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Figure 1: Inter-category correspondences emerge from dense pose prediction. Our method discovers high-quality corre-

spondences between different object classes automatically, as a byproduct of learning category-specific dense pose predictors.

It does so by enforcing cycle consistency between reference 3D templates as well as by a new type of consistency between

images and templates. This allows the model to transfer information between animal classes (e.g. the location of the eyes).

Abstract

We tackle the problem of learning the geometry of mul-

tiple categories of deformable objects jointly. Recent work

has shown that it is possible to learn a unified dense pose

predictor for several categories of related objects. However,

training such models requires to initialize inter-category

correspondences by hand. This is suboptimal and the result-

ing models fail to maintain correct correspondences as in-

dividual categories are learned. In this paper, we show that

improved correspondences can be learned automatically

as a natural byproduct of learning category-specific dense

pose predictors. To do this, we express correspondences

between different categories and between images and cate-

gories using a unified embedding. Then, we use the latter

to enforce two constraints: symmetric inter-category cycle

consistency and a new asymmetric image-to-category cycle

consistency. Without any manual annotations for the inter-

category correspondences, we obtain state-of-the-art align-

ment results, outperforming dedicated methods for match-

ing 3D shapes. Moreover, the new model is also better at

the task of dense pose prediction than prior work.

∗Both authors contributed equally to this work.

1. Introduction

Algorithms can nowadays understand well the geometry

of specific object categories such as humans: we have reli-

able methods for detecting and segmenting them, extracting

their 2D landmarks and dense surface coordinates, as well

as reconstructing them in 3D. In principle, these methods

can be applied to many other types of objects, such as any

kind of animal, from pets to wildlife. In practice, however,

doing so is often prohibitively expensive. The main bottle-

neck is data acquisition, especially for supervised training

in 3D, and extensive manual annotation. High-quality 3D

human models are bootstrapped using specialized motion

capture systems such as domes that are difficult to apply

to objects such as wild animals. Annotating 2D geomet-

ric primitives such as segments and 2D keypoints can be

done manually from raw images, but it is costly and some-

what difficult to do for unfamiliar animal anatomies. Thus,

a naı̈ve application of existing high-quality model acquisi-

tion techniques cannot trivially scale to learning the mas-

sive variety of object types that exist in the world, which

include 6.5K mammal species, 7.7M animal species, and

around 8.7M natural species overall [9, 34].
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The key to scaling is to realize that, while there are in-

deed millions of different types of objects, these are not in-

dependent. For instance, different cat breeds are relatively

similar, so a single ‘cat’ model is likely to work well for

all cats, just like a single ‘human’ model has been shown to

work well for many different human body shapes [32]. In

fact, useful information can likely be shared among fairly

different types of objects, such as all mammals or all ani-

mals. The limit is given by the ability of the model to rep-

resent diverse information while capturing and eliminating

redundancies wherever possible. The hope is that such a

model could learn the geometry of different object types

with a cost which is sub-linear in their number.

A similar idea was recently pursued in [35] for the task

of dense pose prediction [17]. Just like 2D pose prediction

estimates the location of a small number of distinctive ob-

ject landmarks, dense pose estimation does so for a contin-

uous set of landmarks, identified as the point of a 3D tem-

plate of the object (fig. 1). The goal is to learn a canonical

map, i.e. a function that maps all relevant pixels in an im-

age to the corresponding points in the template, thus iden-

tifying them. For supervised learning, correspondences be-

tween images and templates are collected manually, using

a category-specific template for each example object. As

a result, annotations for different object categories are un-

related, which makes it hard to learn a universal, category-

agnostic object representation.

In order to address this problem, the authors of [35] es-

tablish initial point-to-point correspondences between dif-

ferent category-specific templates using a mix of manual

annotations and automated interpolation. However, as we

show in the experiments, their approach has two shortcom-

ings. Firstly, their manual correspondence initialization is

somewhat arbitrary and thus likely suboptimal. The second

problem, which partially arises from the first, is that their

initial inter-category correspondences are not maintained

while the model is trained, and are eventually ‘forgotten’.

