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Abstract

The recent successes of deep learning have been possible due to the availability of
increasingly large quantities of annotated data. A natural question, therefore, is whether
further progress can be indefinitely sustained by annotating more data, or whether there
is a saturation point beyond which a problem is essentially solved, or the capacity of a
model is saturated. In this paper we examine this question from the viewpoint of learning
shareable semantic parts, a fundamental building block to generalize visual knowledge
between object categories. We ask two research questions often neglected: whether se-
mantic parts are also visually shareable between classes, and how many annotations are
required to learn them. In order to answer such questions, we collect 15,000 images of
100 animal classes and annotate them with parts. We then thoroughly test active learning
and domain adaptation techniques to generalize to unseen classes parts that are learned
from a limited number of classes and example images. Our experiments show that, for
a majority of the classes, part annotations transfer well, and that performance reaches
98% of the accuracy of the fully annotated scenario by providing only a few thousand
examples.

1 Introduction
Recent progress in image understanding, while dramatic, has been primarily fueled by the
availability of increasingly large quantities of labeled data. For example, it was only with
the introduction of resources such as ImageNet that deep learning methods were finally able
to realize their potential. However, it is unclear whether manual supervision will be able to
keep up with the demands of increasingly sophisticated and data-hungry algorithms. New
projects such as the Visual Genome project [26], where millions of image regions are labeled
with short sentences and supporting bounding boxes, go well beyond standard datasets such
as ImageNet and offer new terrific research opportunities. At the same time, however, they
raise the obvious question: when is supervision enough?

The idea that limitless manual supervision is impractical has motivated research in ar-
eas such as unsupervised learning or learning from off-the-shelf resources such as the Web.
While these are important directions, such approaches go to the other extreme of avoiding
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Figure 1: ImageNet Animal Parts. We investigate the ability of semantic parts to transfer
between different categories. To do so, we extend 100 ImageNet animal categories with
selected part annotations (the figure shows one annotated example per class). We then ask
the question: what is the minimal level of supervision so that part detection trained on the
source classes perform well on the target classes?

manual supervision altogether. In this paper, we take a pragmatic approach and start from
the assumption that explicit manual supervision is currently the most effective way of con-
structing models. However, we also ask whether there is a limit to the amount of supervision
which is actually required and hence of data that needs to be annotated.

While answering this question in full generality is difficult, we can still conduct a thor-
ough analysis in representative cases of general interest. In this paper, we look in partic-
ular at the problem of recognizing and detecting semantic parts in categories (e.g. animal
eyes; Fig. 1), because semantic parts are highly informative, and, importantly, semantically
shareable (e.g. both monkeys and snakes have eyes which, despite important differences, are
broadly analogous). In fact, one of the key uses of parts in computer vision is to transfer the
structure of known objects to novel ones, for which no supervision is available. However,
an important practical question, which is often neglected, is whether semantically shareable
parts are also visually shareable, in the sense of being recognizable in novel objects without
further supervision. This assumption has never been tested before beyond a few categories
or narrow domains.
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In this paper, we conduct the first careful investigation of part transferability across a
large target set of visually dissimilar classes. Since there is no dataset suitable for this
analysis, our first contribution is to augment a subset of the ImageNet ILSVRC data [8]
consisting of 100 animal classes with annotations for selected semantic parts1 (section 2).

Given the new data, we investigate the two key aspects of transferability under bounded
supervision (section 3): (i) learning parts from a limited number of example images and (ii)
applying known parts to new, unseen domains. For the first problem, we consider an active
learning scenario, where images are annotated with parts in turn, studying which images
should be chosen and how many are needed to saturate performance.

Next, we look at part transferability as a Domain Adaptation (DA) problem. Differently
from the typical transductive learning scenario of DA, where algorithms leverage unlabeled
data of the target domain to adapt a source predictor, our goal is to learn part predictors that
apply directly to novel classes before having samples from those. We propose to address this
domain generalization problem using an efficient ensemble of detectors which is optimized
for generalization to new classes and that, at the same time, can be used to guide active
learning.

