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Abstract. Object detection and instance segmentation are dominated
by region-based methods such as Mask RCNN. However, there is a grow-
ing interest in reducing these problems to pixel labeling tasks, as the
latter could be more efficient, could be integrated seamlessly in image-
to-image network architectures as used in many other tasks, and could
be more accurate for objects that are not well approximated by bounding
boxes. In this paper we show theoretically and empirically that construct-
ing dense pixel embeddings that can separate object instances cannot be
easily achieved using convolutional operators. At the same time, we show
that simple modifications, which we call semi-convolutional, have a much
better chance of succeeding at this task. We use the latter to show a con-
nection to Hough voting as well as to a variant of the bilateral kernel
that is spatially steered by a convolutional network. We demonstrate that
these operators can also be used to improve approaches such as Mask
RCNN, demonstrating better segmentation of complex biological shapes
and PASCAL VOC categories than achievable by Mask RCNN alone.

Keywords: Instance embedding, object detection, instance segmenta-
tion, coloring, semi-convolutional

1 Introduction

State-of-the-art methods for detecting objects in images, such as R-CNN [19,18,46],
YOLO [44], and SSD [38], can be seen as variants of the same paradigm: a cer-
tain number of candidate image regions are proposed, either dynamically or from
a fixed pool, and then a convolutional neural network (CNN) is used to decide
which of these regions tightly enclose an instance of the object of interest. An
important advantage of this strategy, which we call propose & verify (P&V), is
that it works particularly well with standard CNNs. However, P&V also has sev-
eral significant shortcomings, starting from the fact that rectangular proposals
can only approximate the actual shape of objects; segmenting objects, in par-
ticular, requires a two-step approach where, as in Mask R-CNN [23], one first
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Fig. 1. Approaches for instance segmentation based on dense coloring via convolu-
tional pixel embeddings cannot easily distinguishing identical copies of an object. In
this paper, we propose a novel semi-convolutional embedding that is better suited for
instance segmentation.

detects object instances using simple shapes such as rectangles, and only then
refines the detections to pixel-accurate segmentations.

An alternative to P&V that can overcome such limitations is to label directly
individual pixels with an identifier of the corresponding object occurrence. This
approach, which we call instance coloring (IC), can efficiently represent any
number of objects of arbitrary shape by predicting a single label map. Thus
IC is in principle much more efficient than P&V. Another appeal of IC is that
it can be formulated as an image-to-image regression problem, similar to other
image understanding tasks such as denoising, depth and normal estimation, and
semantic segmentation. Thus this strategy may allow to more easily build unified
architectures such as [27,25] that can solve instance segmentations together with
other problems.

Despite the theoretical benefits of IC, however, P&V methods currently dom-
inate in terms of overall accuracy. The goal of this paper is to explore some of
the reasons for this gap and to suggest workarounds. Part of the problem may
be in the nature of the dense labels. The most obvious way of coloring objects is
to number them and “paint” them with their corresponding number. However,
the latter is a global operation as it requires to be aware of all the objects in
the image. CNNs, which are local and translation invariant, may therefore be
ill-suited for direct enumeration. Several authors have thus explored alternative
coloring schemes more suitable for convolutional networks. A popular approach
is to assign an arbitrary color (often in the guise of a real vector) to each ob-
ject occurrence, with the only requirement that different colors should be used
for different objects [15,6,28]. The resulting color affinities can then be used to
easily enumerate object a posteriori via a non-convolutional algorithm.

In this paper, we argue that even the latter technique is insufficient to make
IC amenable to computation by CNNs. The reason is that, since CNNs are
translation invariant, they must still assign the same color to identical copies
of an object, making replicas indistinguishable by convolutional coloring. This
argument, which is developed rigorously in sec. 3.6, holds in the limit since in
practice the receptive field size of most CNNs is nearly as large as the whole
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image; however, it suggests that the convolutional structure of the network is at
least an unnatural fit for IC.

In order to overcome this issue, we suggest that an architecture used for IC
should not be translation invariant; while this may appear to be a significant
departure from convolutional networks, we also show that a small modifica-
tion of standard CNNs can overcome the problem. We do so by defining semi-
convolutional operators which mix information extracted from a standard con-
volutional network with information about the global location of a pixel (sec. 3.1
and fig. 1). We train the latter (sec. 3.2) so that the response of the operator is
about the same for all pixels that belong to the same object instance, making
this embedding naturally suited for IC. We show that, if the mixing function is
additive, then the resulting operator bears some resemblance to Hough voting
and related detection approaches. After extending the embedding to incorpo-
rate standard convolutional responses that capture appearance cues (sec. 3.3),
we use it to induce pixel affinities and show how the latter can be interpreted
as a steered version of a bilateral kernel (sec. 3.4). Finally, we show how such
affinities can also be integrated in methods such as Mask RCNN (sec. 3.5).

