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Abstract. While recent research in image understanding has often fo-
cused on recognizing more types of objects, understanding more about the
objects is just as important. Recognizing object parts and attributes has
been extensively studied before, yet learning large space of such concepts
remains elusive due to the high cost of providing detailed object annota-
tions for supervision. The key contribution of this paper is an algorithm
to learn the nameable parts of objects automatically, from images ob-
tained by querying Web search engines. The key challenge is the high
level of noise in the annotations; to address it, we propose a new unified
embedding space where the appearance and geometry of objects and their
semantic parts are represented uniformly. Geometric relationships are in-
duced in a soft manner by a rich set of non-semantic mid-level anchors,
bridging the gap between semantic and non-semantic parts. We also show
that the resulting embedding provides a visually-intuitive mechanism to
navigate the learned concepts and their corresponding images.

Keywords: object part detection, Web supervision, mid-level patches

1 Introduction

Modern deep learning methods have dramatically improved the performance of
computer vision algorithms in selected tasks such as image classification [1] and
object detection [2]. Parallel advances in tasks such as image captioning [3,4],
activity recognition [5], and many others have ventured far beyond classification
and detection in order to extract richer information from visual scenes. Even so,
image understanding remains rather crude, oblivious to most of the nuances of
real world images. Consider for example the notion of object category, which is
a basic unit of understanding in computer vision. Modern benchmarks consider
an increasingly large number of such categories, from thousands in the ILSVRC
challenge [6] to hundred thousands in the full ImageNet [7]. However, there is
only limited understanding of their internal semantic structure and geometry.

In this paper we aim at filling this gap by jointly learning about objects,
their semantic parts, and their geometric relationship. Semantic nameable parts
play a crucial role in visual understanding. However, learning them on a large
scale using standard methods faces the difficulty of collecting vast quantities of



2

Car images

Input Learned concept
"Car wheel" as an object

"Car wheel" as a component

Noisy Web results for "car wheel"

Fig. 1. Our goal is to learn the semantic structure of objects automatically using Web
supervision. For example, given noisy images obtained by querying an Internet search
engine for “car wheel” and for “cars”, we aim at learning the “car wheel” concept, and
its dual nature: as an object in its own right, and as a component of another object.

corresponding annotated example images. Instead, scalable algorithms must be
designed to discover this information, with minimal or no supervision.

As others have done for the problem of learning visual objects, in this paper
we look at Web supervision to learn object parts from thousands of images
obtained automatically by querying search engines (crf. fig. 1). However, this
poses two significant challenges: identifying images of the parts in very noisy
Web results (crf. fig. 2) while, at the same time, bridging the scale difference
between parts seen in the context of the whole object or in isolation. The latter
suggests in fact that parts have a dual nature: as components of an object
as well as objects in their own right (fig. 1 right), and models should be able to
capture both. In order to address such challenges, we propose a new method to
reason robustly about visual concepts and their geometric relationships.

Our first idea is to use the same representation for both objects and parts,
thinking them as generic “semantic visual entities”. Differently from methods
such as Deformable Part Models (DPM) [8,9], our representation does not differ-
entiate between objects and subordinate parts, promoting flexibility and robust-
ness. Our second idea is to leverage non-semantic parts to learn about semantic
ones; methods such as DPMs seek in fact visually stable parts, that are often
non-semantic. While these are not very interesting for semantic abstraction, they
may provide reliable geometric anchors to represent object deformations.

These two ideas come together in the two main contributions of the paper.
The first contribution (section 2.1) is a novel embedding that captures appear-
ance and geometry of all visual entities, either objects or semantic parts, in the
same space. Geometry is expressed robustly against an object-centric reference
frame implicitly captured by non-semantic anchor parts. The second contribu-
tion (section 2.2) is an effective method to learn these non-semantic anchors,
which is an alternative to significantly more complex part discovery methods.

A byproduct of our method is a large collection of images annotated with
objects, semantic parts, and their geometric relationships, that we refer to as a
visual semantic atlas (section 4). This atlas allows to visually navigate images
based on conceptual and geometric relations. It also emphasizes the dual nature
of parts, as components of an object and as semantic categories, by naturally
bridging images that zooms on a part or that contain the object as a whole.
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Fig. 2. Top images retrieved from an Internet search engine for some example queries.
Note that part results are more noisy than full object results (the remaining collected
images get even noisier, not shown here).

1.1 Related work

Our work touches on several active research areas: localizing objects with weak
supervision, learning with Web images, and discovering or learning mid-level
features and object parts.