Finally, we conduct a thorough empirical evaluation of these problems (section 4). As
we do so, we provide insights on how subsets of images may be selected for labeling, and
how many such labels may be required to perform well on unseen categories.

1.1 Related work
Our work relates to several research topics including domain adaptation and active learning.
Domain adaptation (DA) is a special case of transfer learning that seeks to learn predictors
that account for a shift between the distributions of the source and target data domains.
Typically, only the source domain is labeled. Since the seminal paper of Saenko et al. [41],
DA has been applied to computer vision by learning feature transformations [2, 13, 17, 18,
46], or by adapting the parameters of the predictor [21, 60]. Only a few papers consider DA
from more than one source domain [47], and most from at most a few, while we consider
50. Sometimes, the source domains are not given a priori, but discovered implicitly [20].
Recently, DA has also been applied to deep learning: the works of [15, 53] learn domain-
invariant features by defeating a classifier that tries to separate the source and target domains;
[52] improves the robustness to domain shift of the final layer of a CNN.

All these approaches formulate DA as transductive learning, for which they require un-
labeled samples from the target domain. This is a fundamental difference from our case,
where no target samples are available, also known as domain generalization [14, 16, 34] or
predictive domain adaptation [62].

Active learning. The goal of active learning is to reduce the annotation costs by deciding
which training samples should be annotated. Each annotation is associated with a cost [6]
and the goal is to obtain the best performance within a budget. Many data selection strate-
gies have been proposed, based on uncertainty and entropy [48], used in [7, 23, 25, 36], or
diversity and representativeness [24]. The work of [56] estimates a cost of different types of
annotations and then modulates an expected risk function while the strategy of [40] annotates
as many examples in each image as possible. [35] leverages additional information from dif-
ferent annotation types to improve the convergence properties of the active learner. Only
very few works have jointly looked at transfer learning and active learning [3, 37, 42, 58, 59]

1The dataset can be downloaded at www.robots.ox.ac.uk/~vgg/data/animal_parts.
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as we do here, and none of them considered computer vision tasks. Moreover, the trans-
fer learning components of these works approach the transductive domain adaptation task
whereas we focus on domain generalization.

Related transfer learning problems. Zero-shot learning, i.e. the task of recognizing a
category with no training samples, is often tackled by explicitly learning classifiers that are
transversal to object classes. This can be done by modeling semantic relatedness [38, 39],
or by transferring other knowledge such as materials [5, 54], segments [45], parts [10, 49]
or attributes [11, 29]. However, these works consider only a small number of classes and
assume that primitives such as parts transfer visually, whereas here we explicitly question this
assumption. Fewer works consider transfer learning for localization as we do; these include
the works of [9, 19, 28, 33] that transfer bounding box information using the ImageNet
hierarchies; the method of [22] that transfer object detectors from seed classes; and [1] which
transfers detectors assuming a limited number of annotated examples in the target domain.
Differently from such works, we do not transfer whole objects, but individual keypoints, and
we do so between very diverse classes. Transferring keypoints was explored in [63], which
detects facial landmarks using a deep multi-task learning framework, while [51] induce pose
for previously unseen categories.

2 A new dataset to study semantic parts

A thorough evaluation of the transferability of parts requires a suitable dataset with a large
enough number of classes. Unfortunately, datasets that have keypoints or part-level annota-
tions either consider a handful of classes, such as the PASCAL Parts [4], or are specialized to
a narrow set of domains, focusing only on birds [57], faces [32, 63], or planes [55]. Datasets
with more categories, such as the Visual Genome [26], do not contain systematic part anno-
tations. Instead of collecting a new set of images, we build on top of the existing ImageNet
dataset [8]. In addition to being a familiar dataset, its classes are already organized in a
semantic hierarchy, induced by WordNet [12]. This provides a natural basis to study the
semantic structure of this space. A very significant challenge with annotating many parts for
many object categories is of course the very large cost; thus, trade-offs must be made.

