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Abstract— We present a system for automatic converting
of 2D mask object predictions and raw LiDAR point clouds
into full 3D bounding boxes of objects. Because the LiDAR
point clouds are partial, directly fitting bounding boxes to the
point clouds is meaningless. Instead, we suggest that obtaining
good results requires sharing information between all objects in
the dataset jointly, over multiple frames. We then make three
improvements to the baseline. First, we address ambiguities in
predicting the object rotations via direct optimization in this
space while still backpropagating rotation prediction through
the model. Second, we explicitly model outliers and task
the network with learning their typical patterns, thus better
discounting them. Third, we enforce temporal consistency when
video data is available. With these contributions, our method
significantly outperforms previous work despite the fact that
those methods use significantly more complex pipelines, 3D
models and additional human-annotated external sources of
prior information.

I. INTRODUCTION

Robotics applications often require to recover the 3D shape
and location of objects in world coordinates. This explains
the proliferation of datasets such as KITTI, nuScenes and
SUN RGB-D [7], [2], [34] which allow to train models
that can classify, detect and reconstruct objects in 3D from
sensors such as cameras and LiDARs. However, creating such
datasets is very expensive. For example, [32], [39] report that
manually annotating a single object with a 3D bounding box
requires approximately 100 seconds. While this cost has since
been reduced [19], it remains a significant bottleneck in data
collection.

In some cases, cross-modal learning can substitute manual
annotations. An example is monocular depth prediction, where
supervision from a LiDAR sensor is generally sufficient [6].
Unfortunately, this does not extend to tasks such as object
detection. For instance, a dataset such as KITTI provides
only 7481 video frames annotated with objects due to the
cost of manual annotation. In this work, we thus consider the
problem of detecting objects in 3D, thus also automatically
annotating them in 3D, but using only standard 2D object
detector trained on a generic dataset such as MS-COCO [15],
which is disjoint from the task-specific dataset (in our case
KITTI for 3D car detection). We assume to have as input a
collection of video frames, the corresponding LiDAR readings
from the viewpoint of a moving vehicle, and the ego-motion
of the vehicle. We also assume to have a pre-trained 2D
detector and segmenter such as Mask R-CNN for the objects
of interest (e.g., cars). With this information, we wish to train
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Fig. 1: Our Method (green) vs KITTI label (red), no Ground
Truth is used to train our model.

a model which takes in raw LiDAR point cloud and outputs
full 3D bounding box annotation for the detected objects
without incurring any further manual annotation cost.

There are three main challenges. First, due to self and
mutual occlusions, the LiDAR point clouds only cover part of
the objects in a context dependent manner. Second, the LiDAR
readings are noisy, for example sometimes seeing through
glass surfaces (windows) and sometimes not. Third, the
available 2D segmentations may not be perfectly semantically
aligned with the target class (e.g., ‘vehicles’ vs ‘cars’),
are affected by a domain shift, and may not be perfectly
geometrically with the LiDAR data, resulting in a large
number of outlier 3D points arising from background objects.

We propose an approach based on the following key ideas.
First, because the LiDAR point cloud can only cover the
object partially, it is impossible to estimate the full 3D extent
of the object from a single observation of it. Instead, we share
information between all predicted 3D boxes in the dataset by
learning a 3D bounding box predictor from all the available
data. We further aid the process by injecting weak prior
information in the form of a single fixed 3D mesh template
of the object (an ‘average car’), but avoid sophisticated 3D
priors employed in prior works [44], [29].

We then introduce three improvements to the ‘obvious’
baseline implementation of this idea. First, we show that a
key challenge in obtaining good 3D bounding boxes is to
estimate correctly the yaw (rotation) of the object. This is
particularly challenging for partial point clouds as several
ambiguous fits (generally up to rotations of 90 degrees) often
exist. Prior work has addressed this problem by using pre-
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trained yaw predictors, requiring manual annotation. Here, we
learn the predictor automatically from the available data only.
To this end, we show that mere local optimization via gradient
descent works poorly; instead, we propose to systematically
explore a full range of possible rotations for each prediction,
backpropagating the best choice every time. We show that this
selection process is very effective at escaping local optima
and results in excellent, and automated, yaw prediction.

