
Real Time Monocular Vehicle Velocity Estimation using Synthetic Data

Robert McCraith1, Lukas Neumann1, Andrea Vedaldi1

Abstract— Vision is one of the primary sensing modalities in
autonomous driving. In this paper we look at the problem of
estimating the velocity of road vehicles from a camera mounted
on a moving car. Contrary to prior methods that train end-to-
end deep networks that estimate the vehicles’ velocity from the
video pixels, we propose a two-step approach where first an
off-the-shelf tracker is used to extract vehicle bounding boxes
and then a small neural network is used to regress the vehicle
velocity from the tracked bounding boxes. Surprisingly, we find
that this still achieves state-of-the-art estimation performance
with the significant benefit of separating perception from
dynamics estimation via a clean, interpretable and verifiable
interface which allows us distill the statistics which are crucial
for velocity estimation. We show that the latter can be used to
easily generate synthetic training data in the space of bounding
boxes and use this to improve the performance of our method
further.

I. INTRODUCTION

Autonomous driving systems rely on a wide array of sen-
sors including LiDARs, radars and cameras. LiDAR sensors
are especially good at estimating the position and velocities
of vehicles and obstacles (0.25m/s at the distance of 15
meters [16], 0.71m/s at a wider range of distances [1]).
However, LiDAR sensors are also very expensive, not reli-
able in adverse weather conditions [19] and easily confused
by exhaust fumes [9]. Depending on a single source of
information in a context such as autonomous driving is also
inherently fragile. Hence, it is natural to develop alternative
sensors either as redundancies or to improve the accuracy and
robustness of sensors like LiDARs. Cameras are a natural
choice as they are very cost effective and in principle suffi-
cient for navigation given that humans drive cars primarily
using their sense of vision. Furthermore, there is a substantial
amount of computer vision research that is directly applicable
to autonomous driving.

In this paper, we aim to predict the velocity of other cars
based only on a video from a standard monocular camera.
Because the vehicle where the camera is mounted on (the
ego-vehicle) is typically moving as well, the velocity estimate
of other vehicles is relative to the velocity of the ego-vehicle.

Our main contribution is to show that, for this problem,
one can separate perception from velocity estimation by first
mapping the visual data to a mid-level representation —
the space of vehicle bounding boxes — with no loss in
performance compared to much more complex estimation ap-
proaches. The velocity estimation problem is then modelled
purely on bounding boxes, which change their position and

Authors are members of the Visual Geometry Group in the Uni-
versity of Oxford, UK. emails: robert, lukas, vedaldi
@robots.ox.ac.uk

size over time, tracking the motion of vehicles on the road
in a simplified view of the data. Using such an approach, our
simple model outperforms the winning model [15] of CVPR
2017 Vehicle Velocity Estimation Challenge [1], which is a
much more complex model that combines tracking with two
different deep networks for monocular depth and optical flow
estimation.

A major advantage of using such a simple intermediate
representation is that it becomes much easier to simulate
training data for the velocity estimator model. Still, we show
that doing so in an effective manner requires to capture
accurately the statistics of real bounding boxes. Our second
contribution is thus to show how such a synthetic dataset
is created, by extracting the necessary data priors from a
small set of real data and using it to generate a much larger
training set in the mid-level feature space. We then show that
training only using this synthetic dataset results in excellent
performance on real test data. In the process, we also distill
the data statistics that are crucial for velocity estimation from
visual data, clarifying in the process what is important and
what information is not for this task.

The ability to easily generate synthetic data is not only
beneficial to improve velocity estimation accuracy at vir-
tually no cost for existing scenarios, but can be also used
to train the model for different driving scenarios, such as
different countries, and to model different driving styles
and various emergency situations (e.g. unexpected breaking)
without the need for laborious real data collection or for
expensive 3D photo-realistic animation in order to cater for
such situations.

Our approach can also be seen as encapsulating percep-
tion, which is often implemented by opaque and difficult-
to-diagnose components such as deep convolutional neural
networks, in a module which has a simple, interpretable,
and testable interface. Decomposing systems in modules that
are individually verifiable and that can be connected in a
predictable manner is essential for autonomous systems to
meet reliability standards such as ISO 26262 [12], [21].
Hence, while end-to-end trainable systems may be conceptu-
ally preferable, decompositions such as the one we propose
may be essential in practice — fortunately, as we show, this
may come with no loss of performance.

