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Figure 1: The goal of this work is to discover effective and cost-efficient data annotation strategies for the task of learning

dense correspondences in the wild (DensePose). We significantly reduce the annotation effort by exploiting (a) sparse subsets

of the DensePose labels augmented with cheaper kinds of annotations, such as object masks or keypoints, and (b) temporal

information in videos to propagate ground truth and enforce dense spatio-temporal equivariance constraints.

Abstract

DensePose supersedes traditional landmark detectors by

densely mapping image pixels to body surface coordinates.

This power, however, comes at a greatly increased anno-

tation cost, as supervising the model requires to manually

label hundreds of points per pose instance. In this work,

we thus seek methods to significantly slim down the Dense-

Pose annotations, proposing more efficient data collection

strategies. In particular, we demonstrate that if annotations

are collected in video frames, their efficacy can be multi-

plied for free by using motion cues. To explore this idea, we

introduce DensePose-Track, a dataset of videos where se-

lected frames are annotated in the traditional DensePose

manner. Then, building on geometric properties of the

DensePose mapping, we use the video dynamic to propa-

gate ground-truth annotations in time as well as to learn

from Siamese equivariance constraints. Having performed

exhaustive empirical evaluation of various data annotation

and learning strategies, we demonstrate that doing so can

deliver significantly improved pose estimation results over

strong baselines. However, despite what is suggested by

some recent works, we show that merely synthesizing mo-

tion patterns by applying geometric transformations to iso-

lated frames is significantly less effective, and that motion

cues help much more when they are extracted from videos.

∗James Thewlis and Iasonas Kokkinos were with Facebook AI Re-

search (FAIR) during this work.

1. Introduction

The analysis of people in images and videos is often

based on landmark detectors, which only provide a sparse

description of the human body via keypoints such as the

hands, shoulders and ankles. More recently, however, sev-

eral works have looked past such limitations, moving to-

wards a combined understanding of object categories, fine-

grained deformations [18, 26, 7, 23] and dense geometric

structure [13, 32, 9, 12, 20, 19, 29]. Such an understanding

may arise via fitting complex 3D models to images or, as

in the case of DensePose [12], in a more data-driven man-

ner, by mapping images of the object to a dense UV frame

describing its surface.

Despite these successes, most of these techniques need

large quantities of annotated data for training, proportional

to the complexity of the model. For example, in order to

train DensePose, the authors introduced an intricate annota-

tion framework and used it to crowd-source manual annota-

tions for 50K people, marking a fairly dense set of landmark

points on each person, for a grand total of 5M manually-

labelled 2D points. The cost of the DensePose dataset is

estimated to be 30K $. This cost is justified for visual ob-

jects such as people that are particularly important in appli-

cations, but these methods cannot reasonably scale up to a

dense understanding of the whole visual world.

Aiming at solving this problem, papers such as [29, 27]

have proposed models similar to DensePose, but replac-

ing manual annotations with self-supervision [29] or even
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no supervision [27]. The work of [29], in particular, has

demonstrated that a dense object frame mapping can be

learned for simple objects such as human and pet faces us-

ing nothing more than the compatibility of the mapping with

synthetic geometric transformations of the image, a prop-

erty formalized as the equivariance of the learned mapping.

Nevertheless, these approaches typically fail to learn com-

plex articulated objects such as people.

In this paper, we thus examine the interplay between

weakly-supervised and self-supervised learning with the

learning of complex dense geometric models such as

DensePose (fig. 1). Our goal is to identify a strategy that

will allow us to use the least possible amount of supervi-

sion, so as to eventually scale models like DensePose to

more non-rigid object categories.

We start by exploring the use of sources of weaker su-

pervision, such as semantic segmentation masks and human

keypoints. In fact, one of the key reasons why collecting an-

notations in DensePose is so expensive is the sheer amount

of points that need to be manually clicked to label image

pixels with surface coordinates. By contrast, masks and

keypoints do not require establishing correspondences and

as such are a lot cheaper to collect. We show that, even

though keypoints and masks alone are insufficient for es-

tablishing correct UV coordinate systems, they allow us to

substantially sparsify the number of image-to-surface cor-

respondences required to attain a given performance level.

