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Lukáš Neumann Andrew Zisserman
Andrea Vedaldi

Visual Geometry Group, Department of Engineering Science
University of Oxford

{lukas,az,vedaldi}@robots.ox.ac.uk

Abstract

We consider the problem of future event prediction in
video: if and when a future event will occur. To this end,
we propose a number of representations and loss functions
tailored to this problem. These include several probabilistic
formulations that also model the uncertainty of the predic-
tion. We train and evaluate the approach on two entirely
different prediction scenarios: if and when a car will stop
in the BDD100k car driving dataset; and if and when a
player is going to shoot a basketball towards the basket in
the NCAA basketball dataset.

We show that (i) we are able to predict events far in the
future, up to 10 seconds before they occur; and (ii) using at-
tention, we can determine which areas of the image sequence
are responsible for these predictions, and find that they are
meaningful, e.g. traffic lights are picked out for predicting
when a vehicle will stop.

1. Introduction
Image understanding is usually concerned with the prob-

lem of describing the content of a given image or video.
However, in applications such as robotics and autonomous
driving this is often not enough: in order to react in a timely
manner to external events (such as a pedestrian crossing the
street), it may be necessary to predict them before they occur
or are captured by the imaging device.

Our objective in this paper introducing the problem of
time-to-event prediction into computer vision by predicting
future events in video before they occur. In addition to
its practical importance, the problem also has a significant
scientific interest. In fact, predicting effectively the future is
likely to require an understanding of subtle properties of the
world and of its dynamics. Thus, this task can be used as a
form of self-supervision to learn about abstract concepts in
images and videos.

In this paper, we focus on two key challenges that are of
direct interest in many applications: telling (i) if a certain

event, such as a car stopping, is likely to occur in the near
future and, in this case, (ii) when the event is going to happen.
Our approach is based on performing probabilistic prediction
of future events, while accounting for event rarity, which is
required due to the fact that most of the data does not in fact
contain the event of interest.

Seeking to develop a very general approach, we consider
two entirely different testing scenarios. The first scenario is
to predict, given a video stream captured from a moving car,
whether and when the car is going to stop, in response to traf-
fic conditions and other environmental factors. The second
scenario is to predict, in videos of basketball games, whether
and if a player is going to throw. We develop and publish
two benchmarks for these tasks building on existing pub-
lic benchmark data. We also develop a new benchmarking
protocol based on evaluation metrics that reflect the ability
of a model to perform such predictions in a manner that is
relevant to applications.

The key design decision for this task is how to represent
the prediction, and the associated loss function. In section 3
we discuss a number of possible options and discuss their
advantages and disadvantages, introducing models that were
not tested before in this context. Our best model is GMMH,
a hybrid between a heatmap and a Mixture of Gaussians. We
show that this approach works better than may be thought
of as the “default” solution for modelling such problems,
such as pure classification or the Weibull distribution used
in survival analysis.

Compared to alternatives, the main benefit of our ap-
proach is its ability to predict events far in the future, up
to 10 seconds before they occur. We also show that, as the
algorithm learns to predict future events, it induces a visual
representation that captures small but important details of
image content. For example, in the driving application, we
show that the learned neural network pays attention to ele-
ments such as traffic and car lights as predictor of slowing
traffic.

We also compare our method to human performance,
demonstrating that such systems are competitive and in fact
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better at performing predictions about the future than average
humans. We impute this to the ability of algorithms to better
learn a specific domain, such as traffic conditions, and thus
be better able to capture subtle cues and tells that may be
overlooked by people.

2. Related Work
Early Action Recognition. Several authors have studied
the problem of early action recognition, where the task is
to predict what kind of action is currently happening, using
as small number of frames as possible. Hoai et al. [9] use
Structured Output SVM to detect facial expressions early.
Aliakbarian et al. [3, 2] use context- and action-aware fea-
tures with a two-stage LSTM to recognize actions from
partial video sequences. Similarly, Sigurdsson et al. [18] pro-
pose a fully-connected temporal CRF model, which exploits
intent information to predict in each frame the action being
performed. Dave et al. [5] use a predictive-corrective model
to maintain a memory state of the network for per-frame
action classification. Ramanathan et al.[16] use a BLSTM
to classify and detect events in individual frames of basket-
ball sports videos and Heidarivincheh et al. [8] detect action
completion. Wei et al. [27] on the other hand learn to classify
the arrow of time in videos.

