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Abstract. We propose a novel method to supervise convolutional neu-
ral networks without manual supervision, using instead motion cues ob-
tained by measuring optical flow in video streams. The obvious approach
of training a network to predict flow from a single image can be needlessly
difficult due to intrinsic ambiguities in this prediction task. We instead
propose a much simpler learning goal: embed pixels such that the simi-
larity between their embeddings matches that between their optical flow
vectors. At test time, the learned deep network can be used without ac-
cess to video or flow information and transferred to tasks such as image
classification, detection, and segmentation. Our method, which signifi-
cantly simplifies previous attempts at using motion for self-supervision,
achieves state-of-the-art results in self-supervision using motion cues,
competitive results for self-supervision in general, and is overall state of
the art in self-supervised pretraining for semantic image segmentation,
as demonstrated on standard benchmarks.

1 Introduction

Self-supervised learning has emerged as a promising approach to address one of
the major shortcomings of deep learning, namely the need for large supervised
training datasets. While there is a remarkable variety of self-supervised learning
methods, they are all based on the same basic premise, which is to identify
problems that can be used to train good deep networks without the expense of
collecting data annotations. In this spirit, an amazing diversity of supervisory
signals have been proposed, from image generation to colorization, in-painting,
jigsaw puzzle solving, orientation estimation, counting, artifact spotting, and
many more (section 2). Furthermore, the recent work of [1] shows that combining
several such cues further helps performance.

In this paper, we consider the case of self-supervision using motion cues.
Here, a deep network is trained to predict, from a single video frame, how the
image could change over time. Since predicted changes can be verified auto-
matically by looking at the actual video stream, this approach can be used for
self-supervision. Furthermore, predicting motion may induce a deep network to
learn about objects in images. The reason is that objects are a major cause of
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Fig. 1: We propose a novel method to exploit motion information represented
as optical flow, to supervise the learning of deep CNNs. We learn a network
that predicts per-pixel embeddings φ(I) such that the kernel computed over
these embeddings (Kφ) is similar to that over corresponding optical-flow vectors
(Kf ). This allows the network to learn from motion cues while avoiding the
inherent ambiguity of motion prediction from a single frame.

motion regularity and hence predictability: pixels that belong to the same object
are much more likely to “move together” than pixels that do not.

Besides giving cues about objects, motion has another appealing character-
istic compared to other signals for self-supervision. Many other methods are, in
fact, based on destroying information in images (e.g. by removing color, scram-
bling parts) and then tasking a network with undoing such changes. This has
the disadvantage of learning the representation on distorted images (e.g. gray
scale). On the other hand, extracting a single frame from a video can be thought
of as removing information only along the temporal dimension and allows one
to learn the network on undistorted images.

There is however a key challenge in using motion for self-supervision: ambi-
guity. Even if the deep network can correctly identify all objects in an image,
this is still not enough to predict the specific direction and intensity of the ob-
jects’ motion in the video, given just a single frame. This ambiguity makes the
direct prediction of the appearance of future frames particularly challenging,
and overall an overkill if the goal is to learn a good general-purpose image rep-
resentation for image analysis. Instead, the previous most effective method for
self-supervision using motion cues [2] is based on first extracting motion tubes
from videos (using off-the-shelf optical flow and motion tube segmentation algo-
rithms) and then training the deep network to predict the resulting per-frame
segments rather than motion directly. Thus they map a complex self-supervision
task into one of classic foreground-background segmentation.

While the approach of [2] sidesteps the difficult problem of motion predic-
tion ambiguity, it comes at the cost of pre-processing videos using a complex
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handcrafted motion segmentation pipeline, which includes many heuristics and
tunable parameters. In this paper, we instead propose a new method that can
ingest cues from optical flow directly, without the need for any complex data
pre-processing.

Our method, presented in section 3 and illustrated in fig. 1, is based on a new
cross pixel flow similarity loss layer. As noted above, the key challenge to address
is that specific details about the motion, such as its direction and intensity, are
usually difficult if not impossible to predict from a single frame. We address this
difficulty in two ways. First, we learn to embed pixels into vectors that cluster
together when the model believes that the corresponding pixels are likely to
move together, regardless of the specific direction or velocity. This is obtained
by encouraging the inner product of the learned pixel embeddings to correlate
with the similarity between their corresponding optical flow vectors. However,
this is still not sufficient to address the ambiguity completely; in fact, while
different objects may be able to move independently, they may not do so all
the times (for example, often objects stand still, so their velocities are all zero).
We addressed this second challenge by using a robust loss that captures pixel
grouping probabilistically rather than deterministically.