We then extend the idea of sparsifying annotations to

the temporal domain and turn to annotating selected video

frames in a video instead of still images as done by [12]. For

this we introduce DensePose-Track, a large-scale dataset

consisting of dense image-to-surface correspondences gath-

ered on the sequences of frames comprising the PoseTrack

dataset [16]. While the cost of manually annotating a video

frame is no different than the cost of annotating a similar

still image, videos contain motion information that, as we

demonstrate, can be used to multiply the efficacy of the an-

notations. In order to do so, we use an off-the-shelf algo-

rithm for optical flow [14] to establish reliable dense corre-

spondence between different frames in a video. We then use

these correspondences in two ways: to transfer annotations

from one frame to another and to enforce an equivariance

constraint similar to [29].

We compare this strategy to the approach adopted by

several recent papers [29, 31, 30] that use for this pur-

pose synthesized image transformations, thus replacing

the actual object deformation field with simple rotations,

affine distortions, or thin-plate splines (TPS). Crucially,

we demonstrate that, while synthetic deformations are not

particularly effective for learning a model as complex as

DensePose, data-driven flows work well, yielding a strong

improvement over the strongest existing baseline trained

solely with manually collected static supervision.

2. Related work

Several recent works have aimed at reducing the need

for strong supervision in fine-grained image understanding

tasks. In semantic segmentation for instance [25, 22, 21]

successfully used weakly- or semi- supervised learning

in conjunction with low-level image segmentation tech-

niques. Still, semantic segmentation falls short of delivering

a surface-level interpretation of objects, but rather acts as a

dense, ‘fully-convolutional’ classification system.

Starting from a more geometric direction, several works

have aimed at establishing dense correspondences between

pairs [5] or sets of RGB images, as e.g. in the recent works

of [32, 9]. More recently, [29] use the equivariance prin-

ciple in order to align sets of images to a common coor-

dinate system, while [27] showed that autoencoders could

be trained to reconstruct images in terms of templates de-

formed through UV maps. More recently, [20] showed that

silhouettes and landmarks suffice to recover 3D shape infor-

mation when used to train a 3D deformable model. These

approaches bring unsupervised, or self-supervised learning

closer to the deformable template paradigm [11, 6, 2], that

is at the heart of the connecting images with surface co-

ordinates. Along similar lines, equivariance to translations

was recently proposed in the context of sparse landmark lo-

calization in [8], where it was shown that it can stabilize

network features and the resulting detectors.

3. Method

We first summarise the DensePose model and then dis-

cuss two approaches to significantly decreasing the cost of

collecting annotations for supervising this model.

3.1. UV maps

DensePose can be described as a dense body landmark

detector. In landmark detection, one is interested in detect-

ing a discrete set of body landmarks u = 1, . . . , U , such

as the shoulders, hands, and knees. Thus, given an image

I : R2 → R
3 that contains a person (or several), the goal

is to tell for each pixel p ∈ R
2 whether it contains any of

the U landmarks and, if so, which ones.

DensePose generalizes this concept by considering a

dense space of landmarks U ⊂ R
2, often called a UV-space.

It then learns a function Φ (a neural network in practice)

that takes an image I as input and returns an association of

each pixel p to a UV point u = Φp(I) ∈ U ∪ {φ}. Since

some pixels may belong to the background region instead

of a person, the function can also return the symbol φ to

denote background. The space U can be thought of as a

“chart” of the human body surface; for example, a certain

point u ∈ U in the chart may correspond to “left eye” and

another to “right shoulder”. In practice the body is divided

into multiple charts, with a UV map predicted per part.
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While DensePose is more powerful than a traditional

landmark detector, it is also more expensive to train. In

traditional landmark detectors, the training data consists of

a dataset of example images I where landmarks are man-

ually annotated; the conceptually equivalent annotations

for DensePose are UV associations Φgt
p (I) ∈ U collected

densely for every pixel p in the image. It is then possible to

train the DensePose model Φ via minimization of a loss of

the type ‖Φ(I)− Φgt(I)‖.

In practice, it is only possible to manually annotate a dis-

cretized version of the UV maps. Even so, this requires

annotators to click hundreds of points per person instance,

while facing issue with ambiguities in labeling pixels that

are not localized on obvious human features (e.g. points

on the abdomen). A key innovation of the DensePose

work [12] was a new system to help human annotators to

collect efficiently such data. Despite these innovations, the

DensePose-COCO training dataset consists of 50k people

instances, for which 5 million points had to be clicked man-

ually. Needless to say, this required effort makes DensePose

difficult to apply to new object categories.