The crucial difference of all the above methods to our
task is that the event had already started, i.e. the methods
already observe the event of interest unrolling, whereas in
our task we observe frames leading towards the start of the
event, but never the event itself. The same difference applies
to the standard activity recognition datasets [17, 10, 19, 4],
which capture many different classes of events, but typically
not what leads to them - and even if it was captured, the data
would not be very informative for event prediction, as given
the nature of the actions in the datasets such as “singing” or
“cliff diving”, the motivation leading to start the action is
mostly intrinsic to the actors and therefore cannot be easily
observed in the videos until the action actually starts.

Future Frames Prediction. A lot of work has been done
trying to predict future visual appearance. Vondrick et
al. [25, 26] use Generative Adversarial Networks (GANs)
to explicitly model foreground and background pixels and
generate a short video sequence from a single image. Xue
et al. [29] also predict future frames from a single image,
exploiting cross convolutional networks. Liang et al. [12]
then use dual motion GAN to predict future frames given
an input video sequence. The prediction horizon in all these
methods is however only couple of frames, and therefore
it is not applicable for predicting events which are several
seconds in the future.

Event Prediction In the machine learning literature, time
to event prediction has been extensively studied. Most re-
cently, Martinsson [13] proposed a Recurrent Neural Net-

work model with Weibull distribution for a customer churn
prediction. Soleimani et al. [20] use Gaussian processes to
predict time to event in medical applications. These mod-
els however deal with only low-dimensional sequential data
(such as patient temperature measurements), and thus are
not directly applicable in computer vision. Where possible,
we however try to adapt these models for high-dimensional
video data and evaluate them (see section 4.1).

In computer vision, Vondrick et al. [24] exploit
AlexNet [11] representations to predict what action will
happen in a recording of TV series in exactly 1 second time.
Felsen et al. [6] predict which player will hold the ball next,
by applying random forests to normalized overhead-view
sport videos. Alahi et al. [1] use a LSTM model to pre-
dict a 2D heatmap of future pedestrian position in overhead
pedestrian videos.

Our work is significantly different in that i) we predict
whether the event will happen or not ii) we give time estimate
to say when the event is likely to happen and with what prob-
ability iii) we predict significantly longer time horizon (up to
10 seconds) and iv) we don’t require static and normalized
camera views like [1, 6].

3. Method

3.1. Time to event

Consider a short sequence of N past and current visual
observations xt0−N+1,xt0−N+2, . . . ,xt0 . Our aim is to
estimate, based on this information, the probability that a
certain event of interest will occur in the near future and, if
so, when exactly (see fig. 2).

Since the choice of a time origin is immaterial, we sim-
plify the notation by assuming t0 = 0, and denote XN =
(x−N+1,x−N+2, . . . ,x0) the N observations. Hence, the
task can be formulated as estimating the conditional proba-
bility density p(t|XN ) of the time to event (TTE) τ ≥ 0.

More precisely, we define TTE as the time when the
observed system enters first a certain state of interest. For
example, in the car application the state of interest is that
the car velocity is zero, and in the sport application the
condition is that the ball is flying as a consequence of a
throw. This definition has a few important consequences.
First, the system may enter and leave the state of interest
several times and we are only concerned with the first of such
occurrences. Second, the system may already be in said state
at time 0, for example because the car is already stopped, so
that strictly speaking τ may be less than 0. In this case we
assume instead that τ = 0. Thirdly, the event may not occur
at all in the near future. The “no show” condition could
be model by allowing t to range in R+

