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Abstract

We present a large scale benchmark for the evaluation of local feature detectors.
Our key innovation is the introduction of a new evaluation protocol which extends and
improves the standard detection repeatability measure. The new protocol is better for
assessment on a large number of images and reduces the dependency of the results on
unwanted distractors such as the number of detected features and the feature magnifica-
tion factor. Additionally, our protocol provides a comprehensive assessment of the ex-
pected performance of detectors under several practical scenarios. Using images from the
recently-introduced HPatches dataset, we evaluate a range of state-of-the-art local feature
detectors on two main tasks: viewpoint and illumination invariant detection. Contrary to
previous detector evaluations, our study contains an order of magnitude more image se-
quences, resulting in a quantitative evaluation significantly more robust to overfitting. We
also show that traditional detectors are still very competitive when compared to recent
deep-learning alternatives.

1 Introduction

Despite advances in distributed representations such as deep convolutional networks, local
viewpoint invariant features still play an important role in tasks such as structure from motion
and image retrieval. In these applications, deep learning has often been used to improve
rather than to replace local features. While most of this work focused on learning feature
descriptors, recently there has been progress in learning detectors as well. For example,
in [36] use deep networks to learn a local feature detector robust to illumination changes,
[38] for orientation assignment, [15] for learning detectors without supervision, and [37] for
learning local feature detectors, orientation assignment and descriptors.

An obstacle to further progress in learning local feature detectors is the lack of a modern,
large-scale evaluation benchmark for this task. Advances in tasks such as image classifi-
cation were driven by the introduction of benchmarks such as ImageNet. For local feature
descriptors, recent contributions such as HPATCHES [3] may play a similar role, but there is
still no good solution for detection. Several works for testing performance of both detector
and descriptors emerged, [23, 31], however we believe that being able to test and compare
algorithms separately provides invaluable insight into where the progress is made.
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In order to address this shortcoming, in this paper we propose a modern evaluation of
feature detectors. We do so by augmenting the evaluation protocol (section 3) of feature
benchmarks which come with ground truth homographies for image sequences representa-
tive of various difficult imaging scenarios, such as illumination and viewpoint changes. We
build especially on the recently-introduced HPATCHES dataset; however, while the latter
contains pre-detected image patches for descriptor evaluation, we discard such patches and
use the images as a whole to assess feature detectors instead. We further refer to this dataset
as HPSequences.

For the evaluation protocol, we start from the detector repeatability evaluation protocol
introduced in the classic paper of [22], as it is an accepted standard, and we improve it in
various ways. Specifically, compared to earlier benchmarks such as VGG Affine, which are
nowadays heavily over-fitted due to their small size and due to having been used by the com-
munity for many years, HPSequences is much larger and less prone to over-fitting. Further-
more, we improve the evaluation protocol by addressing issues in the invariance to feature
magnification factor found in the reference implementation of repeatability (section 3.1). We
also propose to modify the protocol to explicitly control for the number of detected features
per image (section 3.2), yielding fairer detector comparisons. Due to the significantly in-
creased number of images compared to VGG Affine (696 vs 48), we also change the way
results are aggregated, reported, and analysed, comparing detectors quantitatively using a
single plot (section 3.3). Additionally, we include trivial baselines based on random fea-
tures which provide lower bounds of the expected performance. The new benchmarking
code for automatic evaluation of detectors is released in the open source domain, simplify-
ing reproducibility of the future research. We aim to provide a robust, easy-to-reproduce
and easy-to-use evaluation platform for comparison of local feature detector performance on
planar scenes. Both source code and pre-computed scores used for this manuscript are freely
available1.

Having designed a suitable benchmark, our second contribution is to analyse classic fea-
ture detector against modern ones based on deep learning (section 5). We find that learning
detectors significantly improves robustness to illumination changes, but that, for viewpoint
invariance, traditional detectors using scale selection and affine adaptation are still nearly as
good and sometimes better than learned ones.

2 Related work
In this section we introduce evaluated local feature detectors (section 2.1) and existing bench-
marks for their evaluation (section 2.2).