In section 4 we extensively validate our model against other self-supervised
learning approaches. First, we show that our approach works as well or better
than [2], establishing a new state-of-the-art method for self-supervision using
motion cues. Second, to put this into context, we also compare the results to
all recent approaches for self-supervision that use cues other than motion. In
this case, we show that our approach has strong performance in some cases and
state-of-the-art performance for semantic image segmentation.

The overall conclusion (section 5) is that our method significantly simplifies
leveraging motion cues for self-supervision and does so better than existing al-
ternatives for this modality; it is also competitive with self-supervision methods
that use other cues, making motion a sensible choice for self-supervision by itself
or in combination with other cues [1].

2 Related Work

Self-supervised learning, of which our method is an instance, has become very
popular in the community. We discuss here the main methods for training generic
features for image understanding (as opposed to methods with specific goals such
as learning object keypoints) and group them according to the supervision cues
they use.

Video/Motion Based: LSTM RNNs can be trained to predict future frames
in a video [3]. This requires the network to understand image dynamics and
extrapolate it into the future. However, since several frames are observed simul-
taneously, these methods may learn something akin to a tracker, with limited
abstraction. On the other hand, we learn to predict properties of optical flow
from a single input image, thus learning a static image representation rather
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than a dynamic one. Closely related to our work is the use of video segmenta-
tion by [2]. They use an off-the-shelf video segmentation method [4] to construct
a foreground-background segmentation dataset in an unsupervised manner. A
CNN trained on this proxy task transfers well when fine-tuned for object recogni-
tion and detection. We differ from them in that we do not require a sophisticated
pre-existing pipeline to extract video segments, but use optical flow directly. Also
closely related to us is the work of [5]. They train a siamese style convolutional
neural network to predict the transformation between two images. The individ-
ual base networks in their siamese architecture share weights and can be used
as feature extractors for single images at test time. This late fusion strategy
forces the learning of abstractions, but our no-fusion approach pushes the
model even further to learn better features. The polar opposite of these is to do
early fusion by concatenating two frames as in FlowNet [6]. This was used as a
pretraining strategy by [7] to learn representations for pairs of frames. This
is different from our objective as we aim to learn a static image represen-
tation. This difference becomes clearer when looking at the evaluation. While
we evaluate on image classification, detection, and segmentation; [7] evaluate on
dynamic scene and action recognition.

Temporal context is a powerful signal. [8,9,10] learn to predict the correct
ordering of frames. [11] exploit both temporal and spatial co-occurrence statis-
tics to learn visual groups. [12] extend slow feature analysis using higher order
temporal coherence. [13] track patches in a video to supervise their embedding
via a triplet loss while [14] do the same but for spatio-temporally matched region
proposals. Temporal context is applied in the imitation learning setting by Time
Contrastive Networks [15].

Videos contain more than just temporal information. Some methods exploit
audio channels by prediction audio from video frames [16,17]. [18] train a two
stream architecture to classify whether an image and sound clip go together or
not. Temporal information is coupled with ego-motion in [19,20]. [21] use videos
along with spatial context pretraining [22] to construct an image graph. Transi-
tivity in the graph is exploited to learn representations with suitable invariances.

Colorization: [23,24,25] predict colour information given greyscale input and
show competitive pre-training performance. A generalization to arbitrary pairs
of modalities was proposed in [26].

Spatial Context: [27] solve the in-painting problem, where a network is tasked
with filling-in partially deleted parts of an image. [22] predict the relative po-
sition of two patches extracted from an image. In a similar spirit, [28,29] solve
a jigsaw puzzle problem. [29] also cluster features from a pre-trained network
to generate pseudo labels, which allows for knowledge distillation from larger
networks into smaller ones. The latest iteration on context prediction by [30]
obtains state-of-the-art results on several benchmarks.