3.2. Geometric properties of the UV maps

Brute force manual labelling can be reduced by exploit-

ing properties of the UV maps that we know must be satis-

fied a-priori. Concretely, consider two images I and I ′ and

assume that pixels p and p′ in the respective images contain

the same body point (e.g. a left eye). Then, by definition,

the map Φ must send pixels p and p′ to the same UV point,

so that we can write:

Φp(I) = Φp′(I ′). (1)

Consider now the special case where I and I ′ are frames of

a video showing people deforming smoothly (where view-

point changes are a special case of 3D deformation). Then,

barring self-occlusions and similar issues, corresponding

pixels (p, p′) in the two images are related by a corre-

spondence field g : R
2 → R

2 such that we can write

p′ = g(p). To a first approximation (i.e. assuming Lamber-

tian reflection and ignoring occlusions, cast shadows, and

other complications) image I ′ is a deformation gI of im-

age I (i.e. ∀p′ : (gI)(p′) = I(g−1(p′))). In this case, the

compatibility equation (1) can be rewritten as the so-called

equivariance constraint

Φp(gI) = Φg(p)(I) (2)

which says that the geometric transformation g “pops-out”

the function Φ.

Next, we discuss how equivariance can be used in differ-

ent ways to help supervise the DensePose model. There are

two choices here: (1) how the correspondence field g can be

obtained (section 3.2.1) and (2) how it can be incorporated

as a constraint in learning (section 3.2.2).
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Figure 2: Real (top) and synthetic (bottom) transformation

fields exploited to enforce equivariance constraints.

3.2.1 Correspondence fields: synthesized vs real

Annotating the correspondence field g in (2) is no easier

than collecting the DensePose annotations in the first place.

Thus, (2) is only useful if correspondences can be obtained

in a cheaper manner. In this work, we contrast two ap-

proaches: synthesizing correspondences or measuring them

from a video (see fig. 2).

The first approach, adopted by a few recent papers [29,

31, 30], samples g at random from a distribution of image

warps. Typical transformations include affinities and thin-

plate splines (TPS). Given the warp g, a training triplet t =
(g, I, I ′) is then generated by taking a random input image

I and applying to it the warp to obtain I ′ = gI .

The second approach is to estimate a correspondence

field from data. This can be greatly simplified if we are

given a video sequence, as in this case low-level motion

cues can be integrated over time to give us correspondences.

The easiest way to do so is to apply to the video an off-the-

shelf optical flow method, possibly integrating its output

over a short time. Then, a triplet is formed by taking the

first frame I , the last I ′, and the integrated flow g.

The synthetic approach is the simplest and most general

as it does not require video data. However, sampled trans-

formations are at best a coarse approximation to correspon-

dence fields that may occur in nature; in practice, as we

show in the experiments, this severly limits their utility. On

the other hand, measuring motion fields is more complex

and requires video data, but results in more realistic flows,

which we show to be a key advantage.

3.2.2 Leveraging motion cues

Given a triplet t = (g, I, I ′), we now discuss two differ-

ent approaches to generating a training signal: transferring

ground-truth annotations and Siamese learning.
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The first approach assumes that the ground-truth UV

map Φgt
p′(I ′) is known for image I ′, as for the DensePose-

Track dataset that will be introduced in section 4. Then,

eq. (2) can be used to recover the ground-truth mapping for

the first frame I as Φgt
p (I) = Φgt

g(p)(I
′). In this manner,

when training DP, the loss term ‖Φgt(I ′) − Φ(I ′)‖ can be

augmented with the term ‖Φgt(I)− Φ(I)‖.

The main restriction of the approach above is that the

ground-truth mapping must be available for one of the

frames. Otherwise, we can still use eq. (2) and enforce

the constraint Φp(I) = Φgp(I
′). This can be encoded in

a loss term of the type ‖Φ(I) − Φg(I
′))‖ where Φg(I

′) is

the warped UV map of the second image. Note that both

terms in the loss are output by the learned model Φ, which

makes this a Siamese neural network configuration.