2.1 Local detectors
Local image feature detectors differ by the type of features that they extract, e.g. points [13,
28], circles [17, 19], or ellipses [5, 18, 20]. In turn, the type of feature determines which
class of transformations that they can handle: Euclidean transformations, similarities, and
affinities respectively. Additionally, we can divide detectors as follows:

Hand-crafted detectors. Standard, hand-crafted local feature detectors vary based on the
visual structures used as anchors for the features, e.g. corners or other operators of the image

1https://github.com/lenck/vlb-deteval
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intensity such as the Hessian of Gaussian [7] or the structure tensor [12, 13, 42]. Going
beyond roto/translation, scale selection methods using the Laplacian/Difference of Gaussian
operator (L/DoG) or Hessian of Gaussian were introduced in [17, 19] and further extended
with affine adaptation [5, 20] to handle full affine transformations.

Accelerated detectors. Machine learning can be used to imitate and accelerate an off-the-
shelf detector defined a-priori [10, 14, 29, 32]. Rosten et al. [28] use simulated annealing to
optimise the parameters of their FAST detector for repeatability. For the SURF detector [6],
the authors use integral images to approximate the Hessian feature response.

Learned detectors. Learning detectors attempts to discover or improve the visual anchors
used for detection, a task much harder than using hand-crafted anchors. Early attempts used
genetic programming [25, 33]. More recently, Yi et al. [38] learn to estimate the orientation
of feature points using deep learning. A related approach is the TILDE detector [36] for
illumination invariance. The LIFT framework [37] aims at learning detector, descriptor and
orientation estimation jointly using patches, while SuperPoint [9] uses full images. Another
approach to unsupervised learning of keypoint detectors is DNET [15], which is trained using
the covariance constraint and no supervision. A version of this detector is TCDET [39],
combined geometry and appearance losses. The covariant constraint is extended for affine
adaptation in [24].

2.2 Evaluation of local detectors

The standard protocols for the evaluation of local feature detectors and descriptors was es-
tablished by [21, 22] using the VGG Affine dataset, which contains 8 sequences of 6 images
related by a known homography. Detectors are assessed in terms of their repeatability, which
measures their robustness to nuisance effects such as a change in viewpoint or illumination.
The standard definition of repeatability has some shortcomings. First, features are compared
by the overlap of their support, generally elliptical, which may not encode all relevant ge-
ometric information (e.g. it disregards the feature orientation) and depends on the size of
regions, which is arbitrary and requires normalisation. Second, computing repeatability is
somewhat slow and uses in practice a number of approximations, which we show in this
paper are not innocuous.

Many datasets followed the introduction of VGG Affine. In the Hanover dataset [8],
the number of sequences is extended while improving the precision of the homography.
While the traditional and most commonly used VGG Affine dataset contains images that are
all captured by a camera, the Generated Matching dataset [11] is obtained by generating
images using synthetic transformations. The Edge Foci dataset [40] consists of sequences
with very strong changes in viewing conditions, making the evaluation somewhat special-
ized to extreme cases; furthermore, the ground truth for non-planar scenes does not uniquely
identify the correspondences since the transformations cannot be well approximated by ho-
mographies. In the Webcam dataset [36], new sequences for testing illumination changes are
presented. The DTU robots dataset [1] goes beyond homographies and uses scenes with a
known 3D model, obtained using structured lighting. In [23], the authors introduce a new
dataset for generalised wide baseline stereo matching across geometry (homography and
epipolar), illumination, appearance over time and capturing modes.

Instead of introducing new evaluation protocols, our main goal is to provide a large scale
evaluation baselines over multiple datasets. Additionally we improve the repeatability score
and quantitatively analyse results across different tasks.
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3 Evaluation protocol: repeatability revisited
In this section we refresh the traditional repeatability evaluation method proposed by Miko-
lajczyk et al. [22], addressing some of its shortcomings and improving its applicability to
large datasets.