Localizing objects with weak supervision. When training models to lo-
calize objects or parts, it is impractical to expect large quantities of bound-
ing box annotations. Recent works have tackled the localization problem with
only image-level annotations. Among them, weakly supervised object localization
methods [10,11,12,13,14,15,16] assume for each image a list of every object type
it contains. In the co-detection [17,18,19,20] and co-segmentation [21,22,23,24]
problems, the algorithm is given a set of images that all contain at least one
instance of a particular object. They differ in their output: co-detection predicts
bounding boxes, while segmentation predicts pixel-level masks. Yet, co-detection,
co-segmentation and weakly-supervised object localization (WSOL) are differ-
ent flavors of the localization problem with weak supervision. For co-detection
and WSOL, the task is nearly always formulated as a multiple instance learning
(MIL) problem [10,11,25,19,26]. The formulation in [14,15] departs from MIL
by leveraging the strong annotations for some categories to transfer knowledge
to the remaining categories. A few approaches model images using topic models
[13,20]. Recently, CNN architectures were also proved to work well in weakly
supervised scenarios [27]. We will compare with [27] in the experiments sec-
tion. None of these works have considered semantic parts. Closer to our work,
the method of [28] proposes unsupervised discovery of dominant objects using
part-based region matching. Because of its unsupervised process, this method is
not suited to name the discovered objects or matched regions, and hence lack
semantics. Yet we also compare with this approach in our experiments.

Learning from Web supervision. Most previous works [29,30,31,32] that
learn from noisy Web images have focused on image classification. Usually, they
adopt an iterative approach that jointly learns models and finds clean examples
of a target concept. Only few works have looked at the problem of localization.
Some approaches [33,24] discover common segments within a large set of Web
images, but they do not quantitatively evaluate localization. The recent method
of [34] localizes objects with bounding boxes, and evaluate the learnt models,
but as the previous two, it does not consider object parts. Closer to our work,
[35] aims at discovering common sense knowledge relations between object cat-



4

(a) (b) (c)
Fig. 3. Anchor-induced geometry. (a) A set of anchors (light boxes) are obtained
from a large number of unsupervised non-semantic part detectors. The geometry of a
semantic part or object is then expressed as a vector φg of anchor overlaps. (b) The
representation is scale and translation invariant. (c) The representation implicitly codes
for multiple aspects.

egories from Web images, some of which correspond to the “part-of” relation.
In the process of organizing the different appearance variations of Webly mined
concepts, [36] uses a “vocabulary of variance” that may include part names, but
those are not associated to any geometry.

Unsupervised parts, mid-level features, and semantic parts. Objects are
modeled using the notion of parts since the early work on pictorial structure [37],
in the constellation [38] and ISM [39] models, and more recently the DPM [9].
Parts are most commonly defined as localized components with consistent ap-
pearance and geometry in an object. All these works have in common to discover
object parts without naming them. In practice, only some of these parts have
an actual semantic interpretation. Mid-level features [40,41,42,43,44,45] are dis-
criminative [43,46] or rare [40] blocks, which are leveraged for object recognition.
Again, these parts lack semantic. The non-semantic anchors that we use share
similarities with [47] and [44], that we discuss in section 2.2. Semantic parts have
triggered recent interest [48,49,50]. These works require strong annotations in
the form of bounding boxes [48] or segmentation masks [49,50] at the part level.
Here we depart from existing work and aim at mining semantic nameable parts
with as little supervision as possible.

2 Method

This section introduces our method to learn semantic parts using weak supervi-
sion from Web sources. The key challenge is that search engines, when queried
for object parts, return many outliers containing other parts as well, the whole
object, or entirely unrelated things (fig. 2). In this setting, standard weakly-
supervised detection approaches fail (section 3). Our solution is a novel, robust,
and flexible representation of object parts (section 2.1) that uses the output of
a simple but very effective non-semantic part discovery algorithm (section 2.2).

2.1 Learning semantic parts using non-semantic anchors

In this section, we first flesh out our method for weakly-supervised part learning
and then dive into the theoretical justification of our choices.

MIL: baseline, context, and geometry-aware. As standard in weakly-
supervised object detection, our method starts from the Multiple Instance Learn-
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ing (MIL) [51] algorithm. Let xi be an image and letR(xi) be a shortlist of image
regions R that are likely to contain objects or parts, obtained for instance us-
ing selective search [52]. Each image xi can be either positive yi = +1 if it is
deemed to contain a certain part or negative yi = −1 if not. MIL fits to this
data a (linear) scoring function 〈φ(xi|R),w〉, where w is a vector of parameters
and φ(xi|R) ∈ Rd is a descriptor of the region R of image xi, by minimizing:

min
w∈Rd

λ

2
‖w‖2 +

1

n

n∑
i=1

max{0, 1− yi max
R∈R(xi)

〈φ(xi|R),w〉} (1)

In practice, eq. (1) is optimized by alternatively selecting the maximum scoring
region for each image (also known as “re-localization”) and optimizing w for a
fixed selection of the regions. In this manner, MIL should automatically discover
regions that are most predictive of a given label, and which therefore should
correspond to the sought visual entity (object or semantic part). However, this
process may fail if descriptors are not sufficiently strong.

