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Abstract

Despite significant progress of deep learning in recent

years, state-of-the-art semantic matching methods still rely

on legacy features such as SIFT or HoG. We argue that the

strong invariance properties that are key to the success of

recent deep architectures on the classification task make

them unfit for dense correspondence tasks, unless a large

amount of supervision is used. In this work, we propose a

deep network, termed AnchorNet, that produces image rep-

resentations that are well-suited for semantic matching. It

relies on a set of filters whose response is geometrically con-

sistent across different object instances, even in the pres-

ence of strong intra-class, scale, or viewpoint variations.

Trained only with weak image-level labels, the final repre-

sentation successfully captures information about the object

structure and improves results of state-of-the-art semantic

matching methods such as the deformable spatial pyramid

or the proposal flow methods. We show positive results on

the cross-instance matching task where different instances

of the same object category are matched as well as on a

new cross-category semantic matching task aligning pairs

of instances each from a different object class.

1. Introduction

Matching, i.e. the problem of establishing correspon-

dences between images, is one of the tent-poles of image

understanding. It is well known that, given matches be-

tween images of the same object or scene, it is possible to

estimate 3D geometry (stereo and structure from motion)

and motion (visual odometry, optical flow, and tracking).

But matching can be applied to much more abstract levels of

understanding as well. For example, aligning different ob-

ject instances of the same type [32, 21] allows to discover

analogies between objects, inducting abstractions such as

object categories.

While reliable techniques exist for low-level matching,

high-level matching of different object instances remains a
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Figure 1: We propose AnchorNet, a novel deep architecture

that produces an image representation which significantly

improves state-of-the-art semantic matching methods. Key

to its success is a set of filters with a sparse response that

is geometrically consistent across different instances of a

category or of two similar categories. Although these fil-

ters are learned in a weakly supervised manner (i.e. only

image-level labels are used) they tend to anchor reliably on

meaningful object parts.

heavily-researched topic. Most of the work in this area has

focused on finding powerful geometric regularizers, such

as hierarchical correspondences [35] or deformable spatial

pyramids [32], to compensate for the still brittle visual de-

scriptors. Surprisingly, even powerful convolutional neu-

ral network (CNN) descriptors have been found lacking for

cross-instance matching [37, 21, 63], and in fact compa-

rable or even inferior to old hand-crafted features such as

SIFT [38] and HoG [11] for this task.

It is unclear why CNN representations, which perform

well for many challenging vision tasks, including object de-

tection [16] and segmentation [36], image captioning [57],
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(a) (b) (c)

Figure 2: Example responses of anchor filters discovered by the AnchorNet. (a), (b) show the class specific filters FCi

k
for

bird and dog classes respectively while (c) depicts the class agnostic filters FS

k
across different categories (one filter per row).

and visual question answering [1], have not been found to

work as well for cross-instance matching. Our hypothesis

is that this is due to the fact that CNNs are trained on large

datasets such as Imagenet ILSVRC [12] purely for the im-

age classification task. By learning with the sole purpose

of predicting a global image label, CNNs become insensi-

tive to local details and geometry and hence work poorly

for matching. This effect can be reversed by fine-tuning the

model on substantial amounts of data strongly supervised

with bounding box [16] or keypoint [9] annotations. While

this allows to use CNNs as excellent object and keypoint

detectors, it defeats the purpose of using CNN features as

generic descriptors for discovering correspondences in an

unsupervised manner, as matching requires.

In this paper, we address this issue by introducing a

new deep architecture that can learn representations that

work well for cross-instance matching (Figure 1), while us-

ing exactly the same supervision as traditional pre-training

– namely image-level labels used to train categorizers on

ILSVRC12 [12]. Using only image-level labels for match-

ing amounts to weak supervision since the labels do not pro-

vide any information on the geometry of objects or scenes.

Our key insight is that a set of diverse and sparse filter re-

sponses provides a powerful representation for establishing

matches. Convolutional features that respond sparsely on

an image tend to automatically anchor to distinctive image

structures such as semantic object parts. Further enforcing

diversity of the filter bank responses results in a good cov-

erage. This yields a unique description for all object frag-

ments which is an essential property that enables reliable

estimation of dense semantic correspondences.

We incorporate this idea by extracting from information-

rich residual hypercolumns (section 3.1) a bank of dis-

tinctive and diverse filters with orthogonal responses (sec-

tion 3.2; Figure 2). In this framework, which we call An-

chorNet, geometric consistency is not imposed explicitly,

but emerges spontaneously. We also show how to com-

press banks of class-specific filters into a class-agnostic

bank (section 3.3) which works well for all classes.