Given an image I, a detector extracts a set D = {R1, . . . ,Rn} of n regions Ri ⊂ R2,
generally ellipses. Given a second image I′ related to the first by an homography, the same
detector extracts another list D′ = {R′1, . . . ,R′n} of m regions. Following Mikolajczyk et al.
[22], the repeatability score rep(D,D′,H) for the detected features is the fraction of features
that match between images with sufficient geometric overlap up to the homography H. While
the concept is simple, there are many important implementation details that strongly affect
the outcome.2 These details are discussed next.

The degree of geometric match between two regionsR,Q⊂R2 is given by their overlap
o(R,Q) = |R∩Q|/|R∪Q|. If H is the homography transformation that reprojects pixels
from image I′ back to image I, the overlap measure can be changed to o(R,HR′) to com-
pensate for this transformation. However, as noted by Mikolajczyk et al. [22], overlap can
generally be increased just by scaling (magnifying) the detected features by a constant mag-
nification factor s ∈R+, which can be trivially incorporated in the definition of any detector.
For example, if sR denotes the effect of scaling the region R by a factor s around its center
of mass, and if R and R′ differ only by a shift, then lims→∞ o(sR,HsR′) = 1. Mikolajczyk
et al. [22] address this issue by rescaling features so that the first one has an area of 302,
resulting in the (asymmetric) normalised overlap score o(R,R′|H) = o(s(R)R,Hs(R)R′),
where s(R) = 302/|R|. Please note that this does not fully remove the influence of the
detected scale, as the relative scale between the compared regions is still important (as the
normalisation constant for both regions is s(R)).

Next, in order to compute repeatability in two feature sets, features must be matched
based on ellipse overlap 3. In order to do so, features that do not belong to the common part
of I and I′ are dropped as they cannot be matched. This is done by sending the center of each
regionR′ to I using H and testing for inclusion in the domain of I; the same operation is re-
peated for regionsR in the other direction. LetDc andD′c be the remaining features. Pairs of
such regions are associated with score s(Ri,R′j) = o(Ri,R′j|H) if their normalised overlap
is at least 1−εO and s(Ri,R′j) =−∞ otherwise. The matchesM∗⊂Dc×D′c are determined
as the bipartite graph that maximises4 the overall score ∑(R,R′)∈M s(R,R′). Note that this
maximization retains only pairs with overlap above the threshold and matches each region at
most once. Finally, repeatability is defined as rep(D,D′,H) = |M∗|/min{|Dc|, |D′c|}.

3.1 Magnification factor invariance
While in principle the use of a normalised overlap measure should make repeatability in-
variant to the detector magnification factor, the reference implementation of this measure
still has a strong empirical dependency on this parameter, as can be seen in fig. 1-left. We
have identified that the cause of this issue is in the heuristic used for accelerating the ellipse
overlap computation. This heuristic filters out ellipse pairs whose enclosing circles cannot

2The actual implementation slightly differs from the definition in the paper Mikolajczyk et al. [22] which also
lacks some details; our description follows the authoritative implementation by the same authors.

3Several works [26, 28] use only distance of the keypoint centres, however it is only applicable for joint detector
and descriptor evaluation.

4In practice, bipartite matching is approximated greedily.
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Figure 1: Average detector repeatability on VGG Affine for three detectors and increasing
magnification factor (log scale). Due to normalisation, the lines should be approximately
constant (right) but this is not the case in the original implementation (left) due to approxi-
mations.

overlap, a test which can be calculated quickly. However, in the original implementation of
the test, this heuristic was applied before the ellipse normalisation step. This leads to ellipses
with area smaller than 302 pixels being mistakenly skipped as unable to overlap, reducing
the repeatability score. After fixing this relatively minor issue (by normalising the excircles),
in fig. 1-right we show that the repeatability becomes invariant to the magnification factor.

3.2 Detection threshold

Many local feature detectors have a single parameter that controls selectivity, which we
generically call detection threshold τ . In hand-crafted detectors, τ is usually the minimum
value of the cornerness measure, such as DoG, Hessian or structure tensor etc., for which a
feature is retained.