0 ∪ {+∞}. Instead,
it is more practical to choose a fixed prediction horizon
∆max � 0 and conventionally set τ = 2∆max whenever the
TTE is beyond the horizon.
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Figure 1. Predicting car stopping in the BDD100k driving dataset. Time to event probability prediction (blue), event occurrence ground truth
(red), maximal prediction horizon ∆max (dashed gray). The network has learned to look for various cues (traffic lights, cars in front on the
road) to predict the probability if and when the car will stop. It has also learned to assign non-zero probability to time/position corresponding
to green traffic lights, as they in fact might turn red by the time the car gets there (middle row). See Supplementary material for the videos.
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Figure 2. Predicting future event at time τ , having observed N
frames up until time t0, where ∆ denotes the time distance between
the last observed frame and the event

In the following, rather than discussing density function
p(t|XN ) directly, we will make use of their cumulative dis-
tribution function (CDF), which has the usual definition
F (u|XN ) = P [t > u|XN ]. CDFs are more convenient in
our discussion as they can represent both continuous and
discrete-time distributions. Furthermore, CDFs can capture
both non-trivial distributions, used to encode uncertainty,
as well as “deterministic ones” that put all the mass on a
specific value of t, and can thus be used to encode point
estimates (these CDFs are step functions).

3.2. Predicting the TTE

Next, we describe a number of prediction models for the
TTE, all implemented as neural networks Φ. These networks
take as input a sequence of observations XN and output
an estimate F̂ (t|XN ) of the TTE CDF. The networks are
learned from example pairs (XN , τ) via optimization of a
suitable expected loss, which depends on the nature of the
model. Models differs mainly by whether they use a discrete
or continuous representation of time and by whether they
predict a non-trivial distribution over possible TTEs or they
produce instead point estimates.

3.2.1 Discrete-time models

One-in-many classification. The simplest approach to
modelling the CDF F̂ (t|XN ) is to quantize time in discrete
bins and reduce the problem to a classification one. For sim-
plicity, assume that the quantization interval is of one second
and that there are ∆max bins in total. Time t ≥ 0 is mapped
to a discrete index by the following quantizer function:

q(t) =

{
btc+ 1, t < ∆max,

∆max, t ≥ ∆max.

Index q = ∆max means that the event occurs beyond the
prediction horizon.



In order to implement this model, the network Φ(XN ) is
terminated in a softmax layer configured to output a ∆max-
dimensional probability vector. The corresponding CDF is
given by the cumulative sum

F̂ (t|XN ) =

q(t)∑
i=1

Φi(XN ). (1)

The model is trained by minimizing its negative log-
likelihood E(XN ,t)[− log Φq(t)(XN )].

Binary classifiers. As a variant of the previous model,
we consider using ∆max independent binary classifiers
Φi(XN ) ∈ [0, 1] by processing the network output not via
a softmax layer, but via a sigmoid. Each such classifier
Φi(XN ) is trained via log-likelihood maximization to pre-
dict the probability that the event occurs at time i or later. At
test time, the event is deemed to occur at the time the first of
such classifier fires; formally, the CDF is given by

F̂ (t|XN ) =

{
1, ∃i ≤ t+ 1 : Φi(XN ) ≥ 1

2 ,

0, otherwise.
(2)

Note that the expression above is valid for values of t strictly
less than the horizon ∆max; if all classifiers fail to fire, then
the event is deemed to occur beyond the prediction hori-
zon and conventionally predicted to be at time 2∆max as
explained before.

Heuristic heatmaps. Inspired by the keypoint detection
literature [23, 22, 14], we explore predicting the TTE via
an heuristic heatmap. To this end, the neural network is
configured to output a 1D heat map Φ(XN ) = h ∈ RT+ of
size T = 2r∆max, where r is the temporal resolution (in
our experiments, we set r = 4). The TTE is decoded as the
position of the maximum in the heat map h. For t < 2∆max,
the TTE CDF is obtained via cumulative summation and
normalization:

F̂ (t;h) =
1∑T
i=1 hi

b T
2r∆max

tc+1∑
i=1

hi. (3)

This model is trained by minimizing the expected squared L2

distance E(XN ,t)[‖gt − Φ(XN )‖2] between the estimated
heatmap and a heatmap prototype gt centered at the ground-
truth TTE value τ . The prototype is a Gaussian-like kernel
[gt]i = exp

[
− 1

2σ2

(
2r∆max
T i− τ

)2]
.