Second, we note that the LiDAR data contains significant
outliers. We thus propose to automatically learn the pattern
of such outliers by predicting a confidence score for each 3D
point, treated as a Gaussian observation. These confidences
are self-calibrated using a neural network similar to the ones
used for point cloud segmentation, configured to model the
aleatoric uncertainty of the predictor.

Third, we note that we generally have at our disposal
video data, which contains significant more information than
instantaneous observations. We leverage this information
by enforcing a simple form of temporal consistency across
several frames.

As a result of these contributions we obtain a very effective
system for automatically labelling 3D objects. Our system
is shown empirically to outperform relevant prior work by
a large margin, all the while being simpler, because it uses
less sources of supervision and because it does not use
sophisticated prior models of the 3D objects nor a large
number of 3D models as priors [44], [29]

II. RELATED WORK

a) Supervised: 3D object detection methods assume
availability of either monocular RGB images, LiDAR point
clouds or both. Here we focus on supervised methods using
3D point cloud inputs. [37], [4] discretise point clouds onto a
sparse 3D feature grid and apply convolutions while excluding
empty cells. [3] project the point cloud onto the frontal and
the top views, apply 2D convolutions thereafter and generate
3D proposals with an RPN [30]. [46] convert the input point
cloud into a voxel feature grid, apply a PointNet [28] to each
cell and subsequently process it with a 3D fully convolutional
network with an RPN head which generates object detections.
Frustum PointNets [27] is a two step detector which first
detects 2D bounding boxes using these to determine LiDAR
points of interest which are filtered further by a segmentation
network. The remaining points are then used to infer the 3D
box parameters with the centre prediction being simplified by
some intermediate transformations in point cloud origins. We
are using Frustum PointNets as a backbone for our method.
b) Weakly Supervised: Owing to the complexity of
acquiring a large scale annotated dataset for 3D object
detection many works recently have attempted to solve this
problem with less supervision. [19] the required supervi-
sion is reduced from the typical (X,Y, Z) centre, yaw,
(x1, y1, x2, y2) 2D box and (l, w, h) 3D size they instead
annotate 500 frames with centre (X,Z) in the Birds Eye
View and finely annotating a 534 car subset of these frames to
achieve accuracy similar to models trained on the entire Kitti
training set. This however can result in examples in the larger

training set or validation set which are outside the distribution
of cars seen in the smaller subset, are also susceptible to
the problems mentioned in [5] and the weakly annotated
centres can have a large difference to the Kitti annotations. In
[44] trains DeepSDF[22] on models from a synthetic dataset
which are then rendered into the image and iteratively refined
to produce a prediction that best fits the predictions of Mask
R-CNN outputs. This however takes 6 seconds to refine
predictions on each input example and ground truth 2D boxes
are used to select cars used to train on. In [29] 3D anchors
densely placed across the range of annotations are projected
into the image with object proposed by looking at the density
of points within or nearby the anchors in 3D and the 3D
pose and 2D detections are supervised by a CNN trained on
Beyond PASCAL[41]. In [13] instance segmentation is used
to place a mesh in the location of detected cars which is
refined using supervised depth estimation.
c) Viewpoint estimation: Estimating 3D camera orien-
tation is an actively researched topic [25], [12], [36], [33],
[20], [26], [14]. Central to this problem is the choice of an
appropriate representation for rotations. Directly representing
rotations as angles θ ∈ [0, 2π) suffers from discontinuity
at 2π. One way to mitigate this is to use the trigonometric
representation (cos θ, sin θ) [24], [17], [1]. Another approach
is to discretise the angle into n quantised bins and treat
viewpoint prediction as a classification problem [36], [33],
[20]. Quaternions are another popular representation of
rotations used with neural networks [12], [43]. Learning
camera pose without direct supervision, for example, when
fitting a 3D model to 2D observations, may suffer from
ambiguities due to the object symmetries [31]. Practically,
this means that the network can get stuck in a local optima
of SO(3) space and not be able to recover the correct
orientation. Several recent works [35], [10], [8] overcome this
by maintaining several diverse candidates for the estimated
camera rotation and selecting the one that yields the best
reconstruction loss. Our approach discussed in sec. III-C is
most related to these methods.