Extensive experiments show that the proposed represen-

tation can be seamlessly leveraged by state-of-the-art se-

mantic matching methods such as the Deformable Spatial

Pyramid [32] or Proposal Flow [21] in order to improve

their performance (section 4.1). For the first time, we also

show that high-level correspondences can be established be-

tween objects of different categories, including new ones,

unseen during the training of our network (section 4.2).

2. Related Work

Finding dense correspondences. The classical matching

methods estimate very accurate pixel correspondences be-

tween two images of the same scene, in presence of mod-

erate viewpoint variations [25, 39, 44]. Early methods use

different hand-crafted features such as SIFT [38], HoG [11],

SURF [4] or DAISY [52]. This task has many applications

including stereo matching [44], optical flow [25, 59], or

wide baseline matching [39, 61].

Recent works have generalized the notion of flow to im-

age pairs that are only semantically related [34, 46, 32, 50,

21]. This requires handling a higher degree of variabil-

ity in appearance. The semantic alignment task also finds

many applications such as image completion [3], enhance-

ment [20], or segmentation [34], and video depth estima-

tion [30]. The SIFT Flow algorithm [35, 34] pioneered the

idea of dense correspondences across different scenes and

proposes a multi-resolution image pyramid and a hierarchi-

cal optimization algorithm for efficiency. This approach got

extended by the Deformable Spatial Pyramid (DSP) algo-

rithm [32] that introduced a multi-scale regularization with

a hierarchically connected pyramid of graphs. The general-

ized deformable spatial pyramid [28] improves over DSP by

enforcing additional spatial constraints at a significant com-

putational cost. The Patch Match method [2] and its exten-

sion [3] target general purpose matching, including cross-

instance matching. The method of [5] builds an exemplar-

LDA classifier for every pixel to obtain dense correspon-

dences that improve the performance of scene flows. Pro-
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posal Flow [21] leverages the recent development in object

proposals and uses local and geometric consistency con-

straints to establish dense semantic correspondences. Fi-

nally, WarpNet [29] learns correspondences by exploiting

the relationships within a fine-grained dataset.

A few methods [26, 27, 45, 31, 41, 62] have posed the

problem of finding correspondences as the joint alignment

of multiple pairs of images, defining the task of collec-

tive alignment. These methods assume sets of images that

share a category label and consistent viewpoints. The latest

method in this field is FlowWeb [62], that builds a fully con-

nected graph with images as nodes, and pairwise flow fields

as edges. Yet, this method scales poorly with the size of the

image collection, and it is not straightforward to establish

pairwise alignments between new samples.

Deep features for correspondences. Long et al. [37] stud-

ied the application of CNN features pre-trained on large

classification datasets for finding correspondences between

object instances. They found that CNN features perform

on par with hand-crafted alternatives such as SIFT for

the weakly-supervised keypoint transfer problems, and can

outperform them when keypoint supervision is available.

This work paved the way to new deep architectures trained

for finding dense correspondences between same object or

scene instances [13, 58, 51]. Recently, Choy et al. [9]

proposed a deep architecture that performs well at cross-

instance alignment, but requires strong supervision in form

of many keypoint matches.

The question of training deep features without keypoint

annotations still remains unanswered, as state-of-the art

semantic matching methods [32, 21] still rely on hand-

engineered SIFT and HoG respectively.

3. Method

The output of a deep convolutional layer in a CNN

is a tensor x ∈ R
H×W×D of height H , width W , and

with D feature channels. Thus, at each spatial location

(u, v), one obtains a D-dimensional feature vector duv =
(xuv1, . . . , xuvD). As noted by [10], such CNN feature

vectors are analogous to hand-crafted dense descriptors like

HoG and Dense-SIFT and can often be used as a plug-and-

play replacement for the latter in applications. However,

as noted in e.g. [37] and shown in the experiments, this

substitution does not work well for cross-instance matching

algorithms such as DSP [32] and Proposal Flow [21].

Since CNNs can be turned in excellent keypoint detec-

tors by fine-tuning on data strongly annotated with keypoint

labels [9, 53], the reason for this failure must be in the way

most CNNs are pre-trained on image classification tasks.

Note that collecting keypoint annotations for every category

does not scale and defeats the purpose of cross-instance

matching, which is to discover such correspondences au-

tomatically. As a solution, we propose a new architecture

that, while using the same image-level supervision as the

standard pre-training on the classification task, learns fea-

tures with better geometric awareness.