Note that this model allows the heatmap to have non-
zero values in a region beyond the prediction horizon ∆max
up to 2∆max so that the “no show” case can be captured.
For training the model, “no show” samples are mapped to
Gaussian window prototypes gt whose center is randomly
selected in the interval [∆max, 2∆max]. This ensures that data
are more balanced in the training process, compared to a
representation when one outputs just zero values in the heat
map if the event did not occur.

3.2.2 Continuous-time models

A limitation of the previous models is their finite temporal
resolution, due to the use of a quantizer function, and no
representation of uncertainty of the prediction. We thus
evaluate models that produce a continuous estimate of the
TTE, and that, apart from Direct Regression, also output
prediction uncertainty.

Direct regression. The simplest approach to predict the
TTE over a continuous domain is to configure the neural
network to output a real number Φ(XN ) = t̂ ∈ R+ that
approximates the TTE directly (following the convention
that, if the event does not occur before the time horizon
∆max, then the model outputs the value 2∆max).

This model estimates the TTE with infinite resolution,
but it does not produce an uncertainty. This fact is cap-
tured by a step-wise CDF F̂ (u|t̂) = [u ≥ t̂]. The model
is trained by minimizing the expected absolute distance be-
tween estimated TTE t̂ and ground-truth TTE τ , given by
E(XN ,t)[|τ − Φ(XN )|]; this is the same as the expected L1

distance ‖F (·|t̂)−F (·|t)‖1 between the estimated step-wise
CDF and the step-wise CDF centered at ground-truth TTE.

Gaussian distribution. In this case, the model Φ(XN ) =
(µ, σ) ∈ R2

+ outputs two real numbers, the mean µ and stan-
dard deviation σ of a 1D Gaussian distribution N (t|µ, σ),
with CDF F (t|XN ) = NCDF(t|Φ(XN )). Again, we use
the convention of setting τ = 2∆max when the event
does not occur within the prediction horizon. This model
is also trained by minimizing the negative log-likelihood
E(XN ,τ)[− logN (τ |Φ(XN ))].

Weibull distribution. The Gaussian distribution is not
necessarily optimal for modeling TTEs; in fact, several
authors have proposed to use the Weibull distribution in
similar contexts [13]. In order to experiment with this
idea, the network is modified to output the parameters
(α, β) ∈ R2 of a Weibull distribution, whose CDF is given by
F̂ (t|α, β) = 1−e−(t/α)β . The advantage of the Weibull dis-
tribution is that it can more explicitly model the case in which
the event does not occur within the prediction horizon ∆max.
Such a “no show” event is modeled as Type I censoring,
denoted with z = 0, whereas z = 1 means that the event oc-
curs within the window. The model is learned by minimizing
the negative log-likelihood E(XN ,t)[− log p(τ |z,Φ(XN ))]
where

log p(t|z, α, β) = z

(
log(β) + β log

t

α

)
−
(
t

α

)β
(4)

where, given our convention of mapping events that do not
occur we have z = [τ > ∆max].

Gaussian Mixture Model Heatmap (GMMH). Finally,
we propose a novel representation based on a Gaussian Mix-



ture Model (GMM), which combines the benefits of the
Gaussian distribution and the heuristic heat map models.

The network is configured to output three vectors
Φ(XN ) = (µ,σ,h) ∈ RT×3 again of dimension T =
2r∆max. The first two vectors µ and σ represent the param-
eters of T 1D Gaussian distributions, and the third vector h,
similar to the heuristic heatmap, is used here as the weight-
ing of the T Gaussians components. The CDF of this model
is simply the weighted combination of Gaussian CDFs:

F̂ (t;µ,σ,h) =
1

〈1,h〉

T∑
j=1

hjNCDF(t;µj , σj).