Here, the singly most important aspect for experimentation is to label a sufficiently large
space of categories. This space should also contain a mix of similar and dissimilar cate-
gories. Furthermore, the same parts should ideally apply to all categories. Here we select
the “vertebrate” subtree of the ImageNet ILSVRC. This tree contains 233 animal classes,
of which we select 100 for experimentation (Figure 1). We annotate two parts. One, eyes,
exist in all selected animals. The second, feet, exist in a large subset of these (mammals
and reptiles but not fish). Beyond their semantic shareability (visual shareability has to be
verified), these parts were selected because they are easily understood by annotators from
crowdsourcing platforms, and they can satisfactorily be annotated with keypoints as opposed
than by drawing bounding boxes or regions. Both properties were instrumental in collect-
ing a large dataset of part annotations in a reasonable time and within a reasonable budget.
While limited, these annotations are sufficient to demonstrate the principles of our analysis.
We collected annotations for about 150 images per class, annotating 14711 images in total.
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3 Methods
First, we describe the keypoint detector that we use to detect semantic parts in images. Sec-
ond, as our experiments sample images in turn, we describe how uncertainty sampling can
be defined in our particular active learning scenario. Finally, we describe how the fact that
we have many source domains (i.e. animal classes) to sample from can be leveraged in order
to combine several detectors that are then applied to the unseen target classes.

Keypoint detector. As our baseline keypoint detector, we use the state-of-the-art method
proposed by Tulsiani and Malik [50]. This architecture uses convolutional layers from VGG-
VD [44], followed by a linear regressor, that outputs a heatmap expressing the probability
of a keypoint being centered at a particular location. The accuracy is improved by linearly
combining the outputs of a coarse-scale (6×6) and a fine-scale (12×12) network.

As our analysis requires frequent retraining of the model, we adapt the faster 6×6 net-
work of [50] to output finer-scale 12×12 cell predictions. To do so, we follow [30] and we
append a bilinear upsampling layer to the final keypoint regressor convolutional layer and
linearly combine the resulting upsampled heatmap with a finer-scale convolutional heatmap
derived from the pool4 VGG-VD layer. The recombined heatmap is terminated with a sig-
moid activation function. The resulting architecture allows for multiscale end-to-end training
while increasing overall testing/training speed by a factor of 3.

Active learning. The goal of active learning is to select a small subset of images for annota-
tion while maximizing the performance of the final predictor. Let U be the set of all available
images; the algorithm starts by a pool L0 ⊂U containing |L0| = 50 randomly-selected im-
ages x∈U and collects the corresponding annotations. Then, for t = 0,1,2, . . . the algorithm
alternates training a CNN keypoint detector using the annotations in Lt and collecting anno-
tations for A more images. For the latter, all non-annotated images in x ∈U are assessed and
the A “most informative ones” are selected for annotation.

The standard criterion to select informative images is to pick the ones which leave the
current predictor uncertain, also called uncertainty sampling. However, while uncertainty
is easily defined in classification tasks where the goal is to predict a single label per image,
it is not obvious how to do so for keypoint prediction where the predictor produces a score
for each image location. We propose to do so as follows: let p(y =+1|x,u) = Φ(x)u be the
probability of finding a keypoint at location u in image x as computed by the CNN Φ (unless
otherwise specified, we assume that the CNN is terminated by a sigmoid function). The
uncertainty score is then given by 1− 2|maxu p(y = +1|x,u)− 1/2|. Intuitively, when the
model is certain, either (i) there are no keypoints in that image and maxu p(y =+1|x,u)≈ 0,
or (ii) there is at least one keypoint and then maxu p(y =+1|x,u)≈ 1.

Transfer learning by auto-validation. Our problem differs from standard active learning in
that, as in DA, the target classes are shifted compared to the source ones. Furthermore, differ-
ently from the standard transductive learning setting in DA, our aim is to learn a “universal”
part detector that generalizes to unseen target classes without further training.