In this paper we argue that, if the goal of the alignment is

to facilitate learning a multi-category object representation,

an optimal alignment should emerge spontaneously as part

of the learning process, thus solving the two issues above.

Our key contribution is thus a new learning formulation for

universal canonical maps that induces automatically high-

quality intra-category correspondences. The most impor-

tant outcome is that the learned maps solve the dense pose

prediction problem accurately for several object categories

while at the same time putting those in correspondence, al-

lowing to transfer information between them.

We base our model on learning a single, universal em-

bedding space to express all required correspondences.

Points in the different 3D templates as well as image pixels

are mapped to this common space, which allows to com-

pute dense template-to-template and image-to-template cor-

respondences. Differently from [35], the template embed-

dings in this work are not initialized from manually anno-

tated inter-category correspondences. Instead, all embed-

dings are obtained automatically while learning the canon-

ical maps for individual categories while satisfying certain

consistency constraints.

For the constraints, we use simple but effective rules.

Apart from the most basic one, which encourages similarity

of the embeddings of nearby template points (smoothness),

we contribute by introducing two types of cycle-consistency

for learning canonical surface mappings: The first one en-

forces cycle consistency between different 3D templates,

which encourages bijective correspondences between them.

Additionally, we note that canonical maps, by establishing

correspondences from images to templates, are not bijective

but injective, and we show that this can be exploited by an

asymmetric form of cycle consistency between images and

templates. By using the common embedding space, all such

constraints are expressed as differentiable loss terms.

Empirically, we demonstrate several advantages of our

new approach compared to [35]. We show that our approach

finds automatically high-quality correspondences between

different object categories without any manual supervision

for this task. This is compelling because it shows that, as we

hypothesized, there is a natural advantage in learning jointly

the geometry of different but related object types. In fact,

the 3D correspondences we discover in this manner outper-

form the ones discovered by state-of-the-art 3D shape align-

ment methods. Finally, our method not only aligns canoni-

cal maps, but also improves their quality, resulting in more

accurate dense pose prediction than the state of the art.

2. Related work

Human pose estimation. Human pose prediction often

starts by detecting 2D landmarks, usually coinciding with

the main joints of the body [31, 1, 23, 22]. For this task,

early shallow methods [15, 5, 23, 40] have been surpassed

by deep convolutional architectures [37, 48, 10]. Sparse

landmarks can be replaced by dense ones, identifiable with

a reference 3D template of the object. The resulting dense

pose prediction problem was pioneered by DensePose [17]

using the SMPL [32] mesh as a canonical template. Parsing

R-CNN [51] improved the Dense Pose network by extend-

ing the popular R-CNN architecture [16]. More recently,

Slim DensePose [36] showed that a smaller number of key-

point annotations is sufficient to learn competitive Dense-

Pose models, potentially significantly reducing the effort re-

quired for learning new non-human categories.

Animal pose estimation. Several works also attempted

to estimate the pose of various animal species. Methods

such as [52, 44, 25, 26, 38, 49] learned to detect [52, 44],

match [25] or reconstruct [26, 38] various birds from the
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CUB dataset [49]. 3D reconstruction of the shape of a

broader set of animal species has been attempted by Zuffi

et al. in [59, 60, 58]. Similar to monocular 3D human

mesh recovery models [24, 28, 27] that predict parame-

ters of SMPL, [59, 60, 58] utilize a parametric model of

a mesh of an animal body (SMAL) in order to constrain

the set of possible animal reconstructions, with further im-

provements in the work of Biggs et al. [4, 3]. Sanakoyeu et

al. [43] transfer DensePose from humans to proximal ani-

mal classes without extra labels by a self-training approach.

The work most relevant to ours is Neverova et al. [35],

which introduced the idea of continuous surface embed-

dings (CSE) to tackle the dense pose prediction problem

for several animal categories together. They further con-

tributed a dataset of dense pose annotations for various an-

imal species. We improve on [35] by learning more accu-

rate canonical maps that are more consistent across differ-

ent categories and by not requiring any manual initialization

for the correspondences between different object categories.