The loss function is the negative log-likelihood of the GMM
regularized by the loss already adopted for the heuristic
heatmap:

E(XN ,t)

− log

T∑
j=1

hjN (τ ;µj , σj)

〈1,h〉
+ λ‖gt − h‖2

 .
(5)

3.3. Evaluation Metrics

Next, we present three evaluation metrics of increasing
granularity, allowing to compare models’ performance in
terms of how well they predict whether the event will or
will not occur (Event Prediction Accuracy), how accurately
they predict time to the event (Time-to-Event Error) and how
accurate is the event probability distribution estimate (Model
Surprise).

We expect predictions to be more difficult as the event oc-
curs farther in the future, so we break down evaluations based
on this parameter. Specifically, we vary ∆gt ∈ [0,∆max] to
draw performance curves, as the same test events are ob-
served from greater temporal distance. We also report the
average value of the three metrics as ∆gt is swept inside this
range.

Event Prediction Accuracy (EPA). EPA measures
whether the model can successfully answer the if question,
namely whether the event will or will not occur within the
prediction window. This is a classification problem and EPA
is the average classification accuracy. Recall that, in order
to predict that the event does not occur, discrete-time mod-
els predict a special index/class, whereas continuous-time
models predict the event to occur at a time t > ∆max.

Since most of the episodes XN do not contain the event
of interest (as these are comparatively rare), in order to make
metrics comparable between event types and datasets we
balance the testing set so that the ratio between sequences
with and without the event is 50:50.

Time-to-Event Error (TTEE). TTEE measures whether
the model can successfully answer the if so, when? question,
namely determine when exactly the events will occur. TTEE

is the average absolute prediction error E(XN ,t)[|τ − Ψ ◦
Φ(XN )|], where Ψ is the operation that maps the output of
the neural network Φ to a point estimate t̂ = Ψ ◦Φ(XN ) for
the TTE. For discrete-time models, for example, Ψ maps the
predicted time index to a continuous time value to allow for
a comparison against the ground-truth time. The empirical
average is carried over the subset of the test set where the
event does occur. If the network predicts incorrectly that the
event does not occur, then the TTEE for that sample is set to
∆max.

Model Surprise (MS). For model that outputs a predic-
tion uncertainty in addition to a point estimates, we are
also interested in measuring the quality of the predicted un-
certainty value. We do so by taking the output distribution
p̂(t|XN ) and measuring the expected negative log-likelihood
given the ground truth annotations in the test set, defined as
E(XN ,τ)[− log p̂(τ |XN )]. This is also known as model “sur-
prise” and is an indication of the quality of the probabilistic
output of the model: if the model assigns high probability
values to the correct ground truth locations, the resulting
“surprise” will be low, and vice-versa.

3.4. Backbone Architecture

In order to implement the neural network Φ, in all experi-
ments we adapt the 3D ResNet-34 [7] architecture (see ta-
ble 1) and extend it with a soft-attention module [28] to
visualize what regions of the video sequence play the key
role in the network decision making process. Depending on
the model, we also change the output dimension accordingly
(see Section 3.2). Most notably, our proposed GMMH has an
output dimension of 80× 3 (T = 2r∆max = 2× 4× 10 =
80).

We used the vanilla SGD optimizer with Nesterov mo-
mentum [21] with an initial learning rate of 10−1, which was
decreased by a factor of 10 every time the loss stopped im-
proving, and trained every model until the learning rate fell
below 10−5. All models were implemented in PyTorch [15]
and all the source code will be released to foster reproducibil-
ity.

4. Experiments
We assess our approach in two challenging scenarios:

egocentric car stopping and basketball throws.

4.1. Egocentric Car Stopping

In the first experiment, we aim to predict if and when a
car is about to stop, using the video stream from a forward-
looking camera mounted behind a windshield.