Another advantage of the equivariance constaint eq. (2)

is that it can be applied to intermediate layers of the deep

convolutional neural network Φ as in fact the nature of the

output of the function is irrelevant. In the experiments,

equivariance is applied to the features preceding the out-

put layers at each hourglass stack as this was found to work

best. Thus, denote by Ψ(I) the tensor output obtained at

the appropriate layer of network Φ with input I and let

Ψg be the warped tensor. We encode the equivariance con-

straint via the cosine-similarity loss of the embedding ten-

sors Lcos = 1 − ρ(Ψ(I),Ψg(I
′)), where ρ is the cosine

similarity ρ(x, y) = 〈x, y〉/(‖x‖‖y‖|) of vectors x and y.

4. DensePose-Track

We introduce the DensePose-Track dataset, based on the

publicly available version of the PoseTrack dataset [16],

which contains 10 339 images and 76 058 annotations.

PoseTrack annotations are provided densely for 30 frames

that are located temporally in the middle of the video. The

DensePose-Track dataset has 250 training videos and 50

validation videos. In order to allow a more diverse evalu-

ation of long range articulations, every fourth frame is ad-

ditionally annotated for the validation set.

Since subsequent frames in DensePose-Track can be

highly correlated, we temporally subsample the tracks pro-

vided in the PoseTrack dataset using two different sampling

rates. Firstly, in order to preserve the diversity and capture

slower motions, we annotate every eighth frame. Secondly,

in order to capture faster motions we sample every second

frame for four frames in each video.

Each person instance in the selected images is cropped

based on a bounding box obtained from the keypoints and

histogram-equalized. The skeleton is superimposed on the

cropped person images to guide the annotators and identify

the person in occlusion cases. The collection of correspon-

dences between the cropped images and the 3D model is

done using the efficient annotation process analogous to the

one described in [12].

Figure 3: Annotations in the collected DensePose-Track

dataset. Top row: Parts and points. Bottom rows: Images

and collected points colored based on the ‘U’ value [12], in-

dicating one of the two coordinates in a part-based, locally

planar parameterization of the human body surface.

The PoseTrack videos contain rapid motions, person oc-

clusions and scale variation which leads to a very challeng-

ing annotation task. Especially due to motion blur and small

object sizes, in many of the cropped images the visual cues

are enough to localize the keypoints but not the detailed sur-

face geometry. To cope with this we have filtered the anno-

tation candidates. Firstly, the instances with less then six

visible keypoints are filtered out. This is followed by man-

ual elimination of samples that are visually hard to annotate.

The DensePose-Track dataset training/validation sets

have 1680 / 782 images labelled in total with dense cor-

respondences for 8274 / 4753 instances, resulting in a to-

tal of 800 142 / 459 348 point correspondences, respectively.

Sample image-annotation pairs are visualized in Fig 3.

Beyond the purpose of self-supervised training through

optical flow, PoseTrack contains information that could be

used to asses dense pose estimation systems in time, or

improve them through spatio-temporal processing at test

time. Static datasets do not capture the effects of occlusions

caused by multi-person interactions, e.g. when dancing. Re-

cent datasets for pose estimation in time focus on more chal-

lenging, multi-person videos as e.g. [17, 15], but are smaller

in scale — in particular due to the challenging nature of

the task. Regarding establishing dense correspondences be-

tween images and surface-based body models DensePose-

COCO was introduced in [12], providing annotations for

50K images of humans appearing in the COCO dataset.

Still, this dataset only contains individual frames, and as

such cannot be used to train models that exploit temporal

information. We intend to explore these research avenues

in future work, and focus here on studying how to best ex-

ploit temporal information as a means of supervision.
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Model Train Test AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

DensePose-RCNN DP-COCO DP-COCO 55.5 89.1 60.8 50.7 56.8 63.2 92.6 69.6 51.8 64.0

Hourglass DP-COCO DP-COCO 57.3 88.4 63.9 57.6 58.2 65.8 92.6 73.0 59.6 66.2

DensePose-RCNN DP-COCO DP-Track 30.1 61.3 26.4 4.5 32.2 37.5 67.3 36.9 5.7 39.7

Hourglass DP-COCO DP-Track 39.3 70.7 38.9 22.4 40.6 48.7 78.3 50.8 33.2 49.8

+ GT prop. + equiv. All DP-Track 40.3 72.3 39.7 23.3 41.6 49.4 79.5 51.6 34.1 50.5

Table 1: Comparison with the state-of-the-art of dense pose estimation in a multi-person setting on DensePose-COCO

(DP-COCO) and DensePose-Track (DP-Track) datasets. The DensePose-RCNN baseline is based on a ResNeXt-101 back-

bone, Hourglass has 6 stacks. In all cases we use real bounding box detections produced by DensePose-RCNN.