One would expect a detector to provide stable performance across all its detection thresh-
olds. In practice, however, this might not be reflected by repeatability. In fact, with an in-
creased number of features, it becomes easier to match features by accident, making repeata-
bility biased for settings that produce more features. That is why, for a fair comparison, local
feature detectors need to return a similar number of features and we test random detectors to
obtain a baseline performance.

Since each detection algorithm anchors features to different visual primitives in an image,
the number of detected features cannot be equalized by choosing a constant τ per detector
for the whole dataset. Instead, similarly to [23, 36], we run each detector to extract as many
features as possible (by lowering τ) and then consider only the top-n detections from each
image ranked by detection score, where n ∈ N = {100,200,500,1000}.5 Testing different
values of n is useful because the number of detections per image may differ based on the
application and shows whether the detection score is predictive of the detected regions re-
peatability. As far as we are aware, testing the detector performance over various operational
point is not a standard practice in local feature evaluation.

3.3 Aggregated metrics and their analysis

So far, we have explained how to compute repeatability for a pair of images. Here we look
at how a large dataset of image pairs can be used for assessment.

5The upper limit 1000 was selected empirically, as some detectors produce fewer features even at the lowest τ

than others.
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Dataset # Seq. #Ims. #Im. pairs
VGG Affine [22] 8 48 40
Webcam [36] 6 250 125
HPSequences [4] 116 696 580

Table 1: Basic statistics of the se-
lected datasets for local feature de-
tector evaluation.

The benchmark of Mikolajczyk et al. [22] contains a number of image sequences (It)T
t=0

and their evaluation reports repeatability for each sequence, fixing I0 as reference image and
varying It , t = 1, . . . ,T . Each sequence tests a particular aspect of feature detection, such
as invariance to viewpoint, illumination, or noise changes. Furthermore, images in each
sequence are sorted by the size of the nuisance variation, so plotting repeatability against t
normally shows a progressive reduction in repeatability.

Such an approach is suitable for VGG Affine, which contains just 8 sequences with 6
images each. Clearly, however, it does not scale well to larger datasets. Furthermore, it does
not provide a single performance metric per detector, nor corresponding confidence margins,
which makes it difficult to compare detectors’ performance and to know how significant the
differences are. Another issue is that in datasets such as Webcam [36] and HPSequences [4]
images cannot be easily sorted by the size of the nuisance variation, thus plotting repeatabil-
ity against t is meaningless.

We approach this issue by computing aggregated statistics over multiple images and
factors of variation, similar to [36, 38, 41]. As repeatability is very sensitive to the number
of features extracted, we also compute an average over different detection thresholds and
analyse the distributions of repeatability scores so obtained to extract confidence margins.

In more detail, we are given a dataset which consists of a set of image pairs and ho-
mographies T = {(I1,J1|H1), . . . ,(IT ,JT |HT )} (table 1). We will denote rep(d, t,n) as the
repeatability of a detector d, task t ∈ T and number of detections per image n ∈N . To score
a detector s, we average repeatability across tasks and number of detections:

rep(d,n) = |T |−1
∑

t∈T
rep(d, t,n), rep(d) = |N |−1

∑
n∈N

rep(d,n). (1)

An ideal detector in our evaluation has a high average repeatability. Additionally, we con-
sider also the variance of the repeatability score, as a low variance means that the detector
performance is consistent across different cases. We visualise both average and variance us-
ing box-and-whisker diagrams, plotting repeatability on the x axis and detectors on the y axis
(fig. 2). These diagrams summarise at a glance the statistics rep(d, t,n) for each detector d.
The box percentiles are 25% and 75% (first and third quartile) and the whisker percentiles
are 10% and 90%. The length of the whiskers correspond to the length of the distribution
tail. Additionally, we show the median (solid line) and the mean (red cross) of each distri-
bution. We vary the line style of the whiskers to group detectors by type, generally based on
their purported invariance (dotted for translation, dash-dot for scale, and dashed for affine
invariant detectors). Finally, for each detector, we show rep(d,n) using box markers: .1k

for rep(d,100), .5k for rep(d,500), and 1k for rep(d,1000).