Dataset. We build on the BDD100k dataset [30], which
consists of 100,000 video sequences each 40 seconds of
length, accompanied with basic sensory data such as GPS,
velocity or acceleration. We define the stopping event as the



Layer Spatial Dim. Time Dim. Channels Operation

Input 112× 112 16 64 3× 3× 3 conv (stride 2), BN, ReLU
Pooling 56× 56 8 64 3× 3× 3 max pool (stride 2)
Residual Block (1) 24× 24 8 64 3× 3× 3 conv, BN, ReLU, 3× 3× 3 conv, BN, sum
Residual Block (2) 24× 24 8 128 3× 3× 3 conv, BN, ReLU, 3× 3× 3 conv, BN, sum

Attention Map 24× 24 8 1 3× 3× 3 conv, BN, ReLU, 3× 3× 3 conv, softmax
Soft Attention 24× 24 8 128 element-wise multiply all channels by Attention Map
Residual Block (3) 14× 14 4 256 3× 3× 3 conv (stride 2), BN, ReLU, 3× 3× 3 conv, BN, sum
Residual Block (4) 7× 7 2 512 3× 3× 3 conv (stride 2), BN, ReLU, 3× 3× 3 conv, BN, sum
Average Pooling 1× 1 1 512 7× 7× 2 avg. pool
Output 80 × 3 — — fully connected

Table 1. 3D ResNet architecture
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Figure 3. Predicting stopping in the BDD100k driv-
ing dataset. EPA (left) and TTEE (right) as functions
of the temporal distance ∆ before the event
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Figure 4. Human accuracy
on BDD100k.

# frames EPA [%] TTEE [s] MS

1 60.96 3.84 4.29
2 68.70 3.77 4.19
4 71.41 3.43 4.10
8 73.27 2.90 3.99

16 78.70 2.04 2.69
24 78.75 2.03 2.65

Table 2. Number of input frames vs. event
prediction accuracy on BDD100k

Model EPA [%] TTEE [s] MS

One-in-many Classifier 71.87 2.66 N/A
Binary Classifiers 75.90 3.21 N/A
Direct Regression 71.11 3.81 N/A
Gaussian Distribution 66.77 5.77 10.91
Weibull Distribution 55.66 8.31 3.20
Heuristic Heatmap 76.15 2.64 3.88
Gaussian Mixture 78.70 2.04 2.69

Table 3. Car stopping prediction in the BDD100k driving dataset

point in time when the vehicle velocity falls below 5km/h,
if previously the velocity was above the threshold for at least
10 seconds (i.e. the vehicle was in motion for at least 10
seconds). We follow the original train/val/test BDD100k
dataset split, but since the sensory data are not available
for the test subset, we evaluate our model on the val subset
only. In total, we used 31k stopping and 21k not-stopping
sequences for training, and 4.6k stopping and 3.1k non-
stopping sequences for evaluation. Each video sequence was
sampled at 5fps. We did not use any of the sequences where
the car was not moving at all or where it stopped in less than
10 seconds since the beginning of the video clip in either
training or evaluation. We will publish the data split and the
stopping events positions to make sure the experiment can
be easily reproduced.

Results. We trained all models from scratch, using the
same 3D-ResNet architecture (see section 3.4) as the back-
bone in all experiments. The only difference between them
is the the dimensionality/nature of the last layer and loss
function accordingly, which vary as explained in section 3.

Method Output model EPA [%]

WTTE-RNN [13] Weibull Distribution 56.01
MS-LSTM [3] Binary Classifiers 61.17
our method Gaussian Mixture 78.70

Table 4. Car stopping prediction in the BDD100k driving dataset

Table 3 shows GMMH performs the best on this dataset.
As shown in fig. 3, all models’ prediction accuracy decreases
as events more in the future are considered, but GMMH
uniformly outperforms all other models.

We also visualize the attention of the network by display-
ing the values of the Attention Map layer, averaged over the
N input frames. In fig. 1 we show that the network has for
example learned to detect traffic lights, as well as to look for
cars ahead on the road, as this is a good indicator or whether
the car will shortly stop or not. The model has also learned
that when approaching a green traffic light, there is a still
a probability the car might stop (fig. 1 — middle row), as
green might turn red before the car gets there. We note that
all this was learned in an unsupervised way, only as a result
of the requirement to predict the car stopping.