For baseline MIL the descriptor φ(x|R) = φa(x|R) ∈ Rda captures the re-
gion’s appearance. A common improvement is to extend this descriptor with
context information by appending a descriptor of a region R′ = µ(R) sur-
rounding R, where µ(R) isotropically enlarges R; thus in context-aware MIL,
φ(x|R) = stack(φa(x|R), φa(x|µ(R))).

Neither baseline or context-aware MIL leverage the fact that objects have a
well-defined geometric structure, which significantly constrains the search space
for parts. DPM uses such constraints, but as a fixed set of geometric relationships
between part pairs that are difficult to learn when examples are extremely noisy.
Furthermore, DPM-like approaches learn the most visually-stable parts, which
often are not the semantic ones.

We propose here an alternative method that captures geometry indirectly,
on top of a rich set of unsupervised mid-level non-semantic parts {p1, ..., pK},
which we call anchors (fig. 3). Let us assume that, given an image x, we can
locate the (selective search) regions Rpk,x containing each anchor pk. We define
the following geometric embedding φg of a region R with respect to the anchors:

φg(x|R) =

ρ(R,Rp1,x)
...

ρ(R,RpK ,x)

 . (2)

Here ρ is a measure such as intersection-over-union (IoU) that tells whether
two regions overlap. By choosing a function ρ such as IoU which is invariant to
scaling, rotation, and translation of the regions, so is the embedding φg. Hence,
as long as anchors stay attached to the object, φg(x|R) encodes the location of R
relative to an object-centric frame. This representation is robust because, even if
some anchors are missing or misplaced, the vector φg(x|R) is not greatly affected.
The geometric encoding φg(x|R) is combined with the appearance descriptor
φa(x|R) in a joint appearance-geometric embedding

φag(x|R) = φa(x|R)⊗ φg(x|R) (3)
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where ⊗ is the Kronecker product. After vectorization, this vector is used as a
descriptor φ(x|R) = φag(x|R) of region R in geometry-aware MIL. The next
few paragraphs discuss its properties.

Modeling multiple parts. Plugging φag of eq. (3) into eq. (1) of MIL results

in the scoring function 〈w, φag(x|R)〉 =
∑K
k=1〈wk, φ

a(x|R)〉ρ(R,Rpk,x) which
interpolates between K appearance models based on how the region R is ge-
ometrically related to the anchors Rpk,x. In particular, by selecting different
anchors this model may capture simultaneously the appearance of all parts of
an object. In order to control the capacity of the model, the smoothness of the
interpolator can be increased by replacing IoU with a softer version, which we
do next.

Smoother overlap measure. The IoU measure is a special case of the following
family of PD kernels (proof in the appendix):

Theorem 1. Let R and Q be vectors in a Hilbert H space such that 〈R,R〉 +

〈Q,Q〉−〈R,Q〉 > 0. Then the function ρ(R,Q) = 〈R,Q〉
〈R,R〉+〈Q,Q〉−〈R,Q〉 is a positive

definite kernel.

The IoU is obtained when R and Q are indicator functions of the respective
regions (because 〈R,Q〉 =

∫
R(x, y)Q(x, y) dx dy = |R ∩ Q|). This suggests a

simple modification to construct a Soft IoU (SIoU) version of the latter. For a
region R = [x1, x2] × [y1, y2], the indicator can be written as R(x, y) = H(x −
x1)H(x2 − x)H(y − y1)H(y2 − y) where H(z) = [z ≥ 0] is the Heaviside step
function. SIoU is obtained by replacing the indicator by the smoother function
Hα(z) = exp(αz)/(1 + exp(αz)) instead. Note that SIoU is non-zero even when
regions do not intersect.

Theorem 1 provides also an interpretation of the geometric embedding φg of
eq. (2) as a vector of region coordinates relative to the anchors. In fact, its entries
can be written as ρ(R,Rpk,x) = 〈ψSIoU(R), ψSIoU(Rpk,x)〉 where ψSIoU(R) ∈
HSIoU is the linear embedding (feature map) induced by the kernel ρ1.