Stability error across detection thresholds. To quantify the stability of the detector per-
formance across detection thresholds, we calculate the detector instability as the standard
deviation of the detector repeatability across different numbers of features, normalised by
the average repeatability:

stb(d) = rep(d)−1 ·
√
|M|−1∑n[rep(d,n)− rep(d)]2. (2)
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Table 2: Tested local feature detectors and their speed (in seconds) on four test images from
HPSequences (CPU: single thread Intel Xeon E5-2650 v4; GPU: NVIDIA Tesla M40).

Sequence AJUNTAMENT MELON WAR CONSTRUCTION
# Pixels 0.3M 0.5M 1.0M 3.1M

Detector Impl. CPU GPU CPU GPU CPU GPU CPU GPU
FAST-T [28] MATLAB 0.10 - 0.01 - 0.01 - 0.03 -
SURF-S [6] MATLAB 0.14 - 0.12 - 0.42 - 1.20 -
BRISK-S [16] MATLAB 0.26 - 0.26 - 0.37 - 0.52 -
DoG-S [17] VLFeat [35] 0.14 - 0.17 - 0.53 - 2.80 -
Hes-A [20] VLFeat [35] 0.55 - 0.56 - 2.67 - 11.91 -
TILDE-T [36] [36] 3.42 - 5.42 - 9.38 - 34.99 -
LIFT-S [37] [37] - 149.94 - 155.41 - 163.28 - 223.52
DNET-T [15] [15] 7.64 0.13 12.22 0.18 25.01 0.35 83.92 1.24
DNET-S [15] [15] 15.24 0.35 24.06 0.49 49.64 0.90 465.42 3.00
TCDET-S [39] [39] 3.67 1.42 7.04 1.67 13.24 2.25 40.47 5.35

4 Selected local feature detectors

Reference detectors. Due to large number of existing detectors, we select a sample rep-
resentative of the breadth of possible approaches. Furthermore, we restrict our attention
to detectors that associate a detection strength τ to each feature (possibly after modifying
the implementation of the detector to expose such a value), as needed for selection in the
evaluation protocol. That is why we exclude MSER [18]6 and Edge Based Regions [34].

The selected detectors are listed in Table 2. Detectors are suffixed with -T, -S, -A to em-
phasise their theoretical viewpoint invariance class (translation, translation+scale and affine
respectively). We test a number of detectors representative of traditional techniques such
as Harris/Laplace/Hessian cornerness/scale selection and affine adaptation (DoG-S — aka
SIFT-S, SURF-S, Hes-A). We also test FAST-T and BRISK-S, which uses learning to ac-
celerate a standard corner detector. Finally, we test several last-generation detectors that
use deep learning: TILDE-T, TCDET-S, LIFT-S, DNET-T, DNET-S. DNET-S is a version
of DNET [15] which is evaluated on scaled images, similarly as TCDET-S [39]. The table
also reports their evaluation speed, as this is often a key parameter in applications. Unfor-
tunately, for more recent works [9, 26, 30], the source code was not available at the time of
publication.

Random baseline detectors. Detectors are also contrasted against a baseline obtained
by sampling n features at random [36]. We consider: random points (RAND-T), circles
(RAND-S) and ellipses (RAND-A). Given a scale s and a H×W image, the feature center
(u,v) is obtained by sampling uniformly at random the set [s,W − s]× [s,H− s]. The scale
is sampled as s ∼ min{‖N (smin,(smax− smin)

2/4)‖,smax} where smin = 0.1 and smax = 50
are the minimum and maximum scales. The normal distribution captures the fact that, for
most detectors, less features are detected at larger scales. Finally, ellipses are generated by
sampling the affine transformation A =

( cos(θ) −sin(θ)
sin(θ) cos(θ)

)
·
(

s·2−a/2 0
0 s·2a/2

)
where θ ∼ U(−π,π)

and a∼ U(0,2) (note that
√

detA = s can still be interpreted as scale).