III. METHOD

Our goal is to estimate the 3D bounding box of objects
given as input videos with 2D mask predictions and LiDAR
point clouds. We discuss first how this problem can be
approached by direct fitting and then develop a much better
learning-based solution.

A. Shape model fitting

We first describe how a 3D bounding box can be fitted to
the available data in a direct manner. To this end, let I ∈
R3×H×W be a RGB image obtained from the camera sensor
and let L ⊂ R3 be a corresponding finite collection of 3D
points X ∈ L extracted from the LiDAR sensor. Furthermore,
let m ∈ {0, 1}H×W be the 2D mask of the object obtained
from a system such as Mask R-CNN [9] from image I . Our
goal is to convert the 2D mask m into a corresponding 3D
bounding box B.
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Fig. 2: Network architecture. Dashed arrows in red show the flow of the gradients during the backward pass. Alignment loss
is evaluated for each yaw bin θk and the optimal yaw is used to supervise the yaw classification network Φr (see sec. III-C).

To do so, assume that the LiDAR points are expressed in the
reference frame of the camera and that the camera calibration
function k : R2 → Ω = {1, . . . ,H} × {1, . . . ,W} is known.
The calibration function is defined such that the 3D point X =
(X,Y, Z) projects onto the image pixel u = k(π(X)) where
π(X,Y, Z) = (X/Z, Y/Z) is the perspective projection. In
particular, the subset of LiDAR points Lm ⊂ L that project
onto the 2D mask m is given by: Lm = L ∩ (k ◦ π)∗(m)
where ∗ denotes the pre-image of a function. In practice, this
is a crude filtering step, because the masks are imprecise
and not perfectly aligned to the LiDAR and because LiDAR
may sometimes see ‘through’ the object, for instance in
correspondence of glass surfaces (see Fig. 3).

In order to fit a 3D bounding box B to Lm, we use a
weak prior on the 3D shape of the object. Specifically, we
assume that a 3D template surface S0 ⊂ R3 is available,
for example as simplicial (triangulated) mesh. We fit the 3D
surface to the LiDAR points by considering a rigid motion
g ∈ SE(3) which, applied to S0, results in the posed mesh
S = gS0 = {gX : X ∈ S0}. We then define a distance

Fig. 3: For each pair, left: RGB input image with Mask R-
CNN predicted box and highlighted pixels inside the mask.
Right: LiDAR points in blue represent those inside the 2D
mask, green those outside. Note that, while the image mask
removes many outliers, many remain at the object boundaries
and transparent surfaces.

between the mesh and the 3D LiDAR points as follows:

d(S|Lm) =
1

|Lm|
∑

X∈Lm

min
X′∈S

‖X′ −X‖2. (1)

This quantity is similar to a Chamfer distance, but it only
considers half of it: this is because most of the 3D points that
belong to the template object are not be visible in a given
view (in particular, at least half are self-occluded), so not all
points in the template mesh have a corresponding LiDAR
point.

Given a 2D object mask m and its corresponding LiDAR
points Lm, we can find the pose g of the object by minimizing
d(gS0|Lm) with respect to g ∈ SE(3). Then the bounding
box of the object m is given by gB0 where B0 ⊂ R3 is the
3D bounding box that tightly encloses the template S0.