Adversarial/Generative: BiGAN based pretrained models [31] show com-
petitive performance on various recognition benchmarks. [32] adversarially learn
to generate and spot defects. [33] obtain self-supervision from synthetic data
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and adapt their model to the domain of real images by training against a dis-
criminator. [34] predict noise-as-targets via an assignment matrix which is op-
timized on-line. Their approach is domain agnostic. More in general, generative
unsupervised layer-wise pretraining was extensively used in deep learning be-
fore AlexNet [35]. An extensive review of these and more recent unsupervised
generative models is beyond the scope of our paper.

Transformations: [36] create surrogate classes by applying a set of trans-
formations to each image and learn to become invariant to them. [37] do the
opposite and try to estimate the transformation (just one of four rotations in
their case) given the transformed image. The crop-concatenate transformation
is implicit in the learning by counting method of [38]. [39] use correspondences
obtained from synthetic warps to learn a dense image representation.

Others: A combination of self-supervision approaches was explored by [1].
They report results only with ResNet models making it hard to compare with
concurrent work, but closely matching ImageNet-pretrained networks in per-
formance on the PASCAL VOC detection task. [40] propose a mix-and-match
tuning strategy as a precursor to finetuning on the target domain. Their ap-
proach can be applied to any pretrained model and achieves impressive results
for PASCAL VOC 2012 semantic segmentation. Another widely-applicable trick
that helps in transfer learning is the re-balancing method of [41]. Lastly, our
optical-flow classification baseline is based on the work of [42]. They learn a
sparse hypercolumn model to predict surface normals from a single image and
use this as a pretraining strategy. Our baseline flow classification model is the
same but with AlexNet for discretized optical-flow.

3 Method

In this section, we describe our novel method, illustrated in fig. 1, for self-training
deep neural networks via direct ingestion of optical flow. Once learned, the result-
ing image representation can be used for classification, detection, segmentation
and other tasks with minimal supervision.

Our goal is to learn the parameters Θ of a neural network φ that maps a single
image or frame I : R2 ⊃ Ω → R3 to a field of pixel embeddings φ(I, p|Θ) ∈ RD,
one for each pixel p ∈ Ω. In order to learn this embedding, which is extracted
from a single frame, we task our neural network with predicting the motion
present in the corresponding video, represented as optical flow. However, since
predicting flow vectors directly is too ambiguous, we propose instead to require
the similarity between pairs of embedding vectors to align to the similarity
between the corresponding flow vectors. This is sufficient to capture the idea
that things that move together should be grouped together, popularly known as
the Gestalt’s principle of common fate.

Formally, givenD-dimensional CNN embedding vectors φ(I, p|Θ), φ(I, q|Θ) ∈
RD for pixels p, q ∈ Ω and their corresponding flow vectors fp, fq ∈ R2, we match
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Fig. 2: Visualization of flow (second row) and embedding (third row) kernels.
For three pixels p, we plot the row K(p, ·) reshaped as an image, showing which
pixels go together from the kernel’s perspective. Note the localized nature of
the flow kernel which is obtain by setting a low bandwidth for the RBF kernel.
In the first column, optical flow and embeddings (after a random 16D → 3D
projection) are visualized as color images.

the kernel matrices

∀p, q ∈ Ω : Kφ

(
φ(I, p|Θ), φ(I, q|Θ)

)
u Kf (fp, fq) (1)

where Kφ : RD × RD → R, Kf : R2 × R2 → R are kernels that measure the
similarity of the CNN embeddings and flow vectors, respectively.

In this formulation, in addition to the choice of CNN architecture φ, the
key design decisions are the choice of kernels Kφ,Kf and how to translate con-
straint (1) into a loss function. The rest of the section discusses these choices.

Kernels: In order to compare CNN embedding vectors and flow vectors, we
choose respectively the (scaled) cosine similarity kernel and the Gaussian/RBF
kernel. Using the shorthand notation φp = φ(I, p|Θ) for readability, these are:

Kφ(φp, φq) :=
1

4

φTp φq

‖φp‖2‖φq‖2
, Kf (fq, fq) := exp

(
−‖fp − fq‖

2
2

2σ2

)
. (2)

Note that these kernels, when restricted to the set of pixels Ω, are matrices of
size |Ω|×|Ω|. Each row or column of this matrix can be thought of as a heatmap
capturing the similarity of a given pixel with respect to all other pixels and thus
can be visualized as an image. We present such visualizations for both of our
kernels in fig. 2.