Compared to more common machine learning settings, we can leverage the fact that
the source data is split in well defined domains to characterize domain shift and improve
generalization. We do so using an auto-validation procedure. Let D = {d1, ...dN} be a set
of source domains (object classes) and let δ ⊂ D a subset of the latter. We train CNN part
predictors Φδ for each such subset and recombine them to maximize generalization using
the method of Krogh et al. [27]. Recombination requires computing the cross-validation
error Eδ of model Φδ on the complementary domains D−δ , as well as the cross-correlation
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matrix Cδδ ′ = Exu[Φδ (x)uΦδ ′(x)u] of the response (heat maps) of the different CNNs on the
training data. Given Eδ and C, the combined detector is given by Φ̄ = ∑δ⊂D αδ Φδ where the
coefficients αδ are obtained by solving the following quadratic programming problem [27]:

argmin
{αδ |δ⊂D}

∑
δ⊂D

αδ Eδ + ∑
(δ ,δ ′)⊂D×D

αδCδδ ′αδ ′ − ∑
δ⊂D

αδCδδ

s.t.: αδ ≥ 0, ∀δ ⊂ D

∑
δ⊂D

αδ = 1

(1)

The original method from [27] was designed to recombine predictions of independently
trained shallow neural networks. We adapt the original method so the different keypoint
detectors Φδ share weights for the early layers, thus removing the requirement of costly
re-optimization of the large number of CNN parameters on each set of training samples δ .
In practice, we propose to decompose the CNN as Φδ = φδ ◦ φ0, where φ0 is the same for
different δ and only φδ is specific to δ . More precisely, φ0 includes all learnable parameters
of the original VGG-VD layers up to conv5_3 and φδ comprises the final convolutional
filter terminated by the sigmoid layer that outputs part detector responses specific to training
samples from δ .

Optimization of φδ and φ0 is easily implemented using stochastic gradient descent (SGD):
given a data sample x, for all δ in parallel, either φδ or the cross-validation error Eδ are up-
dated, depending on whether x ∈ δ . The cross-correlation matrix C is estimated using all
samples irrespective of their origin. To ensure numerical stability we add a small constant
λ to the diagonal of C (λ = 0.1 in all experiments). Once optimization of φδ , Eδ and C
completes, coefficients αδ are obtained by solving eq. (1).

Another advantage of training an ensemble of detectors Φδ is that their lack of agreement
on the training data can replace uncertainty sampling in guiding active learning. We imple-
ment this query-by-committee [43] criterion (QBC) following [27]: Given a pixel u in a test
image x we assess the disagreement between pixel-wise predictors Φδ (x)u by evaluating the
ensemble ambiguity a(x,u) = ∑δ⊂D αδ (Φδ (x)u− Φ̄(x)u)

2, where Φ̄(x)u = ∑δ⊂D αδ Φδ (x)u.
Similar to uncertainty sampling (section 3) we label each image x with a disagreement score
â(x) by max-pooling over the pixel-wise ensemble ambiguities, i.e. â(x) = maxu a(x,u).
During the labeling stage of active learning, samples with highest â(x) are added first.

4 Experiments
In this section we first perform a quantitative evaluation of part transferability (section 4.1)
followed by evaluation of the proposed active-transfer learning methods (section 4.2).
Experimental protocol. The set of 100 domains (animal classes) is split into 50 source
domains and 50 target domains as follows. To achieve uniform coverage of the animal classes
in both sets, we first cluster the 100 classes into K = 50 clusters using their semantic distance
and spectral clustering. The semantic distance between two classes d and d′ is defined as
|r→ d ∩ r→ d′|/max{|r→ d|, |r→ d′|}, where |r→ d| is the length of the path from the
root of the hierarchy to class d. Then, each cluster representative is included in the target
set and the complement is included in the source set. Furthermore, images in each class
are divided into a 70/30 training-testing split, resulting in four image sets: source-train,
source-test, target-train and target-test. As common practice [31, 61], keypoint detections
are restricted to ground-truth object bounding boxes for all evaluation measures.
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Figure 2: Relative difficulty of part detection and part transfer. Part detection perfor-
mance for eyes (top) and feet (bottom) for a subset of the target classes, where the detector
has been trained using either: the farthest class (in semantic distance), the nearest
class, the same class, the source classes, all source and target classes. Classes
are sorted by increasing difficulty.