In accordance with prior work [7], [29], [19], we can
in practice carry out the minimization not over the of
full space SE(3), but only on 4-DoF transformation g =
[Rθ, T] where the rotation Rθ is restricted to the yaw θ
(rotation perpendicular to the ground plane). Even so, direct
minimization of (1) is in practice prone to failure because
individual partial LiDAR point clouds do not contain sufficient
information and fitting results are thus ambiguous (we do not
report results in this setting as they are extremely poor).

Our solution to the ambiguity of fitting (1) is to share
information across all object instances in the dataset. We do
this by training a deep neural network Φ : Fin(R3)→ SE(3)
mapping the LiDAR points Lm to the corresponding object
pose g = Φ(Lm) directly. The network Φ can be trained in
a self-supervised manner by minimizing (1) averaged over
the entire dataset D as

L(Φ|D) =
1

|D|
∑

(Lm,m)∈D

d(gmS0|Lm), where gm = Φ(Lm).

(2)

B. Modelling and discounting outliers

A major drawback of (2) is that LiDAR points tend to be
noisy, especially because the boundaries of the region m may
not correspond to the object exactly or the LiDAR may be
affected by a reflection or ‘see through’ a glass surface. Such



Fig. 4: Even after removing LiDAR points which do not
project into the 2D instance mask we still have a large number
of outliers, mainly caused by partial occlusions and points
at the boundary where 2D masks struggle. The σ2(X) value
predicts the relevance of a point to the cars location with blue
points having low values with a gradient to red for higher
values which suggests the point is an outlier.
points might disproportionally skew the loss term, forcing
the estimated object position closer to these outliers. In order
to help the model discriminate between inliers and outliers,
we let the network predict an estimate of whether a given
measurement is likely to belong to the object or not.

We therefore propose a second network σ(X) = ΨX(Lm)
that assigns to each LiDAR point X ∈ Lm a variance σ and
jointly optimize Φ and Ψ by minimizing [21], [11]:

d̄(S|Lm) =
1

|Lm|
∑

X∈Lm

min
X′∈Ŝ

‖X′ −X‖2

σ2(X)
+ log σ2(X) (3)

Note that the network Ψ has to make a judgement call for
every point X on whether it is likely to be an outlier or not
without having access to the loss. A perfect prediction (i.e.,
one that minimizes the loss) would set σ(X) = ‖X′−X‖ to
be the same as the fitting error. The desirable side effect is
that, in this manner, outliers are discounted by a large σ(X)
when it comes to estimating the pose gm of the object.

C. Direct optimization for the yaw

Finally, we note that fitting the rotation of the object can
be ambiguous, especially if only a small fragment of the
object is visible in the RGB/LiDAR data. Specifically, the
distance d̄([Rθm Tm]S0|Lm), which is usually well behaved
for the translation component Tm, has instead a number
of ‘deep’ local minima, which we found is mainly caused
by the inherent ambiguities of fitting the rotation θm (yaw)
parameter. Each minimum corresponds to a 90◦ rotation as
in many example only a single side of the vehicle is visible.
In practice, as we show, the yaw network Ψ can learn to
disambiguate the prediction, but it usually fails to converge to
such a desirable solution without changes in the formulation.

In order to solve this issue, we propose to modify the
formulation to incorporate direct optimisation over the yaw.

Frame 1

Frame 5

Fig. 5: Two frames in a sequence of five, with a heavily
occluded and truncated car in the first frame and a much
better view of the same in the last. Multi-frame consistency
allows the method to use clearer frames to interpret more
difficult ones, which is particularly helpful in discovering the
outliers.
In other words, every time the loss is evaluated, we assess a
number of possible rotations R, as follows:

R∗m = argmin
R∈R

d̄([R Tm]S0|Lm) (4)

L′(Φ,Ψ|D) =
1

|D|
∑

(Lm,m)∈D

d̄([R∗m Tm]S0|Lm) + ‖Rm −R∗m‖.