We use the Gaussian kernel for the flow vectors as this is consistent with the
Euclidean interpretation of optical flow as a displacement. Observe that reducing
kernel bandwidth (σ) results in a localized kernel that pushes our embeddings
harder to distinguish between different movable objects. The value of σ is learned
along with the weights of the CNN in the optimization. This localized kernel,
with learned σ2 = 0.0067, is shown in the second row of fig. 2.
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We use the cosine kernel for the learned embedding as the CNN effectively
computes a kernel feature map, so that in principle it can approximate any kernel
via the inner product. However, note that the expression normalizes vectors in
L2 norm, so that this inner product is the cosine of the angle between embed-
ding vectors. This normalization is key as it guarantees that KΦ is maximum
when the embeddings being compared are identical (the Gaussian kernel does
so automatically).

Cross Pixel Optical-Flow Similarity Loss function: Constraint (1) re-
quires kernels Kφ and Kf to be similar. A conventional metric to measure the
similarity between kernels is kernel target alignment (KTA) [43] which, for two

kernel matrices K,K ′, is given by
∑
pqKpqK

′
pq/
√∑

pqK
2
pq

∑
pqK

′
pq

2. In this

manner, KTA and analogous metrics require kernels to match everywhere. In
our case, however, this is too strong a requirement. Even if the embedding func-
tion φ correctly groups pixels that belong to different movable objects, Kφ may
still not match the optical flow kernel Kf . The reason is that in many video
frames objects may not move with a distinctive pattern or may not move at all,
so that no corresponding grouping can be detected in the measured flow field.
KTA failed to produce reasonable embeddings in our preliminary experiments.

This motivated us to research a kernel similarity criterion more suitable for
our task. The key idea is to relax the correspondence between kernels to hold
probabilistically. We do so in two steps. First, we re-normalize each column
K∗(·, q) of each kernel matrix into a probability distribution S∗(·, q). Each dis-
tribution S∗(·|q) tells which image pixels p are likely to belong to the same
segment as pixel q according to a particular cue, either the CNN embedding
or the optical flow. Then, the distributions arising from CNN and optical flow
kernels are compared by using cross entropy, summed over columns:

L(Θ) = −
∑
q

∑
p

Sf (p, q) logSφ(p, q). (3)

Normalization uses the softmax operator after reducing the contribution of
diagonal terms in the kernel matrix (because each pixel is trivially similar to
itself and would skew the softmax normalization). Formally, for optical flow we
have:

Sf (p, q) =


1∑

q′ 6=p exp(Kf (p,q
′))+1 , if p = q,

exp(Kf (p,q
′))∑

q′ 6=p exp(Kf (p,q
′))+1 , if p 6= q.

(4)

Similarly, for the CNN embedding we have:

Sφ(p, q) =


e−3/4∑

q′ 6=p exp(Kφ(p,q
′))+e−3/4 , if p = q,

exp(Kφ(p,q
′))∑

q′ 6=p exp(Kφ(p,q
′))+e−3/4 , if p 6= q.

(5)

Note that the p = q and p = q′ cases contribute e−3/4 for the embedding kernel’s
softmax. This is because of the 1/4 scaling used in the cosine similarity kernel (2).
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CNN embedding function: Lastly, we discuss the architecture of the CNN
function φ itself. We design the embedding CNN as a hypercolumn head over
a conventional CNN backbone such as AlexNet. The hypercolumn concatenates
features from multiple depths so that our embedding can exploit high resolu-
tion details normally lost due to max-pooling layers. For training, we use the
sparsification trick of [23] and restrict prediction and loss computation to a few
randomly sampled pixels in every iteration. This reduces memory consumption
and improves training convergence as pixels in the same image are highly corre-
lated and redundant; via sampling we can reduce this correlation and train more
efficiently [42].