Comparison to Existing Methods. We also do our best to
compare to existing methods in the literature. We exploit the
architecture of Aliakbarian et al. [3], which is a LSTM with
attention model for early event classification, and we adapt
it to our domain by treating the event prediction as a clas-
sification problem (see Section 3.2.1). For this method, we
use the Binary Classifiers output formulation, as this proved
to be the best discrete-time model in our experiments. We
train the models using the same training data and learning



rate schedule as our model and follow the same evaluation
protocol (see Table 4). We show that the method performs
worse than our method. This however is in part explained by
the fact that this approach uses a different backbone (VGG)
as the method also performs worse than 3D-ResNet with
the same output formulation (see Table 3). We also adapt
WTTE-RNN [13], which is a LSTM-based model used to
predict events in low-dimensional data (such as engine fail-
ures based on a series of measurements). The model outputs
Weibull distribution, which makes it extremely relevant to
the domain of time to event prediction. We adapt it for im-
age processing by plugging 3D ResNet-35 as a backbone,
in order to generate low-dimensional features for the model,
and train it jointly. The method performs only slightly better
than the vanilla 3D ResNet-35 using Weibull Distribution
(see Table 3), which suggests that the LSTM does not bring
much of an additional benefit for the 3D ResNet backbone.
It still however is worse than our GMMH model.

Comparison to Human Performance. We set up an ex-
periment to assess the human performance for the task of
breaking prediction. We showed 5 second video sequences
(N = 25 frames) randomly picked from the above validation
set to non-expert volunteers and asked them to answer the
question “Will the car you are in stop within the next 10
seconds?” by clicking one of the two buttons. For stopping
videos, we randomly picked from the interval ∆ ∈ (1, 10)
seconds before the car stopped, so that the last frame of the
5 second sequence was exactly ∆ seconds before the stop-
ping, and for non-stopping video we simply picked a random
5-second sequence from the video.

We collected around 1.5k data points from 28 non-expert
volunteers (students), by asking them to perform this task for
approximately 10 minutes, without giving them any immedi-
ate feedback to say if their answers were correct or not. As
we show in Figure 4, the human performance decreases as
events more in the future are considered, which is expected.
More interestingly human performance in our experiment is
actually slightly worse than the best model. We think that
this is because it is harder for humans to establish a deeper
understanding of the currently shown road scene from only
a 5 second video sequence, and that humans were gener-
ally more defensive in their estimates. Many scenes in the
dataset, for example, capture busy traffic situations where
cars in front are slowing down/breaking but not actually stop-
ping, but a natural reaction for a human is to expect the car
will indeed stop as a result, leading to a biased answer. The
network, on the other hand, can learn to exploit this prior in
the data.

Ablation Studies. We study the contribution of the vehi-
cle’s velocity as a possible source for the stopping prediction.
This is interesting, as one might expect that the stopping
prediction could be mostly based on velocity information,

Model EPA [%] TTEE [%]

Image only 71.87 2.66
Velocity only 61.89 6.92
Image + velocity 72.01 2.70

Table 5. Impact of the velocity input

i.e. the information that the vehicle has started to slow down.
First, we train a multi-layer perception classifier, using 16-
dimensional velocity vector as the input feature. The vector
represents the current velocity in the respective 16 frames
of the video sequence. We then compare the prediction per-
formance to our model which uses only images as an input.
We also combine both by concatenating the MLP output as
the 513th channel for the fully connected layer. We used the
one-in-many model in this experiment, so that we can have
the same output encoding for all three options, including the
standalone MLP.

As we show in table 5, the velocity channel on its own is
not sufficient for a reliable stopping prediction — predicting
whether the car will stop or not (EPA) is 10 percent point
worse than when using only the image data, but more im-
portantly the time-to-event prediction error (TTEE) is more
than 2 times higher. This suggests that the car slowing down
is a reasonably good indicator of that the car about to stop,
but the exact time/place of stopping relies heavily on visual
information from the scene. On the other hand, adding the
velocity information to the image data has very limited im-
pact to the accuracy, which suggests that the network actually
already performs some velocity estimation from the image
data.