5 Experiments

Datasets. While we use several datasets in our evaluation (table 1), we mainly focus on
HPSequences which builds on the images of HPATCHES [3]. This contains image sequences

6We have experimented using region stability as a detection score surrogate, as defined in VLFeat [35], but we
did not obtain any consistent results.
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Figure 2: Repeatability of selected detectors on VGG Affine, Webcam, and HPSequences
viewpoint/illumination sequences (HP-V vs HP-I). See section 3.3 for the notation.

Table 3: Complete results - average repeatability of the selected detectors on all presented
homography datasets.

Det HP-I [3] HP-V [3] HP-I+V [3] VGG [22] WEBC [36] EFOCI [40] HANN [8] Avg. rnk
stb rep rnk stb rep rnk stb rep rnk stb rep rnk stb rep rnk stb rep rnk stb rep rnk

TCDET-S 0.1 64.91 2 0.1 58.71 2 0.1 61.76 1 0.1 65.85 1 0.2 61.92 2 0.2 58.25 1 0.1 51.55 5 2.00
DNET-S 0.2 56.20 5 0.2 56.12 4 0.2 56.16 2 0.1 64.56 2 0.3 46.70 5 0.2 53.05 2 0.1 54.72 2 3.14
TILDE-T 0.2 67.52 1 0.1 41.67 7 0.1 54.37 4 0.1 58.58 6 0.2 67.03 1 0.2 50.53 4 0.1 40.37 8 4.43
Hes-A 0.1 49.60 9 0.1 59.94 1 0.1 54.86 3 0.1 63.84 3 0.3 37.72 10 0.2 47.30 6 0.0 58.73 1 4.71
DoG-S 0.1 52.04 7 0.0 56.29 3 0.1 54.20 5 0.1 62.53 4 0.4 39.56 9 0.2 51.12 3 0.0 54.71 3 4.86
SURF-S 0.1 54.05 6 0.1 54.25 5 0.1 54.16 6 0.1 60.45 5 0.3 45.76 6 0.2 49.10 5 0.0 51.76 4 5.29
DNET-T 0.1 64.79 3 0.2 40.65 8 0.1 52.51 7 0.1 54.15 7 0.2 58.47 3 0.2 46.84 7 0.1 40.82 7 6.00
LIFT-S 0.2 51.96 8 0.1 51.27 6 0.1 51.61 8 0.1 50.85 8 0.3 44.48 8 0.2 45.84 8 0.1 41.20 6 7.43
FAST-T 0.2 57.99 4 0.1 38.43 9 0.1 48.04 9 0.2 49.63 9 0.3 49.01 4 0.2 39.74 9 0.1 39.44 9 7.57
BRISK-S 0.5 40.43 10 0.7 17.25 10 0.5 28.64 10 0.6 23.14 11 0.5 45.03 7 0.6 29.11 10 0.7 12.58 10 9.71
RAND-T 0.6 33.81 11 0.8 12.78 11 0.7 23.11 11 0.7 24.11 10 0.8 32.10 11 0.6 28.09 11 0.8 12.03 11 10.86
RAND-S 0.8 12.78 12 0.9 6.27 12 0.9 9.47 12 0.9 10.41 12 0.8 15.14 12 0.8 17.11 12 0.9 5.61 12 12.00
RAND-A 0.9 5.82 13 0.9 2.59 13 0.9 4.17 13 1.0 4.50 13 0.9 6.74 13 0.9 8.09 13 0.8 2.61 13 13.00
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Figure 3: Comparison of repeatability distributions of pair of detectors on different subsets
HPSequences (HP-V and HP-I), n = 1000. The x-axis is a repeatability of the reference
detector (specified by row) and y-axis is repeatability of the selected detector, specified by
column. Each point in a plot represents a repeatability of a single image pair.

in a similar format to the original VGG Affine dataset, but with an order of magnitude more
sequences, divided in viewpoint (HP-V) and illumination (HP-I) changes.