We also contribute with an extended dataset of dense animal

poses for experimentation.

Intrinsic 3D shape analysis. Our work is also related to

the analysis of the intrinsic properties of 3D shapes, where

the fundamental problem is to establish correspondences

between different shapes. Non-deep learning methods in-

clude embeddings of geodesic distance matrices [13, 6]

and various kinds of diffusion geometry [11] descriptors —

Heat Kernel Signature [45] and its scale-invariant follow-

up [8], Gromov-Hausdorff descriptors [7] and the Wave

Kernel Signature [2]. One of the main building blocks

of the aforementioned descriptors are the eigenfunctions

of the Laplace-Beltrami operator (LBO) [42] that define

a smooth basis of a coordinate frame of a mesh surface.

Ovsjanikov et al. [39] proposed the functional map (FM)

framework that establishes soft correspondences between

pairs of shapes by relating the mesh LBO eigenfunctions

with a simple linear mapping. The CSE method from [35]

uses FMs and ZoomOut [33] to interpolate an initial set of

manually-established inter-class correspondences. Differ-

ently from them, we only use LBO to express smoothness,

but we otherwise consider topological constraints such as

bijectivity and injectivity that are more appropriate for es-

tablishing non-isometric correspondences, such as between

different animal categories.

Cycle consistency. Cycle consistency is a powerful

paradigm that has been explored in many different fields

of computer vision: pixel-wise image matching [56, 55],

image translation [57], or category-specific 3D reconstruc-

tion [53]. Given a single input image of an instance of an

object category, Kulkarni et al. [30, 29] enforce consistency

between a rendered UV map of a 3D template shape of the

object category and the learned canonical map, while our

method does not require to fit/render the 3D model. In

the context of 3D shape analysis, Huang et al. [20] intro-

duced a semi-definite programming formulation that factor-

ized a matrix of all point-to-point matches between pairs of

meshes in order to make the matches cycle-consistent. Sim-

ilarly, Yang et al. [50] use the Sinkhorn regularization (SH)

to find the nearest cycle-consistent solution to an initial ma-

trix of noisy point-wise matches. Ren et al. [41] exploit

the spectral properties of correspondences and cycle consis-

tence between shape pairs. Our method is inspired by [50]

in the sense that we utilize cycle consistency in order to im-

prove our dense pose labels by relating surfaces of different

category template shapes.

3. Method

We start by summarizing the continuous surface embed-

ding (CSE) representation of [35] (section 3.1) and then we

explain how to extend it to learn high-quality inter-category

correspondences automatically (section 3.2).

3.1. Continuos surface embeddings

The continuous surface embedding (CSE) of [35] allows

us to express correspondences between different 3D tem-

plates and between templates and images in a homogeneous

and differentiable manner. A CSE is a function e : S ! R
D

sending each point X 2 S of a 3D surface S to a D-

dimensional embedding vector. We assume that the surface

S is a mesh with K vertices S = (Xk)1kK and we col-

lect the corresponding embedding vectors as the rows of a

matrix E 2 R
K⇥D. The matrix E, which we learn from

data, can be fairly large, but smoothness† can help to re-

duce its dimensionality. This can be done by considering

a smooth functional basis U 2 R
K⇥Q on the mesh, where

Q ⌧ D, and define E = UÊ. With this, we can work with

the compressed embedding parameterization Ê 2 R
Q⇥D.

As in [35], we take U to be the lowest eigenvectors of the

Laplace-Beltrami operator (LBO) of the mesh S. While the

LBO is often used in the literature as a cue to match near-

isometric shapes, our shapes are not at all isometric. For this

reason, we use the LBO only to encode a generic notion of

smoothness, but not as a cue for matching.