The rest of the paper is structured as follows. In sec-
tion II, prior work is discussed. In section III, we introduce
the method, in section IV we discuss the data generation.
The evaluation is presented in section V and the paper is
concluded in section VI.

ar
X

iv
:2

10
9.

07
95

7v
1

 [
cs

.C
V

]
 1

6
Se

p
20

21

Fig. 1. Sample sequences from the TuSimple dataset at the last frame with their respective bounding box and velocity annotation in Z and X direction.

II. RELATED WORK

a) Depth and ego-motion estimation: In recent years
numerous approaches to monocular depth and ego-motion
estimation have been explored thanks to the expressive power
of convolutional neural networks. Supervised approaches [4],
[25], [28] depend on pixel-wise depth annotations to be
available for each pixel of the training set, which results
in costly data collection. Unsupervised methods [17], [30]
on the other hand depend heavily on camera intrinsics
and rely on camera motion between successive frames to
produce coarse relative depths, which are difficult to use for
predicting exact distances.

b) Velocity estimation: Classical vision techniques for
motion detection from a moving camera such as Yamaguchi
et al.[29] first match points in successive frames and then
filter them based on their location and compatibility with the
epipolar geometry. A similar approach is used in Fanani et
al.[5], where candidate objects are first filtered by a CNN
which detects vehicles and then tests based on the epipolar
geometry are used to determine whether these vehicles are
moving or not.

The above approaches aim to only differentiate between
static and moving vehicles with no indication of their ve-
locity. Kampelmühler et al.[15], the winner of CVPR 2017
Vehicle Velocity Estimation Challenge [1], extends these
approaches to predict the relative velocity of the vehicles
in view of the ego-vehicle. This is achieved by passing
the sequence of images through a depth [7] and flow [11]
estimation network, as well as applying a classical tracking
system [13]. The features extracted from these three sub-
components are then concatenated and fed to a small neural
network which predicts the velocity (see fig. 2 top).

c) Tracking: Object tracking is a classical computer vi-
sion problem [20]. The multiple instance learning tracker [2]
expresses the problem as a classification task, where de-
tections in previous frames are used as training data for
future frames. MedianFlow [13] uses the forward-backward
error to validate which points are robust predictors of
object movement. The method is further improved in the
TLD tracker [14] by disabling online learning when the
object is occluded and by allowing the algorithm to re-

detect the object once it appears again. More recently, with
the emergence of deep learning, specialized networks have
been trained to explicitly track location of objects in video
sequences [10]. Similarly, Siamese CNNs [3], [26] have been
exploited to build a powerful embedding to discriminate
whether an image patch contains the same object or not,
therefore tracking objects by appearance similarity. For a
systematic evaluation of tracking algorithms, we refer the
reader to the VOT challenge results [18].

d) Synthetic training data: Synthetic training data have
been successfully applied in various domains of computer
vision, ranging from scene text detection [8] to optical flow
estimation [11]. In the autonomous driving domain, the most
widely used synthetic dataset is Virtual KITTI [6], which
contains 50 photo-realistic videos generated by the Unity
game engine. Thanks to the synthetic source of the data, the
dataset comes with pixel-level annotations for segmentation,
optical flow and depth, which would be virtually impossible
and very expensive to achieve in real data. More recently, the
SYNTHIA [22] and Synscapes [27] artificial driving datasets
have also been introduced.

The main difference to our work is that the above datasets
are based on photo-realistic representation of the world,
whereas our mid-level representation consists of mere bound-
ing boxes, which are significantly easier to generate.

III. METHOD

Our goal is to estimate the velocity of other vehicles
imaged from a camera rigidly mounted on the ego-vehicle
and looking forward. We can model this situation as follows.
The input to the model is a sequence I = (I1, . . . , IT) of T
video frames extracted from the camera. We also assume
to have a bounding box bT tightly enclosing the vehicle of
interest at the end of the sequence T . The output of the
model Φ is a 2D vector V = Φ(I, bT) ∈ R2 representing
the velocity of the target vehicle at time T projected on the
ground plane relative to the ego-vehicle.1

A. Geometry and elementary velocity estimation
Next, we describe in some detail the geometry of the

problem and provide a naı̈ve solution based solely on pro-

1Estimating the vertical velocity Y is essentially irrelevant for this
application.