Aggregated evaluation. We first evaluate the average repeatability of the detectors (fig. 2
and table 3) as defined in eq. (1). For the older VGG Affine, translation invariant detectors
such as TILDE-T are competitive in median/average with more invariant detectors (-S, -
A), but in 10% of the cases fail catastrophically (see the whiskers). The latter problem
is solved by scale invariance and the best detectors use Hessian or Laplacian-based scale
selection (-S). On the Webcam dataset, which contains only illumination changes, RAND-T
is surprisingly competitive (mostly due to the fact that scale is always selected consistently),
on part with more complex -S and -A detectors. TILDE-S, which is learned on this dataset,
is unsurprisingly the winner.

Next, we look at HPSequences, starting from the viewpoint sequences (HP-V). Com-
pared to the previous datasets, the RAND-T,S,A baselines perform much worse, confirming
that this data is significantly harder. The best detectors are variants of the Hessian one, which
is popular in instance retrieval [2, 27], and scale selection (-S) brings in general an advan-
tage; however, the benefits of Baumberg [5] affine adaptation (-A) is small. In general, the
top six detectors perform similarly. For the illumination sequences (HP-I, Webcam), since
scale does not change, -T detectors are advantaged. The best performance is again achieved
with the TILDE-T, which therefore generalises beyond the Webcam dataset.

From the relatively high performance of the RAND-T detector, we can see that it is
crucial to compare detectors of similar classes. This also justifies the use of ellipse overlap
over the simpler distance of keypoint centres for detector evaluation.

For the stability across detection thresholds (2), we see in table 3 that the majority of
the best performing detectors have their stability errors under 10%. However, the stability
is much lower for the BRISK and RANDOM detectors, which indicates that the BRISK
detection scores are not predictive of the detector performance.

Non-modal performance. A limitation of the analysis above is that it relies on aggregated
measures that may hide particular example cases where a given detector has a significant
advantage, such as an extreme viewpoint change. To analyse this possibility, in fig. 3 we
plot the repeatability of each detector (y-axis) against the one of the best reference detector
(Hes-A and TILDE-T) for all images in the viewpoint (HP-V) and illumination (HP-I) se-
quences. Points above the diagonal mean that the tested detector (column) obtained higher
repeatability on a specific image pair than the reference detector (row). Please note that
the distribution of the visualised points across y-axis would give us fig. 2. We can se that
TILDE-T tends to uniformly dominate other detectors in HP-I, but for HP-V the best overall
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Figure 4: Example of an image pair where a trained detector (rep(TCDET-S) = 69.8)
achieves better performance compared to a traditional detector (rep(HES-A) = 28.57).

detector Hes-A is occasionally outperformed by other detectors such as DNET or TCDET-S,
which can therefore be complementary (qualitative example in fig. 4).

Finally, in table 3 we test the consistency of the results across several more datasets (HP-
I, -V, -I+V, VGG, Webcam, Edge Foci, Hannover), reporting repeatability, stability and the
rank of each detector together with its average rank. Remarkably, detectors learned using the
covariance constraint with scale invariance lead the performance across the selected datasets.
However traditional detectors generally outperform the trained detectors on tasks where a
viewpoint invariance is important. Nonetheless, for learnt detectors this might be mitigated
with additional data augmentation or training on datasets with more viewpoint variations.
Similarly, the random detectors set a baseline performance for both repeatability and stability
across detector’s selectivity.

6 Discussion
While learning is poised to change local feature detection, developing a new generation
of algorithms almost invariably requires the introduction of improved benchmark datasets.
Object detection had PASCAL VOC, deep learning had ImageNet, and handcrafted detectors
had VGG Affine. In this paper, we have proposed to improve and extend VGG Affine’s
protocol to large scale evaluation. While performance of the whole local feature pipeline is
important, ability to compare detection performance of different algorithms, without undue
influence of the selected description and matching algorithm, is crucial. It not only allows
to assess geometric precision of a detector, but in combination with descriptor evaluation it
allows to pinpoint the main source of improvement. We are hoping that this detailed analysis
will catalyse further progress and advance our understanding of machine learning applied to
local feature detection.

Using this benchmark, we have assessed several traditional and deep detectors. We have
showed that, while machine learning clearly helps for illumination invariance, for viewpoint
invariance traditional methods are still surprisingly competitive. This suggests that there is
still significant potential for progress in this area.
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