Encoding correspondences via CSEs. Embedding vec-

tors can be used to define correspondences between any two

sets of objects A = (a1, . . . , aK) and B = (b1, . . . , bL).
Namely, given embedding functions e : A ! R

D and

e : B ! R
D, we can compare embedding vectors to send

elements of set B to elements of set A probabilistically:

p(ak|bl, e) =
exp (�heak

, ebli)PK

t=1 exp (�heat
, ebli)

. (1)

†I.e. the fact that nearby vertices should have similar embeddings.
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In our case, given two CSEs E = UÊ and E0 = U 0Ê0

for two different meshes S and S0, eq. (1) gives us distri-

butions p(Xk|X
0
l , Ê, Ê0) and p(X 0

l |Xk, Ê, Ê0), encoding

mappings S0 ! S and S ! S0, respectively. We can

also express image-to-mesh and mesh-to-image maps. For

this, let I be an image and consider a finite set Ω ⇢ R
2

of pixel locations. We use a deep convolutional neural net-

work ex = [Φ(I)]x to compute the embedding vectors for

all the pixels x 2 Ω. Then, given a mesh S together with its

embedding matrix E = UÊ, we can use eq. (1) to obtain a

distribution p(Xk|x, Ê,Φ(I)) encoding a map Ω ! S from

the pixels to the mesh. Note that the latter is, by definition,

a canonical map, and as such it provides a solution to the

dense pose prediction task. We can also swap the roles of

image and mesh in this expression, obtaining a probability

p(x|Xk, Ê,Φ(I)) encoding a reverse map S ! Ω. This

map will be useful later.

Finally, we can, in an entirely analogous manner, define

image-to-image correspondences Ω ! Ω
0 by comparing

embeddings Φx(I) and Φ(I 0)x0 . This is useful to transfer

information directly across images, as we demonstrate in

the experiments for keypoint transfer.

Working with multiple object categories. The ap-

proach above can easily accommodate any number of

categories and corresponding templates. Each category

m = 1, . . . ,M is captured by a mesh and its embedding

(Sm, Êm). Each mesh can have a different number of ver-

tices |Sm| = Km. Likewise, the LBO basis Um 2 R
Qm⇥D

is mesh-specific, including having potentially a different

number of basis elements Qm. Crucially, however, the di-

mensionality of the embedding space D is the same for all

templates, as the embeddings must be comparable.

3.2. Dense pose and emerging correspondences

The use of a common embedding space for templates and

images means that all such objects can be put in correspon-

dence by using the method of section 3.1. However, this

does not necessarily mean that the correspondences learned

by the model are meaningful. In more detail, manual anno-

tations for the dense pose task are of the type (I,m, x,X)
where I is an image, m a category, x a pixel, and X 2 Sm

its corresponding vertex in the category-specific template

Sm [17, 35]. By fitting such annotations, the model is en-

couraged to learn good dense pose predictors for each cat-

egory, but not necessarily good inter-category correspon-

dences. The latter may emerge because the neural net-

work Φ is shared in full or in part among different cate-

gories, which means that similarly-looking images will nat-

urally tend to be embedded in similar ways. However, this

is a weak effect. Below, we add several constraints to im-

prove the quality of the emerging correspondences.

Dense pose supervision. Solving the dense pose predic-

tion tasks means learning maps Ω ! Sm sending the im-

age region Ω that contains an occurrence of the object to the

template Sm of the object itself. As noted above, supervi-

sion for this task comes in the form of a dataset D of tuples

(I,m, x,X) and is captured by the loss as follows:

Lsup =
1

|D|

X

(I,m,x,X)2D

KmX

k=1

dSm(Xm
k , X)

· p(Xm
k |x, Êm,Φm(I)). (2)

In this expression, dSm is the geodesic distance on the mesh

Sm. This loss is optimized w.r.t. the mesh embeddings

and neural networks (Êm,Φm)1mM (where the differ-

ent networks share most or all of their parameters).