In more detail, the backbone is a CNN with activations at several layers:
{φc1(I|Θ), · · · , φcn(I|Θ)} ∈ RH1×W1×D1 × · · · × RHn×Wn×Dn . We follow [24]
and interpolate values at a given pixel location and concatenate them to form a
hypercolumn φH(I, p|Θ) ∈ RD1+···+Dn . The hypercolumn is then projected non-
linearly to the desired embedding φ(I, p|Θ) ∈ RD using a multi-layer perceptron
(MLP). Details of the model architecture are discussed in section 4.1.

4 Experiments

We extensively assess our approach by demonstrating its effectiveness in learning
features useful for several tasks. In order to make our results comparable to most
of the related papers in the literature, we consider an AlexNet [35] backbone
and four tasks: classification in ImageNet [44] and classification, detection, and
segmentation in PASCAL VOC [45].

4.1 Backbone details

We adapt the AlexNet version used by Pathak et al. [2]. The modifications are
minor (mostly related to padding) and required to make it possible to attach a
hypercolumn head. Sparse hypercolumns are built from the conv1, pool1, conv3,
pool5 and fc7 AlexNet activations. Embeddings are generated using a multi-layer
perceptron (MLP) with a single hidden layer and are L2-normalized. The em-
beddings are D = 16 dimensional (this number was selected after a preliminary
investigation and could be improved via cross validation, although this is expen-
sive). The exact model specifications are included in supplementary material.

4.2 Dataset

We train the above AlexNet model on a dataset of RGB-optical flow image pairs.
Inspired by the work of Pathak et al. [2], we built a dataset from ∼ 204k videos in
the YFCC100m dataset [46]. The latter consists of Flickr videos made publicly-
available under the creative commons license. We extract 8 random frames from
each video and compute optical flow between those at times t and t + 5 using
the same (handcrafted) optical flow method of [2,47]. Overall, we obtain 1.6M
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Fig. 3: Image and optical-flow training pairs post scale-crop-flip data augmenta-
tion. The noisy nature of both images and optical-flows illustrate the challenges
in using motion as a self-supervision signal.

image-flow pairs.1 Example training sample crops along with optical-flow fields
are shown in fig. 3. The noisy nature of both the images and optical-flow in such
large-scale non-curated video collections makes it all the more challenging for
self-supervision.

Optical flow vectors (fx, fy) are normalized logarithmically to lie between
[−1, 1] during training, so that occasional large flows do not dominate learning.
More precisely, the normalization is given by:

f ′ =


sign(fx) min

(
1, log(|fx|+1)

log(M+1)

)
sign(fy) min

(
1,

log(|fy|+1)
log(M+1)

)
 (6)

where M is a loose upper bound on the flow-magnitude set to 56.0 in our exper-
iments.

Despite the large size of this data and aggressive data augmentation during
training, AlexNet overfits on our self-supervision task. We use early stopping
to reduce over-fitting by monitoring the loss on a validation set. The valida-
tion set consists of 5000 image-flow pairs computed from the YouTube objects
dataset [48]. Epic-Flow [49] + Deep-Matching [50] was used to compute optical-
flow for these frames.

4.3 Learning Details

AlexNet is trained using the Adam optimizer [51] with β1 = 0.9, β2 = 0.999, ε =
10−8 and initial learning rate set to 10−4. No weight decay is used because it
worsened the minima reached by our models before overfitting started. Pixels
are sampled uniformly at random for the sparse hypercolumns. Sampling more

1 The dataset occupies more than 1TB of space and does not easily fit in fast memory
such as an SSD for training. We addressed this problem by using a fixed point
16bit representation of optical flow and storing it as PNG images, with dramatic
compression and negligible residual error. The compressed data occupies 431GB.
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Fig. 4: Per-pixel embeddings are visualized by randomly projecting them to RGB
colors. We show example embeddings generated by our model on frames from the
YouTube objects dataset. From top to bottom: The original validation images,
RGB-mapped embeddings, and optical-flow fields. Best viewed in color on screen.

pixels gives more information per image but also consumes more memory and is
computationally expensive making each iteration slower. We use 512 pixels per
image to balance this trade-off. This reduces memory consumption and allows
for a large batch size of 96 frames. Scale, horizontal flip and crop augmentation
are applied during training. The network is trained on crops of size 224 × 224.
Parameter-free batch-normalization [52] is used throughout the network; the
moving average mean and variance are absorbed into convolution kernels af-
ter self-supervised training, so that, for evaluation, AlexNet does not contain
batch normalization layers. The full implementation using TensorFlow [53] will
be released to the public upon acceptance.