In the second ablation study, we evaluate the impact of
the number of observed video frames on the overall accuracy,
when using the newly proposed Gaussian Mixture formu-
lation (see table 2). We show that the accuracy is slowly
decreased as less input frames are considered, however the
difference between the input length of 24 and 16 frames
is very small, but comes with almost double the computa-
tional cost. In the extreme case of observing a single frame,
the accuracy drops significantly, because the network loses
any information about the current car movement. We there-
fore opted to use 16 frames as the input of our model, as a
trade-off between accuracy and training/run time.

Due to lack of space, the ablation study of the temporal
resolution r is presented in the Supplementary material.

4.2. Basketball Shooting

In the second experiment setting, we aim to predict if and
how long till a player is going to shoot a basketball towards
the basket, using TV recordings of basketball games. The
data is very different from the previous experiment, because
the action is observed by an external observer as the camera
aims at the field where the action is happening, and the video
sequences are generally more challenging as basketball is a



Figure 5. Predicting basket-
ball shooting. Time to event
probability prediction (blue),
event occurrence ground truth
(red), maximal prediction hori-
zon ∆max (dashed gray).
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model EPA [%] TTEE [s] MS

One-in-many Classifier 53.71 5.00 N/A
Binary Classifiers 73.84 2.30 N/A
Direct Regression 71.87 2.68 N/A

Gaussian Distribution 53.80 4.99 7.09
Heuristic Heatmap 73.64 2.10 3.61
Gaussian Mixture 76.42 1.42 3.02

Table 6. Predicting basketball shooting
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Figure 6. Basketball shooting EA (left) and TTEE (right)

fast-moving game and moreover there are often cuts between
different cameras and therefore viewpoints within the video
stream.

Dataset. We exploit the NCAA basketball dataset [16],
which contains 296 basketball game recordings, each typ-
ically 1.5 hours long. The dataset comes with manually
created annotations of 11 event types, from which we picked
4 classes (2-point success, 2-point fail, 3-point success and
3-point fail) representing ball leaving player’s hands and
used that as an annotation for the “ball throw” event used in
our experiments. We follow the original data split and used
the training & val subsets for training, and the test subset for
evaluation. We do not use any of the localization (bounding
box) information provided in the dataset.

Since the videos are much longer than in the driving case,
we first split them into 30 second sequences and then label
each sequence depending whether it contains the ball throw
or not. Because the sequences without the ball throw prevail,
we randomly subsample them to have a comparable number
of sequences with and without the ball throw. As a result, the

training set consists of 7k “ball throw” and 9k “no ball throw”
sequences, and the testing set contains 1.1k “ball throw” and
1.4k “no ball throw” sequences. We will again publish the
exact data split for reproducibility.

Results. We trained all models from scratch, using the
same training protocol as in the previous section. In contrast
to the previous section, we only train and evaluate the pre-
diction in the interval of (1, 5) seconds, because of generally
faster pace of the action happening in the videos and to avoid
issues with cuts in the TV stream.

Our GMMH again performs the best (see Table 6), signif-
icantly outperforming the other representations in all three
metrics. Looking at the attention map, we observe that the
network has learned to look for players and the team forma-
tion as a cue to predict whether a player is about to shoot
the basketball or not (see fig. 5). We also point out that the
output probability distribution has generally greater variance
(i.e. “the sigmas are larger”) than in the previous experiment,
which is also reflected in the higher Model Surprise (3.02 for
basketball vs. 2.69 for the stopping prediction — note this
metric has a logarithmic scale). This suggests that generally
there is a higher uncertainty in the underlying dataset.

5. Conclusion
We considered the problem of future event prediction: if

and when an event will occur. We evaluated several possible
representations and proposed a novel probabilistic GMMH
model, which also outputs uncertainty of the prediction.

By evaluating in two entirely different testing scenarios,
we demonstrated that we are able to predict events up to
10 seconds before they occur, and that using attention, we
can demonstrate that the network has learned to look for
meaningful cues, such as traffic lights. We also showed that
in vehicle stopping prediction, our model outperforms an
average human, which we contribute to the better ability
of neural networks to learn domain specific priors and to
capture subtle cues.
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