Modeling multiple aspects. So far, we have assumed that all parts are always
visible; however, anchors also provide a mechanism to deal with the multiple as-
pects of 3D objects. As depicted in fig. 3.c, as the object rotates out of plane,
anchors naturally appear and disappear, therefore activating and de-activating
aspect-specific components in the model. In turn, this allows to model viewpoint-
specific parts or appearances. In practice, we extract the L highest scoring de-
tections Rl of the same anchor pk, and keep the one closest to R.

In order to allow anchors to turn off in the model, the geometric embed-
ding is modified as follows. Let sk(Rl|x) be the detection score of anchor k in
correspondence of the region Rl; then

ρ(R,Rpk,x) = max
l∈{1,...,L}

SIoU(R,Rl)×max{0, sk(Rl|x)}. (4)

1 The anchor vectors ψSIoU(Rpk,x) are not necessarily orthonormal (they are if an-
chors do not overlap), but this can be restored up to a linear transformation of the
coordinates.
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If the anchor is never detected (sk(Rl|x) ≤ 0 for all Rl) then ρ(R,Rpk,x) = 0.
Furthermore, this expression also disambiguates ambiguous anchor detections
by picking the one closest to R. Note that in eq. (4) one can still interpret the
factors SIoU(R,Rl) as projections 〈ψSIoU(R), ψSIoU(Rl)〉.
Relation to DPM. DPM is also a MIL method using a joint embedding
φDPM(x|R1, . . . , RK) that codes simultaneously for the appearance of K parts
and their pairwise geometric relationships. Our Webly-supervised learning prob-
lem requires a representation that can bridge object-focused images (where sev-
eral parts are visible together as components) and part-focused images (where
parts are regarded as objects in their own right). This is afforded by our embed-
ding φag(x|R) but not by the DPM one. Besides bridging parts as components
and parts as objects, our embedding is very robust (important in order to deal
with very noisy training labels), automatically codes for multiple object aspects,
and bridges unsupervised non-semantic parts (the anchors) with semantic ones.

2.2 Anchors: weakly-supervised non-semantic parts

The geometric embedding in the previous section leverages the power of an inter-
mediate representation: a collection of anchors {pk}Kk=1, learned automatically
using weak supervision. While there are many methods to discover discrimina-
tive non-semantic mid-level parts from image collections (section 1.1), here we
propose a simple alternative that, empirically, works better in our context.

We learn the anchors using a formulation similar to the MIL objective (eq. (1)):

min
ω1,...,ωK

K∑
i=1

[
λ

2
‖ωk‖2 −

1

n

n∑
i=1

yi

[
max

R∈R(xi)
〈φa(xi|R),ωk〉

]
+

]
+γ
∑
k 6=q

〈
ωk
‖ωk‖

,
ωq
‖ωq‖

〉2

,

(5)
where [z]+ = max{0, z}. Intuitively, anchors are learnt as discriminative mid-
level parts using weak supervision. Anchor scores sk(R|x) = 〈φa(x|R),ωk〉 are
parametrized by vectors ω1, . . . ,ωK ; the first term in eq. (5) is akin to the
baseline MIL formulation of section 2.1 and encourages each anchor pk to score
highly in images xi that contain the object (yi = +1) and to be inactive otherwise
(yi = −1). The last term is very important and encourages the learned models
{ωk}Kk=1 to be mutually orthogonal, enforcing diversity. Note that anchors use
the pure appearance-based region descriptor φa(x) since the geometric-aware
descriptor φag(x) can be computed only once anchors are available. Optimization
uses stochastic gradient descent with momentum.

This formulation is similar to the MIL approach of [47] which, however, does
not contain the orthogonality term. When this term is removed, we observed that
the solution degenerates to detecting the most prominent object in an image. [41]
uses instead a significantly more complex formulation inspired by mode seeking;
in practice we opted for our approach due to its simplicity and effectiveness.
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2.3 Incorporating strong annotations in MIL

While we are primarily interested in understanding whether semantic object
parts can be learned from Web sources alone, in some cases the precise defi-
nition of the extent of a part is inherently ambiguous (e.g. what is the extent
of a “human nose”?). Different benchmark datasets may use somewhat different
definition of these concepts, making evaluation difficult. In order to remove or at
least reduce this dataset-dependent ambiguity, we also explore the idea of using
a single strongly annotated example to fix this degree of freedom.