Inter-category correspondences. We assume that there

exists sensible one-to-one correspondences Sm $ Sn be-

tween any pair of templates. In this case, the cycle Sm !
Sn ! Sm should approximate the identity function. We

can rewrite the cycle in terms of the probabilistic corre-

spondences described in section 3.1 by marginalizing the

intermediate step as follows:

p(Xm
k |Xm

t ) =

KnX

l=1

p(Xm
k |Xn

l ) p(X
n
l |X

m
t ). (3)

While we do not show it for compactness, note that all such

probabilities depend on the learned embeddings Êm and

Ên. If the cycle is closed correctly, this probability should

peak at Xm
t = Xm

k , which is captured by the mess-to-mesh

loss (m2m):

Lmn =
1

Km

KmX

k=1

KmX

t=1

dSm(Xm
k , Xm

t ) p(Xm
k |Xm

t ). (4)

To the loss Lmn we also add the symmetric loss Lnm. Cy-

cle consistency has been exploited before in many different

contexts [30, 47, 50, 57, 54, 19, 21]. Here we use it to guide

the discovery of correspondences between different meshes.

Canonical map injectivity. The signal (2) is only given

at a sparse set of manually-labelled image pixels. A denser

constraint can be obtained by noting that the canonical maps

Ω ! Sm must be injective, in the sense that all pixels in

the object region Ω should map to different vertices in the

mesh Sm. Injectivity means that the canonical map has a

left inverse: if a mesh vertex corresponds to at least one

image pixel, then this correspondence must be unique. We

can thus close the cycle Ω ! Sm ! Ω, resulting in the

image-to-mesh loss (i2m):

LIm =
1

|Ω|

X

x2Ω

X

y2Ω

dI(y, x)p(y|x). (5)
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dataset init. train AP # GErr # GPS "

DP-LVIS [35] ZoomOut
– 25.4 23.7 66.7

X 35.1 28.0 68.7

Random X 34.4 34.1 63.7

DP-LVIS v1.0 Random X 37.4 20.7 77.1

Table 1: Baselines (humans & animals). We train a uni-

versal canonical map using DensePose-COCO and animal

data and report DensePose performance on animal cate-

gories (AP), as well as mesh alignment quality for animals

and people (GErr and GPS). The architecture is of [35],

combined with multi-class detection. ZoomOut initializa-

tion does not result in performance gains on a larger dataset.

where dI is a distance in image space (e.g. Euclidean) and,

similar to eq. (3),

p(y|x) =
1

Km

KmX

k=1

p(y|Xm
k ) p(Xm

k |x). (6)

While not shown for compactness, all these probabilities

depend on the mesh embedding Em and the neural network

Φ
m that we wish to learn.

Rather than summing eq. (5) on the entire set Ω, we con-

sider a downsampled version Ω̄ ⇢ Ω with |Ω̄| ⌧ |Ω|. This

is done for computational efficiency (as there can be a very

large number of pixels in certain image regions). Compared

to using the full domain, the effect is to slightly relax eq. (5).

Note that, differently from the mesh-to-mesh cycle, this

cycle is not symmetric: while we can close the chain Ω !
Sm ! Ω, we cannot close the chain Sm ! Ω ! Sm.

The first chain is valid because all pixels in Ω correspond to

a unique point of the mesh Sm. On the other hand, many

of the points in the mesh Sm will not have a corresponding

image point in Ω for the simple fact that at least part of the

object cannot be visible in a given image.

3.3. Overall loss

To summarize, our model is trained by minimizing a

combination of the losses of eqs. (2), (4) and (5):

Lsup +
1

M(M � 1)

MX

m,n=1

m 6=n

Lmn +
1

|D|

X

(I,m)2D

LIm.

4. Experiments

After discussing the experimental data and implementa-

tion details, we focus on our key contributions: simultane-

ously discovering high-quality inter-class correspondences

while learning category-specific dense pose predictors (sec-

tions 4.1 and 4.2). We also show (section 4.3) that learned

embeddings in the pixel space allow for effective retrieval

of analogous points (body landmarks) on the surfaces of ob-

jects belonging to the same or different categories (a task

that we call keypoint transfer).