4.4 Qualitative Results

Embedding Visualizations: While our learned pixel embeddings are not
meant to be used directly (instead their purpose is to pre-train a neural network
parametrization that can be transferred to other tasks), nevertheless it is infor-
mative to visualize them. Since embeddings are 16D, we first project them to 3D
vectors via random projections and them map the resulting coordinates to RGB
space. We show results on the YouTube objects validation set in fig. 4. Note that
pixels on a salient foreground object tend to cluster together in the embedding
(see, for example, the cats in columns 1, 3 and 4, the aircraft in column 6 and
the motor-cyclist in column 8).

We also use per-neuron activation maximization [54] to visualize individual
neurons in the fifth convolutional layer (fig. 5). We observe abstract patterns
including a human form (row 1, column 5) that are obviously not present in a
random network, suggesting that the representation may be learning concepts
useful for general-purpose image analysis.
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Fig. 5: Each image in the grid corresponds to the estimated optimal excitatory
stimulus for a neuron in conv5 feature space. This visualization is obtained
using the regularized neuron maximization method of [54]. Left: Neurons in
a randomly initialized AlexNet. Right: Neurons in AlexNet trained using our
approach: significantly more structure emerges.

4.5 Quantitative results

We follow the standard practice in the self-supervised learning community and
fine-tune the learned representation on various recognition benchmarks. We eval-
uate our features on the PASCAL VOC 2007 detection and classification [45],
PASCAL VOC 2012 segmentation, and ILSVRC12 linear probing benchmarks [25]
(in the latter case, the representation is frozen). We provide details on the evalu-
ation protocol next and compare against other self-supervised models in table 1
and table 2. Differently from other approaches, we did not benefit from the
re-balancing trick of [41] and report results without it.

Baseline: Our main hypothesis is that our similarity matching method, rather
than a direct prediction of optical flow, is a more appropriate mechanism to ex-
ploit optical flow information as a supervisory signal. We validate this hypothesis
by comparing against a direct optical-flow prediction baseline, using the same
CNN architecture but a different loss function: while we use a flow-similarity
matching loss, this baseline does a standard per-pixel softmax cross entropy
across 16 discrete optical flow classes, once for each spatial dimension — x and
y. To this end, since the flow is normalized in [−1, 1] (eq. (6)), this interval
is discretized uniformly. Note that direct L2 regression of flow vectors is also
possible, but did not work as well in preliminary experiments as continuous re-
gression is usually harder for deep networks compared to classification especially
for ambiguous tasks. It was beneficial to use a faster initial learning rate of 0.01.

VOC2007-Detection: We finetune our AlexNet backbone end-to-end using
the Fast-RCNN model [56] to obtain results for PASCAL VOC 2007 detec-
tion [45]. Finetuning is performed for 150k iterations, were the learning rate
drops by a 10th every 50k iterations. The initial learning rate is set to 0.002,
weight decay to 5× 10−4, train-set is VOC2007-train+val, test-set is VOC2007-
test. Following the guidelines of [41], we use multi-scale training and single scale
testing. We report mean average precision (mAP) in table 1 (col. 5) along with
results of other self-supervised learning methods. We achieve state-of-the-art
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Table 1: Pascal VOC Comparison for three benchmarks: VOC2007-classification
(column 4) %mAP, VOC2007-Detection (Column 5) %mAP and VOC2012-
Segmentation (Column 6) %mIU. The rows are grouped into four blocks (0)
The limits of no-supervision and human supervision, (1) motion/video based
self-supervision, (2) Our model and the baseline, (3) others. The third column
[ref] indicates which publication the reported numbers are borrowed from. *Zhan
et al. contribute a different mix-and-match tuning strategy which transfers better
to the target domain compared to finetuning. This is orthogonal to the efforts
of finding a good self-supervision method and is therefore not counted when
marking the state-of-the-art in bold.

Method Supervision [Ref] Cls. Detection Seg.