Our method is motivated by a simple observation. Sup-

pose that learning encourages a feature to respond very lo-

cally (ideally a point). A convolutional filter can do this

only by responding to a visual structure that occurs uniquely

in each image – hence the distinctive part or keypoint of

an object. We call the latter the anchoring principle. A

geometry-aware representation suitable for semantic match-

ing should discover such a complete set of features that ul-

timately covers the whole object. We can do so by learning

a bank of filters that respond to complementary image loca-

tions. We call this the diversity principle. Note that diver-

sity indirectly encourages anchoring, as, if features respond

to different parts of an image, they must also respond lo-

cally. Armed with these insights, we propose next an archi-

tecture termed AnchorNet that follows the two principles.

We then show that these are sufficient to significantly boost

the geometric awareness of the resulting features. A dia-

gram of our network is presented in Figure 3.

3.1. Residual hypercolumns

We base our AnchorNet architecture on the powerful

residual architectures of [24]. We select the ResNet50

model as a good compromise between speed and accuracy.

In order to improve the geometric sensitivity of the rep-

resentation, we follow [22] and extract hypercolumns (HC).

A HC duv at location (u, v) in the image is created by con-

catenating the convolutional feature responses at that loca-

tion for different layers of the network. Recall that, in most

CNN architectures, deeper features have reduced resolu-

tion; HC compensates for this by upsampling the responses

to a common size before concatenation. We denote the re-

sulting network d = Φ(I), where I is the input image.

In more detail, we bilinearly upsample and concatenate

the rectified outputs of the res2c, res4c and res5c layers [24]

into a 56× 56×D hypercolumn tensor. Before concatena-

tion, descriptors extracted at each layer are compressed by

PCA to 256 dimensions (PCA is implemented as a 1×1 fil-

ter bank) and ℓ2 normalized to balance their energies. This

results in D = 768 dimensional HC vectors.

3.2. Learning anchoring features for an object type

The residual HC are high-capacity descriptors reflecting

both high-level semantics as well as low-level image de-

tails. While this suggests that they should contain enough

information for establishing matches, their direct utilization

leads to suboptimal results. Thus, we train a set of 3 × 3
convolutional filters F1, ..., FK that compress the HC re-

sponses into a compact set of anchor filters that are suitable

for matching. To this end, we learn filters that satisfy two
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for the bird and dog classes are presented in Figure 2 (a) and

(b). It is apparent that filters fire on consistent object parts

despite large intraclass variations, demonstrating the power

of our formulation and its applicability to matching.

3.3. Classagnostic representation

In the previous section we have defined category spe-

cific anchoring filters. In this section, we extend them to be

generic to any category. This allows to use the same repre-

sentation for every image, irrespective of its label, to match

instances across different categories (e.g. dog vs cat), and to

even handle new categories.

First, a filter bank FCi

1 , ..., FCi

K
is learned for each object

category C1, . . . , CN using the method above. Each object

is learned by considering only imagesCi of that object class

and a common background class B. Since filters are not

learned to discriminate between objects, and since the di-

versity losses are applied only within each bank, different

filter banks can develop correlations. Figure 2 illustrates

this by showing that filters learned for the “dog” and “bird”

classes capture similar concepts such as eyes or nose.

We take advantage of the overlap between different

banks by introducing a new bank of 1× 1 filters FS
1 , ..., F

S
L

that projects the class-specific responses of the filters

FC1

1 , . . . , FCN

K
to L general-purpose response maps appli-

cable to objects of any class.

In order to learn the projections FS end-to-end, we add

a denoising autoencoder (DAE) [56] to our architecture.

DAE minimizes the reconstruction loss LR(F
S , Γ̂)

LR(F
S , Γ̂) = D(Γ̂, (FS)⊤ ∗ FS ∗ c(Γ̂)) (5)

where D(a,b) = ‖a/‖a‖ − b/‖b‖‖
2

is the ℓ2 distance

between the ℓ2 normalized tensors a and b and (FS)⊤

is the convolution transpose operator [55]. Here Γ̂ =
Γ − µ(Γ) denotes the stack of class-specific heatmaps Γ =
stack(ψ

F
C1

1

, . . . , ψ
F

CN

K

) ∈ RW×H×(KN) centered by re-

moving their mean µ(Γ), estimated online during training.

We have observed that centering followed by ℓ2 normal-

ization greatly improves the convergence properties of LR.

Function c(z) injects noise by randomly setting to zero 25%

of the feature channels of the tensor z.