Data 5 cm 10 cm 20 cm

Human (*) 65 92 98

DensePose-RCNN 51.16 68.21 78.37

Hourglass – 1 stack 50.38 77.97 89.80

2 stacks 55.78 82.34 92.55

8 stacks 58.23 84.06 93.57

Table 2: Baseline architectures. Comparison of different

DensePose architectures on the DensePose-COCO dataset:

the original ResNeXt-based RCNN network of [12] and the

Hourglass architecture [24]. Accuracy on the DensePose-

COCO dataset increases with the number of hourglass

stacks. However, deeper models overfit the biases of the

COCO dataset used for pretraining, so that the best perfor-

mance when transferred to DensePose-Track is at 6 stacks.

(*) evaluated on manually annotated synthetic images[12].

5. Experiments

In the first part of the experiments (section 5.1), we dis-

cuss the baseline DensePose architecture and find out a new

“gold-standard” setup for this problem.

In the second part (section 5.2), we use the DensePose-

COCO dataset to ablate the amount and type of supervision

that is needed to learn dense pose estimation in static im-

ages. In this manner, we clarify how much data annotations

can be reduced without major changes to the approach.

Finally, in the last part (section 5.3) we explore the in-

terplay with temporal information on the DensePose-Track

dataset and study how optical flow can help increase the ac-

curacy of dense pose estimation in ways which go beyond

generic equivariance constraints.

5.1. Baseline architectures

In most of the following experiments we consider the

performance of dense pose estimation obtained on ground-

truth bounding boxes in a single person setting (includ-

ing the DensePose-RCNN evaluation). This allows us to

isolate any issues related to object detection performance,

and focus exclusively on the task of dense image-surface

alignment. We further introduce the use of Hourglass net-

works [24] as a strong baseline that is trained from scratch

on the task of dense pose estimation. This removes any de-

pendency on pretraining on ImageNet, and allows us to have

Figure 4: Qualitative results. Hourglass (bottom) vs

DensePose-RCNN [12] (top). The advantages of the fully

convolutional Hourglass include better recall and spatial

alignment of predictions with the input, at cost of higher

sensitivity to high-frequency variations in textured inputs.

an orderly ablation of our training choices. In this setting,

we evaluate the performance in terms of ratios of points lo-

calized within 5 cm, 10 cm and 20 cm from the ground truth

position measured along the surface of the underlying 3D

model (geodesic distance) [12].

Starting from the results in table 2, we observe that we

get substantially better performance than the system of [12]

which relies on the DensePose-RCNN architecture. We

note that the system of [12] was designed to execute both

detection and dense pose estimation and operates at multi-

ple frames per second; as such the numbers are not directly

comparable. We do not perform detection, and instead re-

port all results on images pre-cropped around the subject.

Still, it is safe to conclude that Hourglass networks provide

us with a strong baseline (see fig. 4 for illustrations).

For completeness, in table 1 we also report performance

of both architectures (DensePose-RCNN and Hourglass) in

the multi-person setting, expressed in COCO metrics and

obtained using the real bounding box detections produced

by DensePose-RCNN with a ResNeXt-101 backbone.

5.2. Ablating annotations

We first examine the impact of reducing the amount

of DensePose supervision; we also consider using simpler

annotations related to semantic part segmentation that are

faster to collect than DensePose chart annotations.
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Data 5 cm 10 cm 20 cm

(i) Full dataset 55.78 82.34 92.55

(ii) Segmentation only 3.53 13.25 48.21

(iii) 50% (k + u) 52.49 79.45 90.40

image 5% (k + u) 36.27 64.58 79.93

subsampling 1% (k + u) 14.11 32.06 50.21

(iv) 100% k + 50%u 53.50 80.29 90.86

image 100% k + 5%u 40.80 69.04 83.15

subsampling 100% k + 1%u 36.16 66.59 83.14

(v) 50% (k + u) 54.06 81.24 91.92

point 5% (k + u) 47.68 76.34 88.86

subsampling 1% (k + u) 37.65 68.25 84.37

Table 3: Reduced supervision on DensePose-COCO, k
stands for body part index and u for UV coordinates (fig. 5b

additionally illustrates experiments (i), (iii) and (v)).