Krizhevsky et al. [35] Class Labels [25] 79.9 56.8 48.0
Random - [27] 53.3 43.4 19.8

Agrawal et al. [5] Egomotion [31] 63.1 43.9 -
Jayaraman et al. [20] Egomotion [20] - 41.7 -
Lee et al. [10] Time-order [10] 63.8 46.9 -
Misra et al. [8] Time-order [8] - 42.4 -
Pathak et al. [2] Video-seg [2],Self 61.0 50.2 -
Wang et al. [13] Ranking [41,13] 63.1 47.5 -
Ours Optical-flow Self 64.4 50.3 41.4

M
o
ti

o
n

cu
es

Ours direct reg. Optical-flow Self 61.4 44.0 37.1

O
th

er
cu

es

Bojanowski et al. [34] - [34] 65.3 49.4 -
Doersch et al. [55] Context [31] 65.3 51.1 -
Donahue et al. [31] - [31] 60.3 46.9 35.2
Gidaris et al. [37] Rotation [37] 73.0 54.4 39.1
Krahenbuhl et al. [41] - [41,31] 56.6 45.6 32.6
Larssons et.al. [24] Colorization [24] 65.9 - 38.4
Mundhenk et al. [30] Context [30] 69.3 55.2 40.6
Noroozi et al. [28] Jigsaw [28] 67.6 53.2 37.6
Noroozi et al. [38] Counting [38] 67.7 51.4 36.6
Noroozi et al. [29] Jigsaw++ [29] 69.8 55.5 38.1
Noroozi et al. [29] CC+Jigsaw++ [29] 69.9 55.0 40.0
Owens et al. [17] Sound [26,17] 61.3 44.1 -
Pathak et al. [27] In-painting [27] 56.5 44.5 29.7
Jenni et al. [32] - [32] 69.8 52.5 38.1
Zhang et al. [25] Colorization [25] 65.9 46.9 35.6
Zhang et al. [26] Split-Brain [26] 67.1 46.7 36.0

Zhan et al. [40]* Colorization [40] - - 42.8
Zhan et al. [40]* Puzzle [40] - - 44.5

performance among methods that use temporal information in videos for self-
supervision.

VOC2007 classification: We finetune our pretrained AlexNet to minimize
the softmax cross-entropy loss over the PASCAL VOC 2007 trainval set. The
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Table 2: ImageNet LSVRC-12 linear probing evaluation. A linear classifier is
trained on the (downsampled) activations of each layer in the pretrained model.
Top-1 accuracy is reported on ILSVRC-12 validation set. The column [ref] indi-
cates which publication the reported numbers are borrowed from. We finetune
Pathak et.al.’s model along with ours as they do not report these benchmark in
their paper.

Method Supervision [ref] Conv1 Conv2 Conv3 Conv4 Conv5

Krizhevsky et.al. [35] Class Labels [26] 19.3 36.3 44.2 48.3 50.5
Random - [26] 11.6 17.1 16.9 16.3 14.1
Random-rescaled [41] - [41] 17.5 23.0 24.5 23.2 20.6

Pathak et.al. [2] Video-seg Self 15.8 23.2 29.0 29.5 25.4
Ours Optical-Flow Self 15.0 24.8 28.9 29.4 28.0

M
o
ti

o
n

Ours direct reg. Optical-Flow Self 14.0 22.6 25.3 25.0 23.0

O
th

er
cu

es

Doersch et.al. [22] Context [26] 16.2 23.3 30.2 31.7 29.6
Gidaris et.al. [37] Rotation [37] 18.8 31.7 38.7 38.2 36.5
Jenni et.al. [32] - [32] 19.5 33.3 37.9 38.9 34.9
Mundhenk et.al. [30] Context [30] 19.6 31.4 37.0 37.8 33.3
Noroozi et.al. [28] Jigsaw [38] 18.2 28.8 34.0 33.9 27.1
Noroozi et.al. [38] Counting [38] 18.0 30.6 34.3 32.5 25.7
Noroozi et.al. [29] Jigsaw++ [29] 18.2 28.7 34.1 33.2 28.0
Noroozi et.al. [29] CC+Jigsaw++ [29] 18.9 30.5 35.7 35.4 32.2
Pathak et.al. [27] In-Painting [26] 14.1 20.7 21.0 19.8 15.5
Zhang et.al. [25] Colorization [26] 13.1 24.8 31.0 32.6 31.8
Zhang et.al. [26] Split-Brain [26] 17.7 29.3 35.4 35.2 32.8

