.5 71.3 80.6 88.3 50.9 58.3
[55] Kyriazi et al. – 76.9 – – 51.4 – – 73.3 – 56.7 –
[93] DyStaB† – – – – – – – – 88.1 – – 73.9
[85] TokenCut – – – 90.3 57.6 – 91.8 71.2 – 88.0 53.3 –
[71] SelfMask – – – 92.3 62.6 – 94.4 78.1 – 90.1 58.2 –

Ours 93.5 64.6 80.9 91.5 49.2 65.6 88.5 56.1 74.3 89.3 41.31 56.3

Table 9: Expanded unsupervised object segmentation benchmark CUB and three saliency
detection benchmarks: DUTS, ECSSD, and DUT-OMRON (OMRON). † DyStaB uses CRF
post-processing, supervised pre-training, and self-training on each dataset.

Flow Estimation. Finally, our method relies on optical flow estimated by frozen, off-the-
shelf networks. So far we have been using RAFT [77], as such optical flow network was
adopted in our baselines. In Table 7, we also consider PWCNet [75] and fully-unsupervised
ARFlow [49]. We observe that the performance of the flow estimator has an impact on the
final performance of our method. Finally, we compare our fully unsupervised model (which
uses self-supervised pretraining and flow) to fully unsupervised state-of-the-art methods.
Appearance-Motion Decomposition (AMD) [50] works end-to-end and directly extracts mo-
tion features from pairs of images with a PWCNet-like architecture, while MotionGrouping
(MG) [90] and our method use ARFlow [49] for optical flow estimation. In Table 8 we show
that our method achieves a significant improvement over previous approaches.

D Additional Results and Discussion

We provide a further breakdown of our results in Tables 10 to 12, reporting per sequence
evaluation results on the video segmentation tasks.

Video object segmentation and egomotion. We note that some sequences have pronounced
egomotion (e.g., camera shaking in libby of DAVIS or inside a moving car in camel01
of FBMS). Our model performs well on these sequences, demonstrating that it can handle
egomotion. When only the camera is moving, the resulting optical flow would still highlight
objects due to parallax. This provides a learning signal, however, it would likely be weaker
for objects farther away from the camera. As our method works on a per-frame basis and
does not require flow during inference, this should not have an impact at test time. However,
fine-tuning on scenes with only egomotion (see Appendix C.1 for experiments investigating
test-time adaptation) and only small or far away objects, might lead to the model learning to
ignore them.
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w/o CRF w/ CRF
Sequence J (M) J (R) J (D) J (M) J (R) J (D)

blackswan 67.0 100.0 -0.8 67.4 100.0 1.1
bmx-trees 58.2 76.9 19.9 59.8 76.9 17.5

breakdance 86.2 100.0 4.9 87.4 100.0 5.2
camel 89.4 100.0 5.7 90.6 100.0 5.5

car-roundabout 81.4 90.4 26.7 81.2 90.4 25.8
car-shadow 84.3 100.0 9.0 83.9 100.0 8.0

cows 90.4 100.0 3.4 91.3 100.0 3.2
dance-twirl 87.4 100.0 -7.1 88.8 100.0 -6.2

dog 92.9 100.0 -1.7 93.9 100.0 -1.6
drift-chicane 78.6 98.0 2.2 82.0 100.0 2.6
drift-straight 80.6 100.0 7.2 82.1 100.0 8.2

goat 78.6 100.0 1.7 75.8 100.0 4.5
horsejump-high 84.9 100.0 6.4 88.0 100.0 4.6

kite-surf 64.4 97.9 4.5 67.5 97.9 3.1
libby 82.9 100.0 8.6 84.5 100.0 8.6

motocross-jump 74.1 78.9 4.1 75.1 81.6 4.1
paragliding-launch 62.2 65.4 33.5 64.1 66.7 35.8

parkour 86.1 100.0 -4.5 88.1 100.0 -3.1
scooter-black 82.1 97.6 -4.3 82.1 100.0 -4.3

soapbox 79.2 100.0 -2.8 81.0 100.0 -0.4

Average 79.5 95.3 5.8 80.7 95.7 6.1

Table 10: Result breakdown on DAVIS16 validation sequences. (M), (R), and (D) are
mean, recall and decay of IoU, respectively