The decorrelation loss eq. (3) is applied to the compres-

sion filters FS as well in order to encourage their diversity.

Note that the reconstruction loss LR, when optimized

end-to-end with the rest of the model, encourages the maps

Γ̂ to shrink (because, if Γ̂ = 0 everywhere, then the autoen-

coder has a trivial optimum). This is however prevented

by the decorrelation losses LA
Div, LB

Div. LR thus works as a

regularizer enforcing part sharing. Examples of the learned

class agnostic filters are in fig. 2 (c).

Denoising autoencoders have been used for domain

adaptation before [7, 17]. In a similar spirit, the last part of

our network transforms a set of class (domain) specific fil-

ters into a domain invariant representation that can accom-

modate for any class, even the one not seen during training.

Network training. AnchorNet is optimized with stochas-

tic gradient descent (SGD) by minimizing the sum of the

proposed losses LDiscr, L
aux
Discr, L

A
Div, LB

Div and LR, with mini

batches of size 16, a learning rate of 10−2, and a momentum

of 0.0005. Parameters of the network are initialized with the

ResNet50 model pre-trained on ILSVRC12. We use two-

stage optimization to speed up the training process. First,

the class-specific filters FCk

i
are trained on 4× 104 training

images independently for each object class Ck keeping the

rest of the network parameters fixed. Then, we attach the

autoencoder and the reconstruction loss to fine-tune all the

network parameters end-to-end on 12×103 images. Further

details are provided in the supplementary material.

4. Experiments

We thoroughly compare our method with existing tech-

niques for semantic matching (section 4.1). Then, we assess

how well our features allow to establish matches across im-

ages of different categories (section 4.2) which, to the best

of our knowledge, was never demonstrated before.

Note that for all reported results, training only uses

ILSVRC12 [12] images and labels, where the categories are

merged according to the PASCAL-ILSVRC class mapping

from [12] (e.g. sofa is a merge of “studio couch” and “day

bed”). In this manner, 231 ILSVRC classes are used as pos-

itive examples spread over the 20 PASCAL VOC classes;

the remaining 769 classes are used to form the setB of neg-

ative (background) images. Even when we report results on

one of the N = 20 PASCAL VOC [14] classes, none of the

PASCAL VOC training data is used.

4.1. Dense pairwise semantic matching

We follow the standard practice [62, 21] of using a

dataset with manually annotated semantic keypoints or re-

gions and assess how well a semantic matching method in

combination with different types of features transfers the

annotations from an image to another. We experiment on

three datasets following their evaluation protocol.

Compared methods. The most successful cross-instance

matching methods include DSP [32] and Proposal Flow

[21] (PF). In their original formulation, these methods per-

formed best with the Dense SIFT [38] feature for DSP, and

the whitened version of HoG [23] for PF. In the following

experiments, we replace these descriptors with our repre-

sentation, as follows.

For DSP, the learned filter banks produce a dense field of

feature vectors which are bilinearly upsampled to the origi-

nal image size, ℓ2 normalized and passed to DSP as a plug-

and-play replacement of Dense SIFT. For PF, we mimic
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mean aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep sofa table train tv

Pairwise alignment methods

DSP + ANet-class 0.45 0.31 0.49 0.32 0.53 0.75 0.51 0.47 0.23 0.53 0.37 0.20 0.33 0.41 0.22 0.46 0.45 0.77 0.45 0.48 0.74

DSP + ANet 0.45 0.29 0.47 0.29 0.52 0.73 0.50 0.46 0.25 0.53 0.37 0.21 0.34 0.39 0.20 0.44 0.45 0.77 0.45 0.51 0.74

DSP + HC 0.41 0.29 0.45 0.24 0.51 0.73 0.48 0.44 0.20 0.52 0.32 0.16 0.28 0.35 0.19 0.39 0.37 0.74 0.44 0.48 0.67

DSP + SIFT [32] 0.39 0.25 0.46 0.21 0.48 0.63 0.50 0.45 0.19 0.48 0.30 0.14 0.26 0.35 0.13 0.40 0.37 0.66 0.37 0.48 0.62

Proposal Flow + ANet-class 0.43 0.26 0.43 0.28 0.54 0.71 0.50 0.45 0.24 0.54 0.32 0.21 0.28 0.35 0.21 0.45 0.40 0.74 0.46 0.50 0.70