Fig. 2. The state-of-the-art architecture of [15] (top) consists of three different sub-networks and separate models for each of the three distance intervals.
Our architecture (bottom) trained on synthetic data is significantly more straightforward, uses a single model and achieves comparable accuracy.

jecting bounding boxes into 3D world coordinate system.
The physical constraint of the setup results in several sim-
plifications compared to the general imaging scenario. Let
P = (X,Y, Z) ∈ R3 be a 3D point expressed in the ego-
vehicle reference frame. We can assume that the camera is
at a fixed height H from the ground looking straight ahead.
Hence, point P projects to the image point p = (u, v),
u = f X

Z , v = f Y+H
Z where f is the focal length of the

camera.2

Now assume that the bounding box b = (x, y, w, h) ∈ R4

is given by the image coordinates (u, v) = (x+w/2, y+h)
of the mid point of the bottom edge of the box and by the
box width and height (w, h). To a first approximation, we
can assume that (u, v) is the image of a certain virtual 3D
point P = (X, 0, Z) rigidly attached to the vehicle at ground
level. Hence, since we know the height H of the camera, we
can readily infer the depth or distance Z of the vehicle, and
hence the 3D point, as

Z = fH
1

v
, X = H

u

v
. (1)

If we can track the bounding box bt over time t ∈ [1, T],
then we can use eq. (1) to estimate the coordinates Pt =
(Xt, 0, Zt) of the 3D point relative to the ego-vehicle and ob-
tain the velocity as the derivative V = (ẊT , ŻT). However,
owing to the varying quality of road surfaces and inclines
or declines along a road this technique provides very poor
estimate of vehicle velocity, especially for vehicles which
are further away (see table II). Indeed, analyzing eq. (1) and
assuming a camera with standard image resolution, we come
to a conclusion that for vehicles in distance d > 20m the
approach requires sub-pixel accuracy of the bounding-box
estimate for a reasonable estimate of 3D position and hence
velocity, which simply is not realistic.

B. Deep learning for velocity estimation

Sophisticated models which combine several streams of
information from image pixels (depth, optical flow) perform
significantly better, so one may be tempted to ascribe the
poor performance of the geometric approach to the fact that
too much information is discarded by looking at bounding

2The image coordinates (u, v) are standardized, with (0, 0) correspond-
ing to the view direction, and are in practice related to pixels coordinates via
a non-linear transformation that accounts for the camera intrinsic parameters,
including effects such as radial distortion. We assume that the intrinsic
parameters are known and that their effects has already been removed from
the data.

boxes only. We show that, somewhat surprising, this is not
the case. Instead, we show below that bounding boxes are
sufficient provided that the modelling of dynamics is less
naı̈ve.

a) State-of-the art baseline: Our reference model is the
one of Kampelmühler et al. [15]. They propose a complex
network that combines three data streams, all derived from
the video sequence I (see fig. 2 top). One stream applies
a pre-trained monocular depth-estimation network, called
MonoDepth [7], to estimate a 3D depth map from the
video. Another stream applies FlowNet2 [11], a state-of-
the-art optical flow estimation network, to estimate instead
optical flow. The last stream uses an off-the-shelf tracker [13]
to track the bounding box bT backward through time, and
thus obtain a simplified representation (b1, . . . , bT) of the
vehicle trajectory in the image. The output of the different
streams are concatenated and passed through a multi-layer
perceptron (MLP) to produce the final velocity estimate V =
Φ(I, bT). In addition to pre-training MonoDepth, FlowNet2,
and the tracker on external data-sources, the MLP, fusing the
information, is trained on an ad-hoc benchmark dataset that
contains vehicle bounding boxes for one frame with their
ground-truth velocities and positions measured via a LiDAR
(section IV).