Denote by (xa, Ra) the single strongly-annotated example of the target part.
This is incorporated in the MIL formulation, eq. (1), by augmenting the score
with a factor that compares the appearance of a region to that of Ra:

〈φ(xi|R),w〉 ×

{
1
C expβ〈φa(xi|R), φa(xa|Ra)〉, yi = +1,

1, yi = −1.
(6)

where C = avgi:yi=+1 expβ〈φa(xi|R), φa(xa|Ra)〉 is a normalizing constant. In
practice, this is used only during re-localization rounds of the training phase
to guide spatial selection; at test time, bounding boxes are scored solely by the
model of eq. (1) without the additional term. Other formulations, that may use a
mixture of strongly and Webly supervised examples, are also possible. However,
this is besides our focus, which is to see whether parts are learnable from the Web
automatically, and the single supervision is only meant to reduce the ambiguity
in the task for evaluation.

3 Experiments

This section thoroughly evaluates the proposed method. Our main evaluation
is a comparison with existing state-of-the-art techniques on the task of Webly-
supervised semantic part learning. In section 3.1 we show that our method is
substantially more accurate than existing alternatives and, in some cases, close
to fully-supervised part learning.

Having established that, we then evaluate the weakly-supervised mid-level
part learning (section 2.2) that is an essential part of our approach. It com-
pares favorably in terms of simplicity, scalability, and accuracy against existing
alternatives for discriminability as well as spatial matching of object categories
(section 3.2).

Datasets. The Labeled Face Parts in the Wild (LFPW) dataset [53] contains
about 1200 face images annotated with outlines for landmarks. Outlines are
converted into bounding box annotations and images with missing annotations
are removed from the test set. These test images are used to locate the following
entities: face, eye, eyebrow, nose, and mouth.

The PascalParts dataset [49] augments the PASCAL VOC 2010 dataset with
segmentation masks for object parts. Segmentation masks are converted into
bounding boxes for evaluation. Parts of the same type (e.g. left and right wheels)
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are merged in a single entity (wheel). Objects marked as truncated or difficult
are not considered for evaluation. The evaluation focuses on the bus and car
categories with 18 entity types overall: car, bus, and their door, front, headlight,
mirror, rear, side, wheel, and window parts. This dataset is more challenging,
as entities have large intra-class appearance and pose variations. The evaluation
is performed on images from the validation set that contain at least one object
instance. Furthermore, following [50], object occurrences are roughly localized
before detecting the parts using their localization procedure. Finally, objects
whose bounding box larger side is smaller than 80 pixels are removed as several
parts are nearly invisible below that scale.

The training sets from both datasets are utilized solely for training the fully
supervised baselines (section 3.1), and they are not used by MIL approaches.

Experimental details. Regions are extracted using selective search [52], and
described using `2-normalized Decaf [54] fc6 features to compute the appearance
embedding φa(x|R). The context descriptor µ(R) is extracted from a region
double the size of R. The joint appearance-geometric embedding φag(x|R) is
obtained by first extracting the top L = 5 non-overlapping detections of each
anchor and then applying eqs. (3) and (4).

A separate mid-level anchor dictionary {p1, ..., pK} is learnt for each object
class using the Web images for all the semantic parts for the target object (in-
cluding images of the object as a whole) as positive images and the background
clutter images of [55] as negative ones. Eq. (5) is optimized using stochastic
gradient descend (SGD) with momentum for 40k iterations, alternating between
positive and negative images. We train 150 anchor detectors per object class.

MIL semantic part detectors are trained solely on the Web images and the
background class of [55] is used as negative bag for all the objects. The first
five relocalization rounds are performed using the appearance only and the fol-
lowing five use the joint appearance-geometry descriptor (the joint embedding
performs better with these two distinct steps). The MIL λ hyperparameter is set
by performing leave-one-category-out cross-validation2.

Web images for parts are acquired by querying the BING image search engine.
For car and bus parts, the query concatenates the object and the part names
(e.g. ”car door”). For face parts, we do not use the object name. We retrieve 500
images of the class corresponding to the object itself and 100 images of all other
semantic part classes.

3.1 Webly supervised localization of objects and semantic parts

This section evaluates the detection performance of our approach. We gradually
incorporate the proposed improvements, i.e. the context descriptor (C) and the
geometrical embedding (G) to the basic MIL baseline (B) as defined in section 2.1
and monitor their impact.