Training datasets. Following [35], we use the original

people-centric DensePose-COCO [17] for pre-training in all

experiments. We also exploit this data for conducting stud-

ies on a joint set of animal and human categories.

For the animal classes, we propose an extended version

of the DensePose-LVIS data of [35], which originally con-

tained 9 animal categories from the LVIS v0.5 dataset for

instance segmentation [18]. Following a recent release of

LVIS v1.0, which extended the benchmark to 160k images

and 2M instance annotations, we also expand the Dense-

Pose annotation pool for the same animal classes and call

this benchmark DensePose-LVIS v1.0 (see sup. mat.). The

original DensePose-LVIS contains fairly sparse annotations

(according to [35] only 18% of the vertices of the animal

meshes have at least one ground truth annotation, and each

image contains no more than 3 annotated points). While

compared to DensePose-LVIS, we have 3.6⇥ annotations,

this is still far less than the original DensePose-COCO

(which annotates 5 million points and obtained 96% cover-

age of the SMPL mesh). At the same time, quality of dense

labels in DensePose-LVIS v1.0 has been further improved

by introducing an additional step of croud-sourced manual

verification for all annotations.

Implementation details. Our architecture is similar to

the R50 variant of [35], with the only difference being the

multi-class setting for object detection (in [35] detection

was implemented in a class-agnostic manner, and ground

truth class labels were required for inference).

We pre-train on the DensePose-COCO dataset for 130k

iterations (following the standard s1x schedule). All animal

models are then trained on DensePose-LVIS v1.0 for 16k it-

erations, with a 10x drop of learning rate after 12k and 14k

iterations, with the rest of hyperparameters being identical

to [35]. For experiments on the joint set of human and ani-

mal categories, we train our models for 80k iterations (with

a learning rate decrease after 60k and 70k iterations).

Evaluation metrics. The quality of learned dense pose

predictions is evaluated by a standard set of AP/AR met-

rics [17] (higher is better). We also estimate the quality

of inter-class mesh alignment by computing the Geodesic

Error (GErr, lower is better) between the predicted and

the ground truth vertices along the surface of the target

mesh, given a set of manually annotated semantic key-

points. For this purpose, all vertex coordinates in each mesh

are normalised to have the maximum of geodesic distance

dmax = 2.27 (analogously to [17, 35]). Finally, we re-

port Geodesic Point Similarity (GPS, as in [17], higher is

better) as an alternative indicator of the quality of cross-

category mesh alignment.
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Figure 2: Qualitative results by the full model m2m+i2m-all. The dog 3D model serves as a common reference for all

classes. This setup is significantly more challenging than in [35], where each class was visualised with its own 3D reference.

method GErr # GPS " AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

our baseline 14.05 84.33 37.5 67.8 36.4 35.1 41.9 51.5 78.8 53.2 41.7 55.1

w/ m2m 11.96 87.35 38.2 68.5 36.4 36.6 42.6 52.0 79.7 52.6 42.9 55.6

w/ i2m 12.67 85.13 38.1 68.7 36.2 35.5 42.4 52.0 79.6 53.2 42.7 55.6

w/ i2m-all 11.74 87.48 38.3 68.9 36.3 35.7 42.5 52.3 79.9 53.5 42.8 55.7

w/ m2m+i2m 11.37 88.14 38.3 68.7 36.6 36.7 42.5 52.3 79.7 53.7 43.0 55.7

w/ m2m+i2m-all 10.90 88.85 38.5 68.7 37.1 37.5 42.6 52.5 79.7 54.3 43.8 55.9

Table 2: Ablation of cycle-consistency loss terms (animals only): i2m corresponds to comparing the image to the target

mesh given the ground truth class label, while i2m-all matches all object instances to all meshes in a cross-category regime.
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Figure 3: Effect of the m2m+i2m-all term: improved local

consistency and smoothness in dense pose predictions (see

outlined regions), as well as more accurate instance masks.