Furthermore, three individual models of different-sized
MLPs are used to determine velocity within the different
vehicle distance ranges used in the evaluation. These range
from 3 layers of 40 hidden neurons to 4 layers of 70 hidden
neurons with increasing model size for vehicles further
away [15]. The final velocity prediction is given by averaging
output of 5 model instances, therefore in total 15 distance-
specific models are used at testing time.

b) Our Model: Similar to [15] we use a fully connected
neural network with 4 hidden layers of 70 neurons each
with CReLU[23] activation and Dropout[24] between layers
during training. This allows us to reduce the runtime of
our method significantly as we do not require estimation of
optical flow and depth which allows our runtime to reduce
from 423ms to 10ms and only one model is trained reducing
the inference time further.

c) Estimating velocity from bounding boxes: Next, we
describe our architecture to estimate vehicle velocity (see
fig. 2 bottom). We consider an input video sequence I =
(I1, . . . , IT) of T video frames capturing a vehicle at time

Fig. 3. Vehicle statistics. Top left: coordinate of the left edge of the bounding box image location vs the depth Z of the enclosed vehicle. This is
constrained by green lines that represent the pixel coordinates of 3D points 9m left and right of the camera and placed at corresponding depths. Other
plots in order: coordinate y (constraints at [0, 2.5m]), box height h ([1.3m, 2.5m]) and box width w ([1.5m, 3m]).

t ∈ [1, T]. As shown above, in the reference model, the
velocity estimate V is then obtained as

V = Φ(I, bT) (2)

where Φ is neural network or a combination of several neural
networks as in [15], taking video sequence I as an input and
a bounding box bT in the last frame.

In our paper, we decompose Φ into two mappings Ψ and
Ξ

V = Ψ(Ξ(I, bT)) (3)

by introducing an intermediate representation b =
(b1, . . . , bT) representing the vehicle image location at time
t ∈ [1, T] b = Ξ(I, bT), V = Ψ(b), where Ξ is a off-the-
shelf tracker component [13] and Ψ is the vehicle velocity
estimator we train.

Using the above decomposition, we only require (b, V) as
supervision pairs, and not the (I, V) pairs as in the original
formulation [15], which are extremely expensive to obtain
as it implies capturing and annotating many driving video
sequences.

As before, bounding boxes b are represented as quadruples
(x, y, w, h). The trajectories b are passed to a filter g(b)
that applies temporal Gaussian smoothing to each coordinate
independently. Finally, the output of the filter is flattened to
a 4T -dimensional vector and fed to a multi-layer perceptron
Ψ̄ : R4T → R. Hence, the overall model at inference time
can be written as V = Ψ(b) = Ψ̄(vec(g(Ξ(I, bT)))).

At training time, assuming the tracker Ξ is fixed, we
however only need to train Ψ, using the pairs (b, V) by
minimizing the loss ‖V − Ψ(b)‖2. Next we show how the
pairs can be obtained.

IV. LEARNING FROM REAL OR SYNTHETIC DATA

We begin by discussing a real benchmark dataset sufficient
to train our model and then we discuss how we can generate
analogous synthetic data effectively in the space of object
bounding boxes.

A. Real data: TuSimple

While many driving datasets exist in the realm of au-
tonomous driving many focus on single frame tasks such
as object detection in 2D/3D, depth estimation, semantic

segmentation and localisation. The only dataset with nesse-
cary annotations for our task with comparable work come
from TuSimple[1]. The TuSimple dataset was introduced
for the CVPR2017 Autonomous Driving velocity estimation
challenge [1]. It contains 1074 (269) driving sequences with
1442 (375) annotated vehicles in the training (respectively
testing) set, split into three subsets based on the distance
between the ego-vehicle and the observed car (see table I).
The dataset was recorded on a motorway by an standard
camera (image resolution 1280×720) mounted on the roof of
the ego-vehicle. Each driving sequence contains 40 frames,
captured at 20fps as seen in fig. 1. LiDAR and radar were
simultaneously used to capture the position and velocity of
nearby vehicles and recorded data were then used to give the
ground truth velocity and 3D position of each vehicle in the
last frame of the sequence. Additionally, a manually created
bounding box (in the image space) is available in the last
frame for each vehicle. Using the notation from section III-B,
the dataset therefore provides 1442 training and 375 testing
triplets (I, bT , V). As shown in fig. 4 the TuSimple dataset
spans a wide range of distances from the camera with a high
bias towards the same lane as is typical in driving imagery.
Velocity in both Z and X is roughly uniformly distributed
around 0 which is expected in motorway situations.