Proposal Flow + ANet 0.42 0.26 0.41 0.26 0.53 0.70 0.49 0.45 0.25 0.54 0.31 0.19 0.28 0.31 0.17 0.43 0.39 0.74 0.44 0.52 0.69

Proposal Flow + HC 0.42 0.26 0.42 0.26 0.54 0.70 0.50 0.45 0.23 0.53 0.32 0.18 0.27 0.32 0.18 0.43 0.38 0.74 0.45 0.51 0.64

Proposal Flow + HoG [21] 0.41 0.25 0.45 0.23 0.54 0.70 0.49 0.44 0.19 0.53 0.30 0.16 0.25 0.35 0.16 0.41 0.35 0.74 0.44 0.50 0.63

Baseline: NoFlow 0.39 0.27 0.40 0.22 0.50 0.73 0.46 0.42 0.20 0.51 0.30 0.15 0.25 0.32 0.18 0.38 0.34 0.74 0.44 0.47 0.64

Collective alignment methods

FlowWeb [62] 0.43 0.33 0.53 0.24 0.51 0.72 0.54 0.51 0.20 0.52 0.32 0.15 0.29 0.45 0.19 0.41 0.39 0.73 0.41 0.51 0.68

Table 1: Weighted IoU for pairwise semantic part matching on PASCAL Parts. The proposed methods are in bold.

Source

image

Target

image
Source

mask

Target

mask
ours

Proposal

Flow [21]
DSP [32]

Source

image

Target

image
Source

mask

Target

mask
ours

Proposal

Flow [21]
DSP [32]

Figure 4: Segmentation mask transfer on PASCAL Parts for DSP+ANet (ours), Proposal Flow + HoG, and DSP + SIFT.

their use of HoG: every object proposal serves as a pool-

ing region for the set of filter activations that are extracted

once for every image. The pooling is performed by reading-

off the filter activations inside the region and resizing them

to 8 × 8 using bilinear interpolation. This tensor is then

vectorized and ℓ2 normalized to form the final descriptor of

the proposal region. We use the variant of PF that extracts

1000 selective search boxes [54] per image. The rest of the

matching procedure is identical to the original PF algorithm.

We compare both the class-agnostic (ANet) and class-

specific (ANet-class) variants of our anchor filters. The

class-agnostic variant uses the 256 dimensional features

produced by the autoencoder filters FS , whereas ANet-

class uses the output of the class-specific filters FCi cor-

responding to a given PASCAL VOC object category Ci.

Thus, ANet-class assumes knowledge of the object class la-

bel while ANet is universally applicable without requiring

additional image-specific information. As baseline descrip-

tors we consider SIFT, HoG and HC descriptors formed by

concatenating the PCA projected layers of ResNet50 (res2c,

res4c and res5c - section 3.1). We also report the NoFlow

baseline that predicts zero-displacement for every pixel.

While we focus on pairwise matching, an alternative

is to align many images together, known as co-alignment.

Among various co-alignment methods, including [26, 45,

31], FlowWeb [62] is currently the state of the art. Due to its

superior performance, we only report results for FlowWeb;

however, while FlowWeb works very well, it is important to

note that it is also substantially more expensive than pair-

wise matching, does not scale well and cannot accommo-

date for new image pairs.

Evaluation of segmentation masks transfer. We compare

the various methods on the task of transferring semantic part

segmentation masks, strictly following the protocol of [62].

Dense semantic matches, as determined by DSP or PF given

a descriptor, are used to warp the part segmentation mask

from a source to a target image. The matching quality is

assessed as the average weighted intersection-over-union

(IoU) between the predicted masks and the ground-truth

ones for different semantic parts. The results are reported

in Table 1, qualitative results are provided in Figure 4.

We make the following observations. First, the

ResNet50 features, perform at most marginally better, than

SIFT or HoG, while both ANet and ANet-class features im-

prove performance for both DSP (+6% IoU) and PF (+1%
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mean aero bike boat bottle bus car chair mbike sofa table train tv

Pairwise alignment methods

DSP + ANet-class 0.24 0.23 0.28 0.06 0.38 0.44 0.39 0.14 0.19 0.16 0.11 0.13 0.41

DSP + ANet 0.23 0.22 0.25 0.06 0.35 0.42 0.34 0.14 0.17 0.17 0.13 0.14 0.40

DSP + HC 0.20 0.20 0.23 0.05 0.39 0.36 0.25 0.10 0.15 0.12 0.10 0.12 0.28

DSP + SIFT [32] 0.18 0.17 0.30 0.05 0.19 0.33 0.34 0.09 0.17 0.12 0.09 0.12 0.18

Proposal Flow + ANet-class 0.17 0.17 0.21 0.05 0.25 0.26 0.27 0.10 0.14 0.12 0.07 0.10 0.24