4.1. Inter-class alignment and dense pose prediction

Compared to prior work such as [35], our most impor-

tant contribution is to discover automatically effective inter-

category correspondences, without manual input for this

task, while simultaneously learning high-quality canonical

maps for each of the individual animal object categories.

In order to conduct a fair comparison, we start by re-

running the baseline of [35] using the embeddings and the

DensePose-LVIS v1.0 data (table 1). We also compare us-

ing two different initializations for the embedding of the

different 3D canonical shapes: random and ZoomOut. The

latter follows [35], obtaining an initial set of inter-class 3D

mesh correspondences from sparse manual annotations in-

terpolated using the ZoomOut technique [33].

We observe a 2.3pp AP gain in DensePose performance

on the new dataset (AP 35.1 ! 37.4). While ZoomOut ini-

tialization of animal mesh embeddings provided a clear ad-

vantage for DensePose in a lower data regime (AP 25.4 !
35.1), the quality of mesh alignment worsens as the net-

work diverges from its initialization point (GErr 23.7 !
28.0). The dynamic on animal-only categories is similar.

On DensePose-LVIS v1.0 the automatic alignment learned

from random initialization is already of better quality than

ZoomOut (20.7 GErr), and the difference in DensePose per-

formance is no longer observed. Note that the latter is al-

ready a confirmation of our key hypothesis that good inter-

category correspondences should spontaneously emerge by

jointly modelling them.

In table 2 we report results on the animals-only bench-

mark, including assessing the contributions of the m2m

and i2m regularisers. Both m2m and i2m-all terms sig-

nificantly improve mesh alignment (GErr 14.05 ! 12.67,

11.74, respectively) and also contribute to the dense pose

performance (AP 37.5 ! 38.1, 38.3, respectively). Their

combination yeilds best results (GErr 14.05 ! 10.90, AP

37.5 ! 38.5) and fixes certain typical errors, as shown

in fig. 3. Fig. 2 shows qualitative results.

4.2. Further inter-class alignment analysis

We compare the quality of inter-class mesh alignment

produced by our networks with state-of-the-art methods ex-

ploiting 3D geometry: namely, ZoomOut [33] (initialized

with the same manually keypoints, as we use for evalu-

ation) and Deep Sheels [12] (unsupervised). Qualitative

and quantitative results on animal classes are shown in
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method GErr # GPS"

ZoomOut [33] 26.24 63.33

Deep Shells [12] 17.91 78.68

our baseline 14.05 84.33

+ m2m+i2m-all (best AP) 10.90 88.85

+ m2m+i2m-all* (best GErr) 9.42 91.14
manual
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Figure 4: 3D mesh alignment: 9 animals. *number obtained with a 10x increased weight of the m2m+i2m-all term.
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Figure 5: 3D model alignment: dog-human. The m2m+i2m-all term is critical for aligning dissimilar categories in 3D.

fig. 4. Our method demonstrates consistently stronger per-

formance across all categories, and rather successfully han-

dles transfer between highly dissimilar categories, such as

dog-giraffe and dog-elephant, where state-of-the-

art geometry-based methods tend to fail (GErr ZoomOut:

26.24, Deep Shells: 17.91, and our best result: 9.42).

An extreme case of human-dog alignment is shown in

fig. 5: our method produces meaningful correspondences

in the 3D space (on the left) and consistent cross-category

predictions in the pixel space (on the bottom right, shown

using the DOG 3D mesh as a reference for visualization).