2 In other words, λ is validated on the training sets of two object classes; the best
parameter setting is then applied to the remaining class, for which strong annotations
remain unavailable.
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measure mAP averageCorLoc

Parent class {face} {car} {bus} {face} {car} {bus}
Cho et al. [28] 16.6 16.9 12.4 31.4 29.9 15.5
Bilen & Vedaldi [27] 2.7 12.0 4.7 7.2 15.3 6.7
B 20.6 29.1 22.7 22.0 38.1 29.4
B+C 22.4 27.3 21.4 29.1 37.6 28.4
B+G 29.0 34.1 23.3 33.1 45.5 31.5
B+C+G 44.9 34.4 23.0 52.5 47.8 29.6

F 53.7 51.2 48.2 60.5 62.9 63.8
F+C+G 61.4 60.3 54.1 67.8 71.8 66.0

Table 1. Part detection results averaged for the face, car, and bus parent classes.
mAP and average CorLoc for the MIL baseline (B), our improved versions that use
context (C), geometrical embedding (G) compared to the fully supervised R-CNN (F).

Class door rear wheel wind. side car front headl. mirror mean{car}

Web

B 0.4 10.8 34.9 3.6 63.1 92.6 55.2 0.7 0.3 29.1
B+C 0.8 11.4 31.3 4.9 58.8 83.0 54.0 1.0 0.2 27.3
B+G 0.7 11.8 47.9 22.7 71.3 97.8 54.5 0.2 0.2 34.1
B+C+G 5.1 14.7 43.6 22.6 72.3 95.7 54.7 0.3 0.2 34.4

Full
F 17.0 39.0 66.3 53.3 83.2 95.1 75.9 25.3 5.5 51.2
F+C+G 31.1 30.7 72.3 67.3 90.1 98.7 82.9 48.1 21.3 60.3

Table 2. Individual part detection results for car: APs for the MIL baseline
(B), our improved versions that use context (C), geometrical embedding (G) and the
different flavors of the fully supervised R-CNN (F).

We compare our method to the state-of-the-art co-localization algorithm of
Cho et al. [28] and the state-of-the-art weakly supervised detection method from
Bilen and Vedaldi [27]. To detect a given part with [28], we run their code on all
images that contain that part (e.g. for co-localizing eyes we consider face and
eye images). As reference, we also report a fully supervised detector, trained
using bounding-boxes from the training set, for all objects and parts (F). For
this, we use the R-CNN method of [2] on top of the same features used in MIL.

We mainly report the Average Precision (AP) per part/object class and its
average (mAP) over all parts in each class. We also report the CorLoc (for
correct localization) measure, as it is often used in the co-localization literature
[56,17]. As most parts in both datasets are relatively small, following [49], the
IoU threshold for correct detection is set to 0.4.

Results. Table 1 reports the average AP and CorLoc over all parts of a given
object class for all these methods. First, we observe that even the MIL baseline
(B) outperforms off-the-shelf methods such as [28] and [27]. For [27], we have
observed that the part detectors degrade to detecting subparts of semantic parts,
suggesting that [27] lacks robustness to drastic scale variations and to the large
amount of noise present in our dataset. Second, we see that using the geometric
embedding (+G) always improves the baseline results by 1 − 10 mAP points.
On top of geometry, using context (+C) helps for face and car parts, but not
for buses. Overall the unified embedding brings a large improvement for faces
(+24.3 mAP) and for cars (+5.3 mAP) and more contained for buses (+0.6
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measure mAP averageCorLoc

Parent class {face} {car} {bus} {face} {car} {bus}
A 29.4 ± 2.6 25.1 ± 2.7 24.5 ± 2.7 38.2 ± 2.5 39.8 ± 3.2 39.6 ± 3.2
A+B 27.3 ± 3.1 33.3 ± 1.1 26.9 ± 1.3 34.6 ± 3.7 46.6 ± 1.5 40.0 ± 2.3
A+B+C 38.2 ± 3.1 32.4 ± 1.2 26.6 ± 1.6 51.7 ± 3.2 49.4 ± 1.5 43.9 ± 3.0
A+B+G 34.5 ± 4.3 35.7 ± 1.1 28.1 ± 1.2 43.5 ± 4.8 48.8 ± 1.6 42.2 ± 2.2
A+B+C+G 43.0 ± 3.6 36.4 ± 1.0 30.1 ± 1.8 54.7 ± 3.2 51.6 ± 1.6 45.9 ± 2.8

Table 3. Part detection results using a single strong annotation (A): mAP and
average CorLoc for the MIL baseline (B), our improved versions that use context (C),
geometrical embedding (G). Mean and standard deviation over 25 random annotations.

mAP). Importantly, these improvements significantly reduce the gap between
using noisy Web supervision and the fully supervised R-CNN (F); overall, Webly
supervision achieves respectively 84%, 67%, and 48% of the performance of (F).

Last but not least, we extended the fully supervised R-CNN method with
the joint appearance-geometry embedding and the context descriptor (F+C+G),
which improves part detections by +7.7, +9.1, +5.9 mAP points respectively.
This suggests that our representation may be applicable well beyond weakly
supervised learning.