initial learning rate is 10−3 and drops by a factor of 2 every 10k iterations for
a total of 80k iterations and predictions are averaged over 10 random crops at
test time in keeping with [41]. We use the code provided by [24] and report
mean average precision on VOC2007-test in the fourth column of table 1. We
achieve state-of-the-art self-supervision using motion cues; in particular, we out-
perform [2] by a good margin.

ILSVRC12 linear probing: We follow the protocol and code of [26] to train a
linear classifier on activations of our pre-trained network. The activation tensors
produced by various convolutional layers (after ReLU) are down-sampled using
bilinear interpolation to have roughly 9,000-10,000 elements before being fed into
a linear classifier. The CNN parameters are frozen and only the linear classifier
weights are trained on the ILSVRC-12 training set. Top-1 classification accuracy
is reported on the ILSVRC-12 validation set (table 2). We perform comparably
to the best motion-based self-supervision method of [2] (slightly worse or better
depending on the layer), but using other types of cues achieves stronger results
in this case.

VOC2012 segmentation: We use the two staged finetuning approach of [24]
who finetune their AlexNet for semantic segmentation using a sparse hypercol-
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umn head instead of the conventional FCN-32s head. We do so because it is
a better fit for our sparse hypercolumn pretraining, although the hypercolumn
itself is built using different layers (conv1 to conv5 and fc6 to fc7). Thus the
MLP predicting the embedding φ from hypercolumn features is discarded before
finetuning for segmentation. The training data consists of the PASCAL VOC
2012 train set augmented with annotations from [57]. Test results are reported
as mean intersection-over-union (mIU) scores on the PASCAL VOC 2012 vali-
dation set (Column 6 of table 1). We are the state of the art on this benchmark
among all self-supervised learning methods, even ones that use other supervisory
signals than motion.

4.6 Discussion

We can take home several messages from these experiments. First, in all cases
our approach outperforms the baseline of predicting optical flow directly. This
supports our hypothesis that direct single-frame optical flow prediction is either
too difficult due to its intrinsic ambiguity or a distraction from the goal of
learning a good representation. It also shows that our approach of predicting
pairwise flow similarities successfully addresses this ambiguity and allows to
learn good CNN representations from optical flow.

Second, our method is generally as strong as the state of the art for self-
supervision using motion cues represented by the approach of [2]. In fact, our
approach outperforms the latter by a good margin in PASCAL VOC07 classi-
fication. This is notable as our approach is significantly simpler: by ingesting
optical flow information directly, it does not require to pre-process the data via
an ad-hoc video segmentation algorithm.

Finally, we also found out that all video/motion based methods for self super-
vised learning are sometimes not as good as methods that use other cues (but our
approach still sets the overall state-of-the-art for semantic image segmentation).
This suggests that further progress in this area is possible and worth seeking.
At the same time, [1] find that the combination of different cues may in prac-
tice result in the best performance; in this sense, our approach, by significantly
simplifying the use of motion cues, can make it much easier to design multi-task
networks that can leverage motion together with other complementary methods.

5 Conclusion

We have presented a novel method for self-supervision using motion cues based
on a cross-pixel optical-flow similarity loss function. We trained an AlexNet
model using this scheme on a large unannotated video data-set. Visualizations
of individual neurons in a deep layer and of the output embedding show that
the representation captures structure in the image.

We established the effectiveness of the resulting representation by transfer
learning for several recognition benchmarks. Compared to the previous state of
the art motion based method [2], our method works just as well and in some
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cases noticeably better despite a significant algorithmic simplification. We also
outperform all other self-supervision strategies in semantic image segmentation
(VOC12). This is reasonable as we train on a per-pixel proxy task on undistorted
RGB images.

Finally, we see our contribution as an instance of self-supervision using mul-
tiple modalities (RGB and optical flow), which poses our work as a special case
of this broader area of research.
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