Evaluation measures. We evaluate keypoint detection using two standard metrics [61]:
PCK and APK. In PCK, for each ground truth bounding box, an algorithm predicts the
single most confident keypoint detection. This detection is regarded as true positive if it lies
within α max{w,h} of the nearest ground truth keypoint, where w,h are the box dimensions
and α ∈ 〈0,1〉 controls the sensitivity of evaluation to misalignments. For APK, keypoints
are labeled as positive or negative detections using the same criterion as PCK and ranked by
decreasing detection scores to compute average precision. In all of our experiments we set
α = 0.05 for the eyes, that are small and localized, and α = 0.1 for the feet which are more
difficult to annotate with a keypoint.

Baseline detector. We validated our faster baseline by comparing it to the original 6× 6+
12× 12 model of [50]. Our implementation of the 6× 6+ 12× 12 architecture achieves
61.1% PCK on the PASCAL VOC rigid keypoint detection task – a comparable result to
61.5% PCK reported in [50]. We also experimented on our dataset, and results show that our
6×6 upsample architecture is very competitive while being much faster than alternatives.

4.1 Visual shareability of parts

In this section we challenge the idea that parts are visually “shareable” across different
classes and that, therefore, it suffices to learn them from a limited number of classes to
understand them equally well in all cases. Figure 2 shows part detection performance for
individual classes, for different configurations that we discuss below.
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Figure 3: Active-transfer learning. PCK (solid lines) and APK (dashed lines) as a function
of the number of used labeled examples for random sampling (RS), uncertainty sampling
(US) and the network ensemble with query-by-committee sampling (ensemble+QBC) meth-
ods, for the eye (left) and foot (right) parts.

Learning from a single class. We first look at the individual target class detection results
when learning from annotated samples from the same class (green bar plots). We see that
the difficulty of detecting a certain part strongly depends on the specific class. For example,
owl’s eyes have 100% PCK, whereas turtle’s eyes have 38.1 PCK. We then compare with two
other training sets of identical size: i) with the nearest class (NC - red bar plot) according
to the semantic measure, and ii) with the farthest class (FC - blue bars). As expected, we
verify that NC outperforms FC by 20.9% PCK in average (NC is better than FC in 39 classes
out of 50 for the eyes, and 32 out of 37 for the feet). This demonstrates the relevance of
the semantic distance for cross-domain transfer. In average NC still performs 26.9% below
training with the target class itself. Next, we consider transferring from more classes.

Increasing the training set. We compare the performance of detectors when these are
trained with larger subsets of the data: i) using all classes available (i.e. the source and target
domains, purple bar plots), and ii) using only the source domains (that do not contain the
target class, orange bars). We note several facts. First we observe that using all classes
improves compared to training only for the target class in average for feet, but not for eyes
that perform very well already. Then, we observe that in 61% of the cases, learning a part
from source classes alone or adding the target classes changes PCK by less than 7%. Hence,
if parts are learned form a sufficiently-diverse set of classes, they can be expected to transfer
satisfactorily to novel ones as well. In average, training from the source classes only (transfer
scenario) is only 2.2 PCK below training from the full set of classes for eyes, and only 5.5
PCK below for feet.

4.2 Active-transfer learning
In the previous section we looked at how well parts transfer from known (source) classes
to new (target) classes. Here we ask how many source images need to be annotated in the
source domain. In order to answer this question, we adopt the active-transfer learning frame-
work of section 3 and we monitor the performance of the detector on the target classes as
more annotated images for the source classes become available. The overall performance
is summarized by plotting the attained mean PCK (solid lines) and APK (dashed lines) as
a function the number of labeled source images (fig. 3). We compare three methods: ac-
tive learning by random sampling (RS), active learning by uncertainty sampling (US), and
network ensemble with active learning by query-by-committee (ensemble+QBC).
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Figure 4: Comparative domain importance. The figure shows, for each of the source
classes, how many more images active learning selects at each round by ensemble+QBC.
Left: eye detection; Right: foot detection.