Data 5 cm 10 cm 20 cm

Full dataset 55.78 82.34 92.55

1% u 37.65 68.25 84.37

keypoints 36.60 63.03 76.81

1% u + keypoints 39.17 68.78 85.12

Table 4: The positive effect of augmenting sparse

DensePose-COCO annotations with skeleton keypoints.

Reduced supervision. Recall that DensePose annotations

break down the chart U = ∪K
k=1Uk ⊂ R

2 into K parts and,

for each pixel p, provide the chart index k(p) (segmentation

masks) and the specific chart point u(p) ∈ Uk(p) within it

(u(p) is in practice normalized in the range [0, 1]2). The

neural network Φp(I) ≈ (k(p), u(p)) is tasked with esti-

mating both quantities in parallel, optimizing a classifica-

tion and a regression loss respectively.

We first observe (rows (i) vs (ii) of table 3) that supervis-

ing only by using the segmentation masks (thus discarding

the regression term in the loss) is not very useful, which is

not surprising since they do not carry any surface-related in-

formation. However, part masks can result in a much more

graceful drop in performance when removing DensePose

supervision. To show this, in experiment (iii) we use only a

subset of DensePose-COCO images for supervision (using

complete part-point annotations (k, u)), whereas in (iv) we

add back the other images, but only providing the cheaper

part k annotations for the images we add back. We see that

performance degrades much more slowly, suggesting that,

given an annotation budget, it is preferable to collect coarse

annotations for a large number of images while collecting

detailed annotations for a smaller subset.

The final experiment (v) in table 3 and fig. 5b is similar,

but instead of reducing the number of images, we reduce

the number of pixels p for which we provide chart point

supervision u(p) (thus saving a corresponding number of

annotator “clicks”). For a comparable reduction in annota-

tions, this yields higher accuracy as the network is exposed

to a broader variety of poses during training. Hence, for a

fixed budget of annotator “clicks” one should collect fewer

correspondences per image for a large number of images.

Keypoint supervision. Traditional landmark detectors

use keypoint annotations only, which is even cheaper than

collecting part segmentations. Thus, we examine whether

keypoint annotations are complementary to part segmenta-

tions as a form of coarse supervision. In fact, since a key-

point associates a small set of surface points with a single

pixel, this type of supervision could drive a more accurate

image-surface alignment result. Note that not only key-

points are sparse, but they are also easier to collect from an

annotator than an image-to-surface correspondence u, since

they do not not require presenting to the annotator a click-

able surface interface as done in [12].

Table 4 replicates the experiment (v.a) of table 3, repeats

it but this time providing only keypoint annotations instead

of u annotations, and then combines the two. We see that

the two annotations types are indeed complementary, espe-

cially for highly-accurate localization regimes.

5.3. Paced learning

Next, we examine statistical differences between the

DensePose-COCO and DensePose-Track datasets (discard-

ing for now dynamics) and their effect on training Dense-

Pose architectures. We show that DensePose-Track does

improve performance when used in combination with

DensePose-COCO; however, it is substantially harder and

thus must be learned in a paced manner, after the Dense-

Pose model has been initialized on the easier COCO data.

The details on this group of experiments are given in ta-

ble 5. In all cases, we train a 6-stack Hourglass model, us-

ing the best performing architecture identified in the previ-

ous section. Stage I means that the model is first initialized

by training on the stated dataset and Stage II, where appli-

cable, means that the model is fine-tuned on the indicated

data. We observe that training on DensePose-Track (row

(i) of table 5) yields worse performance than training on an

equiparable subset or the full DensePose-COCO dataset (ii-

iii), even when the model is evaluated on DensePose-Track.

We assume that this is due to both the larger variability of

images in the COCO training set, as well as the cleaner na-

ture of COCO images (blur-free, larger resolution), which

is known to assist training [1]. This assumption is further

supported by row (iv), where it is shown than training si-

multaneously on the union of COCO and PoseTrack yields

worse results than training exclusively on COCO.