B. Synthetic data

By distilling the information contained in an image to
bounding boxes b we now have data which is highly-
interpretable and easy to characterise statistically; the latter
can be used to generate synthetic training data, which ideally
will have very similar statistical properties to the real data.
We could also choose to simulate vehicles with speeds not
normally seen in the real world to train a network capable
of understanding such abnormal situations.

Near Medium Far Total
distance [m] d < 20 20 < d < 45 d > 45

Train 166 943 333 1442
Test 29 247 99 375

TABLE I
THE NUMBER OF ANNOTATED VEHICLES IN THE TUSIMPLE DATASET [1]
AND THEIR SPLIT BASED ON THEIR DISTANCE FROM THE EGO-VEHICLE.

0 50 100
0

5

10

15

20
Position Z

20 0
0

50

100

150

Position X

0 10
0

5

10

15

20

Velocity Z

4 2 0
0

10

20

30

Velocity X

Fig. 4. Distribution of vehicle instances in the TuSimple dataset.

We use the training subset of the TuSimple dataset
(see section IV) to infer these statistical properties. In fig. 3-
left we plot the bounding box horizontal coordinates x vs
the depth of the enclosed vehicle. There is some obvious
structure in the data; in particular, several lanes to the left
and to the right of the ego-vehicle are clearly visible. The
other plots show the y coordinate as well as the bounding
box width and height. The latter are highly constrained by
the physical sizes of vehicles.

We found learning to be sensitive to the distribution of
vehicles locations and less so of car velocities and sizes. We
thus represent the location distribution empirically (fig. 5)
and sample from TuSimple the first bounding box in each
to obtain its 3D ground point (X, 0, Z). This is then re-
projected to the image as explained in section III-A to obtain
the bounding box location (x, y). The box height and width
are obtained indexing with the depth Z polynomial fits to
the TuSimple height/width data (fig. 3). Finally, the track is
simulated by sampling a velocity vector V from a Gaussian
fit of the TuSimple velocity data (fig. 4) and integrating the
motion (fig. 6).

Note that only the bounding box positions are empirical,
whereas the other parameters are sampled form very simple
distributions. We show that this is sufficient to train models
that achieve excellent performance on real data. This helps
isolating what are the important/sensitive priors (location)
and what are not (size, velocity) for velocity estimation.

V. EVALUATION

We evaluated our approach using two models. For both
models, we used MLP with 4 hidden layers, trained for

150 epochs, using dropout of 0.2 after the Concatenated
ReLU[23] activation function, learning rate with learning rate
6 × 10−4 adjusted using exponential decay with decay rate
set to 0.99.

In the first model denoted as MLP-tracker, we initially
processed all video frames by the MedianFlow [13] tracker,
using the bounding box bT from the ground truth for tracker
initialization. We then used the resulting sequences b =
(b1, . . . , bT) as the training data for the MLP (see section III-
B). At test time, we followed the same procedure, which is
pre-processing the input video sequence by the tracker, and
then feeding the intermediate representation b into the MLP
to obtain the velocity estimate.

We follow the TuSimple competition protocol, and report
velocity estimation accuracy Ev calculated as the average
over the three distance-based subsets (table I):

Ev =
Enear

v + Emedium
v + E far

v

3
, ES

v =
1

|S|
∑
i∈S

= ‖Vi−V̂i‖2,

(4)
where Vi is the ground truth velocity from the LiDAR sensor
and V̂i is method’s velocity estimate. We also note that
according to the dataset authors, the overall ground-truth
accuracy is at around 0.71m/s, however the accuracy will
almost certainly depend on the distance of the observed car.

Using the above model, we reach the overall velocity esti-
mation error of 1.29, which outperforms the state-of-the-art3

3Kampelmühler et al.also report the error of 1.86 and 1.25 for their
method using only tracking information, however this was not the compe-
tition entry and it is not obvious from the paper how the latter number was
reached and what data were used for training.