(5)

The loss is the same as before for the translation, but,
given the predicted translation, it always explores all possible
rotations R, picking the best one R∗m.

Note that this does not mean that the network Φ is not
tasked with predicting a rotation anymore; on the contrary,
the network is encouraged to output the optimal R∗m via
minimization of the term ‖Rm −R∗m‖. This has the obvious
benefit of not incurring the search at test time, and therefore
the final network running time is not affected by this process.

In practice, as only the yaw angle is predicted, we
implement this loss by quantizing the interval [0, 2π) in
64 distinct values (bins), as in our experiments we found
this number of bins sufficient (see results in table II). In this
manner, the rotation head of the network Φ can be interpreted
as a softmax distribution Φr(Lm) and the norm ‖.‖ is replaced
by the cross-entropy loss.

D. Multi-frame consistency

Whilst in our approach we do not have the actual 3D pose
of the object available as a training signal, the 3D pose of
the object across multiple frames must be consistent with
the observer ego-motion. This is true for vehicles that are
not moving (parked cars) and approximately true for other
vehicles; in particular, the yaw of the objects, once ego-motion
has been compensated for, is roughly constant.



Specifically, consider an arbitrary model point X0 ∈ S0.
Observed in a LiDAR frame i, this point is estimated to be at
location Xi

0 = giX0, where gi is the network prediction for
frame i. Likewise, let Xj

0 = gjX0 be the point position at
frame j. If the object is at rest, the two positions are related by
Xi

0 = gi←jX
j
0 where gi←j is the ego-motion between frames

i and j of the vehicle where the sensors are mounted, which
we assume to be known. We can thus define the consistency
loss LX0 for any model point X0:

LX0(Φ|D) =
1

|D|

N∑
i=1

∑
(Lm,m)∈Di

K∑
j=1

‖ gi←i+jXi+j
0 −Xi

0‖2.

(6)
where Di denotes LiDAR-mask pairs detected in the frame
i, K is the length of the frame sequence over which the
consistency is evaluated, and N is the total number of frames.

Note that loss (6) is null for all object keypoints if, and
only if, gi = gi←jg

j , which is an equivariance condition
for the predictor. However, we found it more convenient and
robust to enforce this equivariance by using (6) summed over
a small set of representative model points. In our experiments
we have found that at least two points are required to ensure
that we consistently predict the heading (yaw) of the detected
car. In practice, we use car centre and front keypoints (see
Fig. 6), so the final loss term used to train the model is:

L(Φ,Ψ|D) = L′(Φ,Ψ|D) + LXcentre(Φ|D) + LXfront(Φ|D)
(7)

a) Implementation details of tracking: A detector such
as Mask R-CNN only provides 2D mask for individual video
frames, but defining the loss (6) requires to identify or track
the same object across two frames. For tracking, we take
the median of LiDAR points for each mask and compare
them to the medians of masks in adjacent frames. The closest
pseudo-centres are chosen to be the same vehicle if and only
if the number of LiDAR points has not changed significantly
and the distance between them is less than 2 meters when
ego motion is accounted for. The distance criterion ensures
that the same vehicle is detected while the number of points
removes poor Mask-RCNN detections in subsequent frames.
This tracking is only used at training time, at test time we
use all 2D detections.

IV. EXPERIMENTS

We assess our methods against the relevant state of the art
on standard benchmarks.
a) Data: For our experiments, we use the KITTI Object
Detection dataset [7] which has 7481 frames with labels in
3D. However, we do so for compatibility with prior work.
Specifically, we use the split found in [3], the standard across
all prior works which first splits the videos into training and
validation sets focusing on two different parts of the world
(no visual overlap). The network is learned on the training
videos using multiple frames and then applied and evaluated
on the validation videos on a single-frame basis.