Implementation details. The initial pool contains |L0| = 50 randomly-selected image an-
notations and further 300 image annotations are added at every active learning round. For
pretraining the CNN we first remove all the images of the vertebrate subtree from the orig-
inal ILSVRC12 dataset and then train according to the protocol from [44]. In each active
learning round, the CNN from the previous round is fine-tuned for 7 epochs, lowering the
learning rate tenfold after epoch 5 (this was verified to be sufficient for convergence). During
early stages of active learning, duplicate training samples are added to ensure that at least
300 learning iterations are performed per epoch. Learning uses SGD with momentum and
mini-batch size of 20. Mini-batches are sampled to guarantee that all the training classes are
equally represented on average (rebalancing). Momentum, weight decay, and initial learning
rate were set to 0.9, 0.005, and 0.0003 respectively. Training sets are augmented by jittering
the sizes of image crops and by adding their horizontal flips. All parameters were validated
by splitting the source domains in half. For DA by auto-validation the set D of possible
source domains was obtained by regrouping the 50 source domains into 3 super-domains by
clustering them using their semantic similarity. The resulting ensemble contains 6 experts
trained and auto-validated on pairs of complementary domains (δ ,D−δ ) and an additional
expert that is both trained and auto-validated on all source domains. All experiments are
repeated 4 times with different random seeds and averages are reported.

Results. First, we observe that US performs slightly better than the other two algorithms
on the eye, but is substantially outperformed by RS and ensemble+QBC on the feet class.
We found that the reason is that the network is typically most uncertain about images that
happen to not contain any part instance, which is fairly frequent with animal feet as they
tend to be occluded. On the contrary, RS is not affected by this problem. Ensemble+QBC
performs as well as RS on the eye part and noticeably better on the foot part. This indicates
that guiding active learning using the QBC criterion is more robust than US. The fact that
the ensemble+QBC method performs similarly to the others on the eye class is likely due to
the fact that there is less visual variability in eyes than feet and therefore all classifiers in the
ensemble are similar, with poorer generalization [27]. Ensemble+QBC also benefits from
improved generalization by the optimized ensemble of domain-specific models. Finally,
we verified that using the ensemble of models with uncertainty sampling strategy is still
not competitive. We conclude that ensemble+QBC is an effective active-transfer learning
strategy.

Besides the relative merits of individual active learning strategies, a main observation
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for our investigation is how quickly performance of different methods saturates. It can be
noticed that for eyes the performance reaches 2% of the maximum with around 3,000 an-
notations, and for feet, the performance reaches 2% of the maximum with around 2,100
annotations. Combined with the observations in section 4.1, this indicates that excellent per-
formance can be achieved for part detection in most animal classes by annotating a small
representative subset of classes and a small number of corresponding images. This result is
somewhat remarkable and can be attributed to the excellent performance of pre-trained deep
neural networks as general-purpose representations. Recall that networks were pre-trained
for image classification and not part detection, and not on any of the source or target classes.

Sampling strategy analysis. Figure 4 shows the distribution of selected animal classes dur-
ing individual learning rounds for the QBC strategy. The distribution is clearly non-uniform,
and the method seems to select representative classes within groups such as “reptiles”, “fe-
lines”, etc.

5 Conclusions

In this paper we have looked at the problem of semantic part transferability in image under-
standing. Semantic parts are often assumed to be a good vehicle for generalization, but this
hypothesis has seldom been tested explicitly using a large number of different classes. We
have done so by creating a new dataset of annotated parts in the ImageNet ILSVRC 2012.
Then, we have looked at two main questions: whether parts trained on a set of representative
classes generalize to others and how many images are required to train such classes using
state-of-the-art neural network detectors and methods for active-transfer learning.

Our main finding is that parts transfer well to the majority of new classes even if trained
from a limited number of examples. This is a very encouraging result that suggests that the
underlying pre-trained deep representations can learn novel concepts quickly and effectively.
This also suggests that, in the future, a more systematic study of the asymptotic properties
of supervised training is warranted. In fact, it is possible that certain well defined but broad
problems, such as the detection of certain parts in all animals, could be solved essentially by
“exhaustion”, by collecting once for all a sufficiently large pool of annotated examples.

Acknowledgments. We would like to thank Xerox Research Center Europe and ERC
677195-IDIU for supporting this research.
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