Proposal Flow + ANet 0.16 0.16 0.19 0.05 0.22 0.26 0.25 0.10 0.12 0.11 0.05 0.12 0.23

Proposal Flow + HC 0.16 0.17 0.21 0.05 0.23 0.27 0.24 0.09 0.13 0.12 0.05 0.11 0.20

Proposal Flow + HoG [21] 0.17 0.20 0.26 0.05 0.20 0.31 0.29 0.10 0.17 0.13 0.05 0.13 0.21

Baseline: NoFlow 0.17 0.18 0.17 0.05 0.39 0.31 0.17 0.09 0.12 0.11 0.07 0.11 0.24

Collective alignment methods

FlowWeb [62] 0.26 0.29 0.41 0.05 0.34 0.54 0.50 0.14 0.21 0.16 0.04 0.15 0.33

Table 2: PCK (α = 0.05) for semantic keypoint transfer on the 12 rigid classes of the PASCAL Parts dataset.

IoU). Second, the class-specific features ANet-class per-

form on par with the class-agnostic features ANet, demon-

strating the ability of our domain generalization approach

to compress the class-specific filters into the class-agnostic

ones. Third, our features, in combination with DSP, ex-

hibit the best average performance among all the compared

methods. Remarkably, both ANet and ANet-class outper-

form all co-alignment methods, including FlowWeb [62],

achieving state-of-the-art results on this dataset. This is an

interesting finding as the co-alignment methods exploit the

small viewpoint and appearance variations in order to im-

prove pairwise alignments.

Evaluation of keypoint matching. We also evaluate per-

formance on matching semantic keypoints. Corresponding

annotations are provided by [60] for the 12 rigid PASCAL

VOC categories. Similar to the previous section, we use

the dataset from [62], and, strictly following their evalua-

tion protocol, we assess the matching accuracy using PCK,

setting the misalignment tolerance parameter α to 0.05.

Table 2 contains the results of this experiment. Our fea-

tures improve the original DSP results by a large margin

(+6% PCK), obtaining state-of-the-art results on this dataset

among the pairwise alignment methods. Pairwise match-

ing becomes in fact competitive with the results obtained

by FlowWeb in co-alignment, although the latter use more

information. Proposal Flow is generally weaker on this task

and is not helped by the better features.

Evaluation of region matching. As a third benchmark

dataset, we use the PF dataset and corresponding protocol

as described in detail in [21]. The dataset contains 10 im-

age sets of 4 object types and the task is to establish matches

between annotated semantic regions within the image sets.

We report region matching precision using the definitions

specified in [21]. Table 3 contains the results obtained by

using the code and data made available by [21].

We evaluate our deep features in combination with the

two matching methods presented in [21]: the best perform-

ing local offset matching (LOM), and the naive appearance

matching (NAM). ANet is compared with the best per-

forming feature from [21], i.e. HoG [23]. We observe that

AuCs for PCR

Matching

Feature
ANet-class ANet HOG [21]

NAM: baseline 0.41 0.36 0.29

LOM: Proposal Flow 0.46 0.43 0.43

Table 3: Region matching on the PF dataset.

Matching Alg. DSP Proposal Flow NoFlow

Feature ANet HC SIFT ANet HC HoG -

PCK (α = 0.05) 0.11 0.08 0.06 0.13 0.09 0.06 0.04

PCK (α = 0.1) 0.24 0.18 0.12 0.32 0.25 0.18 0.12

Table 5: Semantic matching on the AnimalParts dataset.

For each method, we report the average PCK over all pos-

sible 12x12 domain pairs. An overview of individual cross-

category results can be found in Figure 5
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Figure 5: Per-domain semantic matching on the Animal-

Parts dataset. Cells are colored proportionally to the match-

ing performance on a given animal class pair. Columns de-

note the source domains, rows the targets.

using ANet-class features in combination with both match-

ing methods (LOM, NAM) brings a significant performance

improvement. Note in particular that ANet-class is suffi-

ciently powerful to make the NAM baseline, which does

not use any sophisticated geometric reasoning, competitive

with the LOM+HoG, which uses geometric reasoning but

handcrafted features (LOM+ANet-class is even better).

4.2. Generalization across categories

The previous section experimented on the task of align-

ing different object instances of the same category. Here,

we depart from this scenario and consider instead cross-
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