By contrast, we observe that a two-stage procedure,

where we first train on DensePose-COCO and then finetune

on DensePose-Track yields substantial improvements. The

best results are obtained by fine-tuning on the union of both

datasets – even giving an improvement on the DensePose-
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Figure 5: (a) Performance of the Hourglass architecture on the DensePose-COCO dataset monotonically increases with the

number of stacks, but peaks at 6 stacks for the DensePose-Track dataset. (b) Given a fixed annotation budget, it is beneficial

to partially annotate a large number of images, rather than collect full annotations on a subset of the dataset.
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Figure 6: Reduced supervision. Top: effect of training

with a reduced percentage of points with UV annotations.

Bottom: the texture map displayed on the SMPL model [3]

shows the quality of the learned mapping.

COCO test set. This is again aligned with curriculum learn-

ing [1], which suggests first training on easy examples and

including harder examples in a second stage.

5.4. Leveraging motion cues

Having established a series of increasingly strong base-

lines, we now turn to validating the contribution of flow-

based training when combined with the strongest baseline.

Flow computation. For optical flow computation we

use the competitive neural network based method of

FlowNet2 [14], which has been trained on synthetic se-

quences. We run this model on Posetrack and MPII Pose

(video version), computing for each frame T the flow to

frames T − 3 to T + 3 (where available). For MPII Pose

we start with about a million frames and obtain 5.8M flow

fields. For DensePose-Track we have 68k frames and 390k

flow fields. Note that a subset of MPII Pose clips are used in

DensePose-Track, although the Posetrack versions contain

more frames of context. For DensePose-Track, we prop-

agate the existing DensePose annotations according to the

flow fields, leading to 48K new cropped training images

from the original 8K (12% of frames have manual labels).

In order to propagate annotations across frames, we sim-

ply translate the annotation locations according to the flow

field (fig. 2). Because optical flow can be noisy, especially

in regions of occlusion, we use a forward-backward consis-

tency check. If translating forward by the forward flow then

back again using the backward flow gives an offset greater

than 5 pixels we ignore that annotation. On MPII pose, we

use the annotations of rough person centre and scale.

Results. We compare the baseline results obtained in the

previous section to different ways of augmenting training

using motion information. There are two axes of variations:

whether motion is randomly synthesized or measured from

a video using optical flow (section 3.2.1) and whether mo-

tion is incorporated in training by propagating ground-truth

labels or via the equivariance constraint (section 3.2.2).

Rows (i-iv) of table 6 compare using the baseline su-

pervision via the available annotations in DensePose-Track

to their augmentation using GT propagation, equivariances

and the combination of the two. For each combination, the

table also reports results using both synthetic (random TPS)

and real (optical flow) motion. Rows (v-viii) repeat the ex-

periments, but this time starting from a network pre-trained

on DensePose-COCO instead of a randomly initialized one.

There are several important observations. First, both GT

propagation and equivariance improve the results, and the

best result is obtained via their combination. GT propaga-

tion performs at least a little better than equivariance (but it

cannot be used if no annotations are available).

Second, augmenting via real motion fields (optical flow)

works a lot better than using synthetic transformations, sug-

gesting that realism of motion augmentation is key to learn

complex articulated objects such as people.

Third, the benefits of motion augmentation are particu-

larly significant when one starts from a randomly-initialized

network. If the network is pre-trained on DensePose-

COCO, the benefits are still non-negligible.

It may seem odd that GT propagation works better than

equivariance since both are capturing similar constraints.

After analyzing the data, we found out that the reason is

that equivariance optimized for some charting of the human
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Training data Tested on DensePose-Track Tested on DensePose-COCO

Stage I Stage II 5 cm 10 cm 20 cm 5 cm 10 cm 20 cm

(i) DensePose-Track — 21.06 42.94 59.54 20.34 41.24 57.29

(ii) DensePose-COCO subset (*) — 33.67 58.79 73.45 47.10 74.06 86.27

(iii) DensePose-COCO — 44.89 71.52 83.71 55.78 82.34 92.55

(iv) DensePose-COCO & Track — 41.76 69.94 83.60 55.27 82.05 92.37

(v) DensePose-COCO DensePose-Track 45.57 73.35 85.77 53.70 81.34 92.03

(vi) DensePose-COCO all 46.04 73.41 85.79 58.01 84.06 93.64

Table 5: Training strategies. Effect of training and testing on DensePose-COCO vs DensePose-Track in various combina-

tions. The best performing model (vi) is first trained on the cleaner COCO data and then fine tuned on a union of datasets.