4.3. Keypoint transfer

To evaluate learned transferability of surface embed-

dings within and across training categories, as well as their

ability to generalize to new animal classes, we look at the

problem of keypoint transfer. As per section 3.1, we can

in fact use our learned embeddings to establish correspon-

dences between a source image I and a target image I 0 di-

rectly and use it to transfer keypoints. To do this, in the tar-

get image, for each type of landmark annotated as “visible”,

we take the nearest neighbor of the embedding of the pixel

in the source image, corresponding to the same landmark.
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method
target

class

supervision animal category
mean

mask points 3D mesh HORSE COW SHEEP CAT DOG

Rigid-CSM [30] single 3 7 3 31.2 26.3 24.7 – – –

Dense-Equi [46] single 3 7 7 23.3 20.9 19.6 – – –

A-CSM [29] single 3 7 3 32.9 26.3 28.6 – – –

Rigid-CSM + keyp. [30] single 3 3* 3 42.1 28.5 31.5 – – –

A-CSM + keyp. [29] single 3 3* 3 44.6 29.2 39.0 – – –

our baseline multi 3 3 7 58.1 49.9 43.9 41.6 41.9 47.1

w/ m2m multi 3 3 7 57.1 49.5 45.1 40.0 42.5 46.8

w/ i2m multi 3 3 7 59.0 51.1 46.2 45.9 45.7 49.7

w/ i2m-all multi 3 3 7 59.2 51.5 46.3 46.5 45.9 49.9

Table 3: Keypoint transfer on PASCAL VOC, within each of training animal categories. PCK-Transfer metric, higher is

better. * – supervision on the same set of keypoints that are used for evaluation, as opposed to random sampling in DensePose.

method HORSE COW SHEEP CAT DOG mean

(I)

our baseline 47.7 45.7 43.5 41.8 40.0 43.8

w/ m2m 47.6 45.0 45.0 41.4 40.5 43.9

w/ i2m 49.5 47.4 47.0 44.4 44.1 46.5

(II)
our baseline 52.0 49.1 43.0 34.6 42.1 44.2

w/ i2m 54.6 49.5 44.7 37.7 43.7 46.0

Table 4: Keypoint transfer on PASCAL VOC: (I) across

training categories, (II) within new animal categories not

observed during training for dense correspondences (only

boxes and masks are provided during training to ensure ro-

bust detection). PCK-Transfer metric, higher is better.
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Figure 6: Keypoint transfer on PASCAL VOC. One ex-

periment – one column. Green marks indicate categories

included in training, red marks – a new, test only category.

Evaluation metric. Following [29], we evaluate perfor-

mance on this task by estimating the Percentage of Correct

Keypoint transfers (PCK-Transfer). The transfer is said to

be correct if the target landmark is localized within dis-

tance 0.1 · max(h,w) from the annotated location, where

h,w are the height and the width of the predicted bounding

box. Prior to that, we match predicted object instances to

ground truth objects by estimating the bounding box IoU.

Objects that are not retrieved are excluded from evalua-

tion. We report performance on animal categories from

PASCAL VOC [14], overlapping with animal categories in

DensePose-LVIS v1.0 (horse, cow, sheep, cat, dog).

Experimental protocol. We evaluate the ability of our

model to perform keypoint transfer in three distinct settings:

(a) within each category observed at training time (Tab. 3);

(b) across training categories (Tab. 4, I); (c) within new an-

imal categories (zero shot) not observed at training time.

For (c), dense correspondences for one class are removed

from the training set, and only bounding boxes and object

instance masks are provided as supervision (Tab. 4, II).

Discussion. As shown in tables 3 and 4 and fig. 6, the

learned embeddings work very well to transfer keypoints

between known as well as unknown animal classes, demon-

strating once more the power of generalization that comes

from joint modelling. For this experiment, the i2m regular-

ization term significantly improves the results (e.g. m2m vs

i2m PCK: 46.8 ! 49.9 in table 4). This might be expected

since m2m works on the alignment between 3D templates,

whereas i2m works at the image level, which is more rel-

evant for this experiment. Note that methods [30, 29] re-

project a 3D mesh template onto the images to establish

correspondences, which we do not do.

5. Conclusions

We have introduced a method to learn high-quality dense

pose predictors for multiple object categories while dis-

covering automatically semantic correspondences between

them. The method represents correspondences via a unified

embedding and network predictor while enforcing reason-

able topological consistency constraints. Our encouraging

results indicate that joint modelling is not only just viable,

but has significant positive effects on performance and scal-

ability of such neural dense predictors.
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