KITTI evaluates vehicle detectors using Birds Eye View
(BEV) IOU and 3D box IOU (3D) with a strict cutoff of 0.7

TABLE I: Ablation of different components of the model and
data processing steps. Our full model with automatic outlier
removal and multi-view consistency achieves the highest
accuracy.

Components APBEV(IoU = 0.5)
Filtering Outlier-aware Multi-view Easy Moderate Hard

(a) 2D Box 35.53 41.54 33.96
(b) 2D Mask 58.61 62.56 54.20
(c) 2D Mask X 58.63 61.70 54.11
(d) 2D Mask X 75.46 76.60 68.59
(e) 2D Mask X X 80.73 81.70 73.61

TABLE II: Comparison of yaw prediction techniques.

Paradigm APBEV(IoU = 0.5)
Easy Moderate Hard

(a) arctan 76.65 79.05 69.33
(b) Insafutdinov & Dosovitskiy [10] 77.28 76.92 69.12
(c) Goel et al. [8] 76.49 77.35 69.69

(d) Ours, 16 bins 77.04 77.30 69.49
(e) Ours, 32 bins 79.93 81.14 73.15
(f) Ours, 64 bins 80.73 81.70 73.61
(g) Ours, 128 bins 81.79 82.23 74.11

for a positive detection. To be compatible with other relevant
works in automated labelling [44], [29], we evaluate instead
at a threshold of 0.5, also used for other KITTI categories,
which reduces the influence of object size on IoU performance.
In part, this is motivated by [5] which notes that the size of
the ‘ground-truth’ KITTI annotations are often imprecise due
to the fact that many object instances have few LiDAR points
and thus it is difficult for human annotators to accurately
estimate metric size.
b) Data preprocessing: To construct our training set we
first run Mask-RCNN [9], [40] with the ResNet 101 backend
to locate cars in the images. We then extract the LiDAR
points contained within the masks detected and use these
for 3D labelling. When tracking for 5 frames this gives us
9.6k cars in the training. For evaluation we only use a single
frame of Mask R-CNN detection and use the mask score as
the confidence for our predictions.
c) Implementation: We implement our method in Pytorch
[23] and use components from Frustum PointNets [27] to
construct our network. All variants are trained with Adam
optimizer with a learning rate of 3× 10−3 decreasing every
30 steps with multiplier 0.3 for a total of 150 epochs with a
batch size of 64 . Training was performed on a single Titan
RTX with a Ryzen 3900X processor and the most complex
models had a training time of 7 hours.

A. Ablations of model components

We first start by analysing the individual components of
our model (table I). First, we do not use the 2D mask to filter
LiDAR points, significantly increasing the number of outliers,
arising in particular from cars proximal to the target one (row
(a)). Masking LiDAR points (row (b)) results in a substantial
improvement, removing most of these outliers (see also Fig. 3).
Introducing the temporal consistency/equivariance loss (6)
(row (c)) does not give by itself a noticeable benefit because
outlier points are still heavily influential to the prediction.