Table 2 shows per-part detection results for the car parts. We see that geom-
etry helps for 6 parts out of 9. Out of the three remaining parts, two are cases for
which the MIL baseline failed completely. In the less ambiguous fully-supervised
scenario, the geometric embedding improves the performance in 8 out of 9 cases.

Leveraging a single annotation. As noted in section 2.3, one issue with
weakly supervised part learning is the inherent ambiguity in the part extent, that
may differ from dataset to dataset. Here we address the ambiguity by adding
a single strong annotation to the mix using the method described in section
2.3. We asked an annotator to select 25 representative part annotations per
part class from the training sets of each dataset. We retrain every part detector
for each of the annotations and report mean and standard deviation of mAP.
As a baseline, we also consider an exemplar detector trained using the single
annotated example (A).

Results are reported in table 3. Compared to pure Web supervision (B+C+G)
in table 1, the single annotation (A+B+C+G) does not help for faces, for which
the proposed method was already working very well, but there is a +2 mAP point
improvement for cars and +6.8 mAP for buses, which are more challenging. We
also note that the complete method (A+B+C+G) is substantially superior to
the exemplar detector (A).

3.2 Validation of weakly-supervised mid-level anchors

This section validates the mid-level anchors (section 2.2) against alternatives in
terms of discriminative information content and its ability of establishing mean-
ingful matches between images, which is a key requirement in our application.

Discriminative power of anchors. Since most of the existing methods for
learning mid-level patches are evaluated in terms of discriminative content in a
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method BoP† [42] DMS† [41] Jian et al.† [47] RFDC† [46]
FC

Decaf
[54]

FC
VGG-VD

[58]

accuracy (%) 46.1 64.0 58.1 54.4 57.7 68.9

method
BoE†

Decaf
[45]

ours†

Decaf
FV-CNN
Decaf

[59]
BoE†

VGG-VD
[45]

ours†

VGG-VD
FV-CNN
VGG-VD

[59]

accuracy (%) 69.7 71.5 69.7 77.6 77.8 81.6

Table 4. Classification results on MIT Scenes [57]. Methods using mid-level elements
are marked with †. For CNN-based approaches, features rely on Decaf or VGG-VD.

classification setting, we adopt the same protocol here. In particular, we evaluate
the anchors as mid-level patches on the MIT Scene 67 indoor scene classification
task [57]. The pipeline first learns 50 mid-level anchors for each of the 67 scene
classes. Then, similar to [45], images are split into spatial grids (2x2 and 1x1)
and described by concatenating the maximum scores attained by each anchor
detector inside each bin of the grid. All the grid descriptors are then concatenated
to form a global image descriptor which is `2 normalized. 67 one-vs-rest SVM
classifiers are trained on top of these descriptors. To be comparable with other
methods, we consider both Decaf fc6 and VGG-VD fc7 [58] descriptors.

Table 4 contains the results of the classification experiment. Our weakly-
supervised anchors clearly outperform other mid-level element approaches that
are not based on CNN features [42,41,47,46]. Among CNN based approaches, our
method outperforms the state-of-the-art mid-level feature based method from
[45] on both VGG-VD and Decaf features. Remarkably, using our part detectors
improves over the baseline which uses the global image CNN descriptor (FC) by
13.8 and 8.7 average accuracy points for Decaf and VGG-VD features respec-
tively. Compared to other methods which are not based on detecting mid-level
elements, our pipeline outperforms state-of-the-art FV-CNN for Decaf features
and is inferior for VGG-VD.

Ability of anchors to establish semantic matches. The previous experi-
ment assessed favorably the mid-level parts in terms of discriminative content;
however, in the embedding φg, these are used as geometric anchors. Hence, here
we validate the ability of the mid-level anchors to induce good semantic matches
between pairs of images (before learning the semantic part models).

To perform semantic matching between a source image xS and a target image
xT , we consider each part annotation RS in the source and predict its best match
R̂T in the target. The quality of the match is evaluated by measuring the IoU
between the predicted R̂T and ground-truth RT part. When a part appears
more than once (e.g. eyes often appear twice), we choose the most overlaping
pair. Performance is reported by averaging the match IoU for all part occurrences
and pairs of images in the test set, reporting the results for each object category.