Fig. 5. Here we show and example of our synthetic boxes in these cases generated starting at the same location as a real object. The fainter boxes depict
the location of the object in subsequent frames for the velocity written above which may differ from the actual vehicles path in real data

10 20 30

0

250

500

750

1000

1250

1500
Z vs Left

10 20 30

225

250

275

300

325

350

375

400
Z vs Right

10 20 30

50

100

150

200

250

Z vs Width

10 20 30
25

50

75

100

125

150

175
Z vs Height

Fig. 6. Real vs synthetic vehicle sequences. The motion of the bounding box in the video sequence - vehicle motion in real video as captured by the
tracker (blue), and synthetic motion generated by our method (red). In the width and height plot we see some tracking inaccuracy when the blue lines
increase going to the right.

and significantly more complex method of Kampelmühler et
al.[15]. This experiment also shows, that the intermediate
representation b contains sufficient amount of information
to successfully infer vehicle velocity.

In the second model MLP-synthetic, we instead used the
synthetic training data as the intermediate representation b.
We generated 11536 samples using the generation procedure
described in section IV-B and used them as the training
samples for the MLP. At testing time, we again used the
MedianFlow tracker to get the intermediate representation
b from real video sequences and fed them into the MLP to
obtain vehicle velocity estimates (see fig. 2 bottom). Because
our synthetic boxes are generated without noise inherently
coming from the tracker road surface and other sources, at
test time we apply a Gaussian filter with σ = 5 in each
coordinate of the bounding box as pre-processing to remove
noise.

The resulting model has the velocity estimation error of
1.28, with the biggest improvement in the Far range (see
table II). Generating more synthetic data for training did
not result in further improvement in accuracy, which we
contribute to the relatively small size of the testing set and
the relative low variance of vehicle speed owing to motorway
driving style.

VI. CONCLUSION

In this paper, we showed how to efficiently predict the
velocity of other vehicles based only on a video from a
standard monocular camera by introducing an intermediate
representation which decouples perception from velocity
estimation. We also showed how priors in real data can
be exploited to generate synthetic data in the intermediate
representation and that such synthetic training data can be
used to build a system capable of processing real-world data
without any loss in accuracy.

The decomposition is advantageous not only in terms of
the ability to easily generate training data with the desired
parameters, but also to model different driving styles or
various emergency situations. Last but not least, it also
ensures each component is individually verifiable, which

Ev Enear
v Emedium

v E far
v

Kampelmühler et al.[15] (1st) 1.30 0.18 0.66 3.07
Wrona (2nd) 1.50 0.25 0.75 3.5
Liu (3rd) 2.90 0.55 2.21 5.94

geometric reprojection 8.5 0.48 1.50 23.60
Ours (MLP-tracker) 1.29 0.18 0.70 2.99
Ours (MLP-synthetic) 1.28 0.17 0.72 2.96

LiDAR 0.71

TABLE II
VEHICLE VELOCITY ESTIMATION ERROR Ev ON THE TUSIMPLE

DATASET, INCLUDING THE TOP 3 BEST-PERFORMING METHODS OF THE

CVPR 2017 VEHICLE VELOCITY ESTIMATION CHALLENGE [1]. THE

AVERAGE ACCURACY OF THE LIDAR SENSOR USED FOR GROUND

TRUTH ACQUISITION ADDED FOR REFERENCE. RUNTIME OF

KAMPELMÜHLER et al.[15] IS 423ms OWING TO THE VARYING AND

COMPLEX INPUTS REQUIRED FOR A FORWARD PASS, OUR METHOD CAN

PERFORM A FORWARD PASS IN 10ms ON THE SAME

HARDWARE(RUNTIME FOR OTHER METHODS ARE NOT PUBLIC).

is essential to meet reliability standards for autonomous
driving.

REFERENCES

[1] CVPR 2017 workshop on autonomous driving.
https://github.com/TuSimple/tusimple-benchmark. Accessed: 2020-
02-15.

[2] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual track-
ing with online multiple instance learning. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 983–990. IEEE,
2009.

[3] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi,
and Philip HS Torr. Fully-convolutional siamese networks for object
tracking. In European conference on computer vision, pages 850–865.
Springer, 2016.

[4] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map pre-
diction from a single image using a multi-scale deep network. In
Advances in neural information processing systems, pages 2366–2374,
2014.

[5] Nolang Fanani, Matthias Ochs, Alina Sturck, and Rudolf Mester.
CNN-based multi-frame IMO detection from a monocular camera.
In 2018 IEEE Intelligent Vehicles Symposium, IV 2018, Changshu,
Suzhou, China, June 26-30, 2018, pages 957–964, 2018.