Discounting outliers using the probabilistic formulation of
(3) increases accuracy substantially (row (d)). Furthermore,
bringing back the consistency loss, which amounts to our
full model, does now show a significant benefit (row (e)).
Our interpretation is that considering multiple frames can
significantly aid discovering and learning outlier patterns: this
is because outliers tend to be inconsistent across frames, so
reasoning over multiple frames helps discovering them (see
Fig. 5).
a) Yaw estimation: In table II we evaluate our approach
for estimating camera viewpoint proposed in section III-C.
First we experiment with a network Φ tasked to output
a vector x ∈ R2 with the yaw angle computed as θ =
arctan(x1/x2) (row (a)). Our direct prediction approach
(rows (d-g)) outperforms this naïve baseline by a significant
margin. Our method is influenced by the number of discrete
rotations, 64 being optimal (row (f)). In order to provide
stronger baselines, we additionally implement to alternative
techniques [10], [8] to handle ambiguous predictions in 3D
pose estimation, but did not observe a benefit (rows (b) and
(c)) compared to simple direct arctan regression. This is
perhaps due to the different setting ([10], [8] were proposed
to handle ambiguous fitting of 3D shapes to 2D silhouettes).
b) SoTA comparison: In table III we compare our method
to the relevant state of the art. VS3D [29] uses a viewpoint
estimation network pretrained on Pascal 3D and NYC 3D
cars [42], [18] with ground truth yaw annotations. In Zakharov
et al. [45] a synthetic dataset is used to initialise a coordinate
shape space NOCS [38] providing a strong prior on 3D shape
and yaw estimation. During fitting stage they only utilise
Mask R-CNN predictions which have a high IOU compared
to a ground truth 2D box and also takes 6 seconds to infer a
single car on a modern GPU making it infeasible for real time
prediction unlike VS3D [29] (22Hz) and our method which
runs at 200Hz after the 2D object detection method (about
25Hz). We provide results (c) with a 2D detector trained on
MS-COCO[16] for fairest comparison to this method which
has pretrained requirements closest to our own. Frustum
PointNet [27] is a fully supervised (2D box, yaw, 3D size,
3D centre) method trained on KITTI that serves as a reference
with similar architecture to our method.
c) Auto-Label Generation: In table IV we compare
different supervision options on a single model. We train
the FPN [27] using original 3D ground truth, as well as
only the 3D ground truth where there is a matching 2D

Fig. 6: Qualitative results of our method (green) on the KITTI
Validation Set with ground truth car annotations in red and
points inside each mask in blue.

detection from Mask-RCNN [40] (the same detector used in
our method) to demonstrate what is the impact of instances
missed by the 2D detector to the overall performance. We
show that the difference between our labelling method, which
does not use any 3D ground truth, and using full 3D ground
truth of only the instances that are “made available” by the
2D detector, is relatively small, and therefore the 2D detection
quality is the main limiting factor.

TABLE IV: Using different forms of supervision to train
Frustum PointNet [27]

Supervision APBEV(IoU = 0.5)
Easy Moderate Hard

Fully Supervised (original GT) 98.16 94.80 87.11
Fully Supervised (GT w/ matching dets.) 91.83 87.16 78.29

Supervised by our labels (no GT) 90.23 85.74 76.84

V. CONCLUSIONS

In this paper we presented a novel method of localising
3D objects in LiDAR point clouds, trained using only generic
2D object detector. Compared to previous work, our method
is less complex, we do not require the use of additional
manually annotated data sources as in [29] or virtual data
and ground truth 2D bounding boxes as in [45], and we
still achieve superior accuracy and better run time. To our
knowledge, our method is the first method that can learn to
transform 2D predictions to 3D detections without any need
for supervision of 3D parameters.

TABLE III: Object Detection Average-Precision on the KITTI validation set. Compared to our Method VS3D[19] uses a
network trained on Pascal 3D and NYC 3D Cars[42], [18] to determine the object Yaw and 2D box, while while Zakharov[44]
only considers MASK R-CNN detections with an IOU > 50% compared to a ground truth box and uses a synthetic dataset
to train a network which gives yaw.

Method
Annotations Source APBEV / AP3D (IoU = 0.5)

2D 3D
Boxes Yaw Boxes Easy Moderate Hard

(a) VS3D [19] Pascal 3D NYC Cars 74.5/40.32 66.71/37.36 57.55/31.09
(b) Zakharov et al. [44] KITTI KITTI 77.84/62.25 59.75/42.23 -/-
(c) Ours MS-COCO 80.73/76.73 81.70/76.66 73.61/69.01
(d) Ours Cityscapes 86.52/83.45 86.22/79.53 75.53/71.01
(e) Frus.PointNet [27] KITTI KITTI KITTI 98.16/97.67 94.80/93.81 87.11/86.14
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