(*) a random subset of the DensePose-COCO training images of size of the DensePose-Track dataset.

Training strategy
Training data Synthetic (TPS) Real (Optical Flow)

Stage I Stage II 5 cm 10 cm 20 cm 5 cm 10 cm 20 cm

(i) Baseline

— DensePose-Track

21.06 42.94 59.54 21.06 42.94 59.54

(ii) GT propagation 22.33 45.30 62.08 32.85 60.07 75.95

(iii) Equivariance 21.57 44.17 61.27 23.12 45.85 62.22

(iv) GT prop. + equivariance 22.41 45.53 62.71 34.50 61.70 77.20

(v) Baseline

DensePose-COCO DensePose-Track

45.57 73.35 83.71 45.57 73.35 83.71

(vi) GT propagation 45.77 73.65 86.13 47.36 75.17 87.47

(vii) Equivariance 45.67 73.47 85.93 45.76 73.54 86.06

(viii) GT prop. + equivariance 45.81 73.70 86.14 47.45 75.21 87.56

(ix) Baseline
DensePose-COCO all

46.04 73.41 85.79 46.04 73.41 85.79

(x) GT prop. + equivariance - - - 47.62 75.80 88.12

Table 6: Leveraging real and synthetic flow fields. The best performing model (x) is trained on a combination DensePose-

COCO+Track by exploiting the real flow for GT propagation between frames and enforcing equivariance.

body, but that, since many charts are possible, this needs not

to be the same that is constructed by the annotators. Bridg-

ing this gap between manual and unsupervised annotation

statistics is an interesting problem that is likely to be of rel-

evance whenever such techniques are combined.

Equivariance at different feature levels. Finally, we an-

alyze the effect of applying equivariance losses to different

layers of the network, using synthetic or optical flow based

transformations (see table 7). The results show benefits of

imposing these constraints on the intermediate feature lev-

els in the network, as well as on the subset of the output

scores representing per-class probabilities in body parsing.

6. Conclusion

In this work we have explored different methods of im-

proving supervision for dense human pose estimation tasks

by leveraging on weakly-supervised and self-supervised

learning. This has allowed us to exploit temporal informa-

tion to improve upon strong baselines, delivering substan-

tially more advanced dense pose estimation results when

compared to [12]. We have also introduced a novel dataset

DensePose-Track, which can facilitate further research at

the interface of dense correspondence and time.

Despite this progress, applying such models to videos

on a frame-by-frame basis can reveal some of their short-

comings, including flickering, missing body parts or false

Features
Synthetic (TPS) Real (Optical Flow)

5 cm 10 cm 20 cm 5 cm 10 cm 20 cm

0 45.74 73.62 86.14 45.90 73.71 86.10

1 46.08 73.85 86.29 45.91 73.74 86.15

2 45.97 73.82 86.29 45.92 73.64 86.04

3 45.85 73.55 86.05 45.97 73.81 86.30

4, all 45.98 73.62 86.15 45.84 73.42 85.86

4, segm. 46.02 73.74 86.20 45.98 73.85 86.20

4, UV 45.78 73.76 86.26 45.95 73.64 86.16

none 45.57 73.35 83.71 45.57 73.35 83.71

Table 7: Training with applying synthetic and optical

flow warp-based equivariance at different feature levels

(pre-training on DensePose-COCO, tuning and testing on

DensePose-Track). Level 4 corresponds to the output of

each stack, level 0 – to the first layer. ’Segm.’ denotes the

segmentation part of the output, ’UV’ – the UV coordinates.

detections over the background (as witnessed in the hard-

est of the supplemental material videos). These problems

can potentially be overcome by exploiting temporal infor-

mation, along the lines pursued in the pose tracking prob-

lem, [28, 4, 15, 16, 10]. For instance, motion blur, or par-

tial occlusion can result in erroneous correspondences at a

given image position; however, we can recover from such

failures by combining complementary information from ad-

jacent frames where the same structure is better visible. We

intend to further investigate this direction in future research.
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