[6] A Gaidon, Q Wang, Y Cabon, and E Vig. Virtual worlds as proxy for
multi-object tracking analysis. In CVPR, 2016.

[7] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsu-
pervised monocular depth estimation with left-right consistency. In
CVPR, 2017.

[8] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic
data for text localisation in natural images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2315–2324, 2016.

[9] Sinan Hasirlioglu, Andreas Riener, Werner Huber, and Philipp Win-
tersberger. Effects of exhaust gases on laser scanner data quality at low
ambient temperatures. In 2017 IEEE Intelligent Vehicles Symposium
(IV), pages 1708–1713. IEEE, 2017.

[10] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track
at 100 fps with deep regression networks. In European Conference
on Computer Vision, pages 749–765. Springer, 2016.

[11] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey
Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolution of optical flow
estimation with deep networks. CoRR, abs/1612.01925, 2016.

[12] Road vehicles – functional safety. Standard, International Organization
for Standardization, Geneva, Switzerland, 2011.

[13] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error:
Automatic detection of tracking failures. In 2010 20th International
Conference on Pattern Recognition, pages 2756–2759, Aug 2010.

[14] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-
learning-detection. IEEE transactions on pattern analysis and machine
intelligence, 34(7):1409–1422, 2012.

[15] Moritz Kampelmühler, Michael G Müller, and Christoph Feichten-
hofer. Camera-based vehicle velocity estimation from monocular
video. arXiv preprint arXiv:1802.07094, 2018.

[16] Dominik Kellner, Michael Barjenbruch, Klaus Dietmayer, Jens Klapp-
stein, and Jürgen Dickmann. Instantaneous lateral velocity estimation
of a vehicle using doppler radar. In Proceedings of the 16th Inter-
national Conference on Information Fusion, pages 877–884. IEEE,
2013.

[17] M. Klodt and A. Vedaldi. Supervising the new with the old: learning
sfm from sfm. In European Conference on Computer Vision, 2018.

[18] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman
Pflugfelder, Luka Cehovin Zajc, Tomas Vojir, Gustav Hager, Alan
Lukezic, Abdelrahman Eldesokey, et al. The visual object tracking
vot2017 challenge results. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1949–1972, 2017.

[19] Matti Kutila, Pasi Pyykönen, Werner Ritter, Oliver Sawade, and Bernd
Schäufele. Automotive lidar sensor development scenarios for harsh
weather conditions. In 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), pages 265–270. IEEE,
2016.

[20] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration
technique with an application to stereo vision. 1981.

[21] Rob Palin, David Ward, Ibrahim Habli, and Roger Rivett. Iso 26262
safety cases: Compliance and assurance. 2011.

[22] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and
Antonio M. Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[23] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee.
Understanding and improving convolutional neural networks via con-
catenated rectified linear units. CoRR, abs/1603.05201, 2016.

[24] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958,
January 2014.

[25] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus
Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas Brox. Demon:
Depth and motion network for learning monocular stereo. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5038–5047, 2017.

[26] Jack Valmadre, Luca Bertinetto, João Henriques, Andrea Vedaldi, and
Philip HS Torr. End-to-end representation learning for correlation filter
based tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2805–2813, 2017.

[27] Magnus Wrenninge and Jonas Unger. Synscapes: A photoreal-
istic synthetic dataset for street scene parsing. arXiv preprint
arXiv:1810.08705, 2018.

[28] Dan Xu, Elisa Ricci, Wanli Ouyang, Xiaogang Wang, and Nicu
Sebe. Multi-scale continuous CRFs as sequential deep networks for
monocular depth estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5354–5362, 2017.

[29] Koichiro Yamaguchi, Takeo Kato, and Yoshiki Ninomiya. Vehicle ego-
motion estimation and moving object detection using a monocular
camera. In 18th International Conference on Pattern Recognition
(ICPR’06), pages 610–613. IEEE, 2006.

[30] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe.
Unsupervised learning of depth and ego-motion from video. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1851–1858, 2017.

	I Introduction
	II Related Work
	III Method
	III-A Geometry and elementary velocity estimation
	III-B Deep learning for velocity estimation

	IV Learning from real or synthetic data
	IV-A Real data: TuSimple
	IV-B Synthetic data

	V Evaluation
	VI Conclusion
	References