Image segmentation. For unsupervised image segmentation, we show some additional
qualitative results for CUB in Fig. 4, DUT-OMRON in Fig. 5, DUTS in Fig. 6, and ECSSD
in Fig. 7. Our model, trained on a combined dataset of DAVIS, FBMS and STv2, is robust
enough to handle a wide array of classes from the above datasets in varying context. Our
model can segment both stationary and non-stationary objects and works well when multiple
objects are in the foreground. In Fig. 8, we show a few failure cases for all datasets, where the
model struggles mostly with ambiguous foreground objects and, in particular, with close-ups
of stationary objects, e.g. signs (ECSSD) and buildings (DUT-OMRON). The model also has
issues with boundaries for many objects, i.e. the foreground objects are correctly identified
but the model fails to fully segment them. For example, in DUTS, the snake in the first image
has a well segmented head, however, the model does not segment its body accurately.
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w/o CRF w/ CRF
Sequence J (M) J (M)

drift 86.1 86.5
birdfall 67.8 57.1

girl 84.5 86.3
cheetah 57.0 50.8
worm 83.7 84.0

parachute 90.6 93.2
monkeydog 22.9 22.6

hummingbird 57.3 57.2
soldier 77.4 77.4
bmx 76.4 77.5
frog 84.1 86.7

penguin 77.7 76.8
monkey 75.0 75.8

bird of paradise 92.3 94.0

Seq. Avg. 73.8 73.3
Frame Avg. 78.3 78.9

Table 11: Sequence breakdown on Seg-
Trackv2 dataset.

w/o CRF w/ CRF
Sequence J (M) J (M)

camel01 86.8 91.0
cars1 86.9 86.8

cars10 64.6 64.8
cars4 81.5 82.4
cars5 81.6 82.1
cats01 87.7 89.5
cats03 69.4 63.2
cats06 66.5 67.4
dogs01 76.3 75.6
dogs02 85.3 86.4
farm01 90.8 90.5

giraffes01 82.1 83.9
goats01 79.9 83.7
horses02 80.4 83.6
horses04 59.8 60.5
horses05 72.8 74.5
lion01 75.1 75.0

marple12 81.9 81.6
marple2 84.4 85.9
marple4 81.1 82.4
marple6 95.1 95.1
marple7 76.6 77.6
marple9 95.4 96.3
people03 90.1 91.0
people1 85.3 87.2
people2 88.1 89.7

rabbits02 91.2 91.2
rabbits03 81.5 84.4
rabbits04 43.8 44.1

tennis 73.3 74.2

Seq. Avg. 79.8 80.7
Frame Avg. 77.4 78.4

Table 12: Sequence breakdown on FBMS59
dataset
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Figure 4: Qualitative Comparison on CUB. We train our model on a combined dataset of
DAVIS, FBMS and STv2. Our method can extract birds in different environments and poses.
Our model can segment different species of birds
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Figure 5: Qualitative Comparison on DUT-OMRON. We train our model on a combined
dataset of DAVIS, FBMS and STv2. Our model can segment both stationary and non-
stationary objects and is robust enough to work on a wide range of classes
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Figure 6: Qualitative Comparison on DUTS. We train our model on a combined dataset
of DAVIS, FBMS and STv2. We can segment a wide array of classes. Our model performs
well on scenes where multiple objects are in the foreground
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Figure 7: Qualitative Comparison on ECSSD. We train our model on a combined dataset of
DAVIS, FBMS and STv2. Our model can segment objects from different classes in complex
poses
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ECSSD

DUTS

CUB

DUT-OMRON

Figure 8: Qualitative Comparison of Failure Cases. We train our model on a combined
dataset of DAVIS, FBMS and STv2. Our method can extract salient object in various envi-
ronments. The model has difficulty where the foreground object is ambiguous — when there
are multiple prominent objects but only few are annotated as salient object. The model also
has issues with predicting the object boundaries well for some instances