Given a source part RS , the joint appearance-geometry embedding (anchor-
ag) is extracted for the source part φag(xS |RS) and the target region R̂T that
maximizes the inner product 〈φag(xS |RS), φag(xT |R̂T )〉 is returned as the pre-
dicted match. We also compare anchor-g that uses only the geometric embedding
φg(x|R) and the baseline a that uses only the appearance embedding φa(x|R).
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Matching method
Set Parent class anchor-ag anchor-g a Flowweb [61] DSP [60]

50 images
{car} 0.36 0.36 0.31 0.34 0.23
{bus} 0.37 0.36 0.31 0.31 0.22
{face} 0.41 0.39 0.33 0.43 0.19

Full
{car} 0.36 0.36 0.30 - 0.22
{bus} 0.35 0.35 0.29 - 0.21
{face} 0.41 0.39 0.34 - 0.21

Table 5. Semantic matching. For every parent class, we report average overlap (IoU)
over all semantic parts. The face class results are obtained on the LFPW dataset while
bus and car results come from the PascalParts dataset.

We also compare two strong off-the-shelf baselines: DSP [60], state-of-the-art
pairwise semantic matching method, and the method of [61], state-of-the-art for
joint alignment. To perform box matching with [60] and [61] we fit an affine
transformation to the disparity map contained inside a given source bounding
box and apply this transform to move this box to the target image. Due to
scalability issues, we were unable to apply [61] to the full dataset3, so we perform
this comparison on a random subset of 50 images.

Table 5 presents the results of our benchmark. On the small subset of 50
images the costly approach of [61] performs better than our embedding only on
the LFPW faces, where the viewpoint variation is limited. On the car and bus
categories our method outperforms [61] by 10% and 16% average IoU respec-
tively. Our method is also consistently better than DSP [60] on both the small
and full test set. We also note that the matching using geometric embeddings
alone (anchor-g) achieves similar performance than the appearance-geometry
matching (anchor-ag) which validates our intuition that the local geometry of
an object is well-captured by the anchors.

4 An atlas for visual semantic

As a byproduct of Webly-supervised learning, our method annotates the Web
images with semantic parts. By endowing an image dataset with such concepts,
we show here that it is possible to browse these annotated images. All of this
composes our visual semantic atlas (see a subset of the atlas in Figure 4) that
allows to navigate from one image to another, even between an image of a full
object and a zoomed-in image of one of its parts.

5 Conclusions

We have proposed a novel method for learning about objects, their semantic
parts, and their geometric relationships, from noisy Web supervision. This is

3 More precisely, we were not able to apply [61] on a dataset with more than 60 128×68
pixel images on a server with 120 GB of RAM.
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Fig. 4. Navigating the visual semantic atlas. Each pair of solid bounding boxes con-
nected by an arrow denotes a preselected part bounding box (near the starting point
of an arrow) as detected by our algorithm and the most similar semantic match (the
endpoint of the arrow). The best matching bounding box is the detection with high-
est appearance-geometry descriptor similarity among all the detections in our database
of web images. The dashed boxes denote anchors that contributed the most to the
similarity. Please note that the matching gracefully occurs across scales.

achieved by first learning a weakly supervised dictionary of mid-level visual el-
ements which define a robust object-centric coordinate frame. Such property
theoretically motivates our approach. The geometric projections are then used
in a novel appearance-geometry embedding that improves learning of seman-
tic object parts from noisy Web data. We showed improved performance over
co-localization [28], deep weakly supervised approach [27] and a MIL baseline
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on all benchmarked datasets. Extensive evaluation of our proposed mid-level
elements shows comparable results to state-of-the-art in terms of their discrim-
inative power and superior results in terms of the ability to establish semantic
matches between images. Finally, our method also provides a visually intuitive
way to navigate Web images and predicted annotations.

Acknowledgments. We are grateful for support by XRCE and ERC StG 638009-
IDIU.
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A Appendix

Proof (Proof of Theorem 1). The function 〈R,Q〉 is the linear kernel, which is
PD. This kernel is multiplied by the factor −1/k̄ where k̄(R,Q) = 〈R,Q〉 −
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〈R,R〉 − 〈Q,Q〉; if this factor is also a PD kernel, then the result holds as the
product of PD kernels is PD. According to Lemma 3.2 of [62], −1/k̄ is PD if,
and only if, k̄ is strictly negative (point-wise) and conditionally definite posi-
tive (CDP). The first condition is part of the assumptions. To show the second
condition that k̄ is CDP pick n vectors R1, . . . , Rn and real numbers c1, . . . , cn
summing to zero c1 + · · ·+ cn = 0; then∑

ij

cik̄(Ri, Qi)cj =
∑
ij

ci〈Ri, Qj〉cj ≥ 0

where we used the fact that the terms 〈Ri, Ri〉 cancel out and the fact that
〈Ri, Qj〉 is PD.
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