We assess our method with several experiments. We start by investigating the
limit properties of our approach on simple synthetic data. Then, we show that our
semi-convolutional feature extractor can be successfully combined with state-of-
the-art approaches to tackle parsing of biological images containing overlapping
and articulated organisms (sec. 4.2). Finally, we apply the latter to a standard
instance segmentation benchmark PASCAL VOC (sec. 4.3). We show in all such
cases that the use of semi-convolutional features can improve the performance
of state-of-the-art instance segmentation methods such as Mask RCNN.

2 Related work

The past years have seen large improvements in object detection, thanks to pow-
erful baselines such as Faster-RCNN [46], SSD [38] or other similar approaches
[11,44,34], all from the propose & verify strategy.

Following the success of object detection and semantic segmentation, the
challenging task of instance-level segmentation has received increasing attention.
Several very different families of approaches have been proposed.

Proposal-based instance segmentation. While earlier methods relied on
bottom-up segmentations [18,9], the vast majority of recent instance-level ap-
proaches combine segment proposals together with powerful object classifiers.
In general, they implement a multi-stage pipeline that first generates region
proposals or class agnostic boxes, and then classifies them [29,20,7,42,10,43,32].
For instance DeepMask [42] and follow-up approaches [43,8] learn to propose
segment candidates that are then classified. The MNC approach [10], based on
Faster-RCNN [46], repeats this process twice [10] while [32] does it multiple
times. [22] extends [10] to model the shape of objects. The fully convolutional
instance segmentation method of [31] also combines segmentation proposal and
object detection using a position sensitive score map.
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Some methods start with semantic segmentation first, and then cut the re-
gions obtained for each category into multiple instances [26,4,37], possibly in-
volving higher-order CRFs [3].

Among the most successful methods to date, Mask-RCNN [23] extends Faster
R-CNN [46] with a small fully convolutional network branch [40] producing seg-
mentation masks for each region of interest predicted by the detection branch.
Despite its outstanding results, Mask-RCNN does not come without shortcom-
ings: it relies on a small and predefined set of region proposals and non-maximum
suppression, making it less robust to strong occlusions, crowded scenes, or objects
with fundamentally non-rectangular shapes (see detailed discussion in sec. 3.6).

Instance-sensitive embeddings. Some works have explored the use of pixel-
level embeddings in the context of clustering tasks, employing them as a soft,
differentiable proxy for cluster assignments [53,21,15,12,41,28]. This is reminis-
cent of unsupervised image segmentation approaches [48,16]. It has been used
for body joints [41], semantic segmentation [1,21,6] and optical flow [1], and,
more relevant to our work, to instance segmentation [15,12,6,28].

The goal of this type of approaches is to bring points that belong to the same
instance close to each other in an embedding space, so that the decision for two
pixels to belong to the same instance can be directly measured by a simple
distance function. Such an embedding requires a high degree of invariance to the
interior appearance of objects.

Among the most recent methods, [15] combines the embedding with a greedy
mechanism to select seed pixels, that are used as starting points to construct
instance segments. [6] connects embeddings, low rank matrices and densely con-
nected random fields. [28] embeds the pixels and then groups them into instances
with a variant of mean-shift that is implemented as a recurrent neural network.
All these approaches are based on convolutions, that are local and translation
invariant by construction, and consequently are inherently ill-suited to distin-
guish several identical instances of the same object (see more details about the
convolutional coloring dilemma in sec. 3.6). A recent work [25] employs position
sensitive convolutional embeddings that regress the location of the centroid of
each pixel’s instance. We mainly differ by allowing embeddings to regress an
unconstrained representative point of each instance.

Among other approaches using a clustering component, [49] leverages a cov-
erage loss and [55,50,51] make use of depth information. In particular, [51] trains
a network to predict each pixel direction towards its instance center along with
monocular depth and semantic labeling. Then template matching and proposal
fusion techniques are applied.

Other instance segmentation approaches. Several methods [42,43,33,24]
move away from box proposals and use Faster-RCNN [46] to produce “center-
ness” scores on each pixel instead. They directly predict the mask of each object
in a second stage. An issue with such approaches is that objects do not neces-
sarily fit in the receptive fields.

Recurrent approaches sequentially generate a list of individual segments. For
instance, [2] uses an LSTM for detection with a permutation invariant loss while
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[47] uses an LSTM to produce binary segmentation masks for each instance.
[45] extends [47] by refining segmentations in each window using a box network.
These approaches are slow and do not scale to large and crowded images.

Some approaches use watershed algorithms. [4] predicts pixel-level energy
values and then partition the image with a watershed algorithm. [26] combines
a watershed algorithm with an instance aware boundary map. Such methods
create disconnected regions, especially in the presence of occlusion.

3 Method

3.1 Semi-convolutional networks for instance coloring

Let x ∈ X = RH×W×3 be an image and u ∈ Ω = {1, . . . ,H} × {1, . . . ,W} a
pixel. In instance segmentation, the goal is to map the image to a collection
Sx = {S1, . . . , SKx} ⊂ 2Ω of image regions, each representing an occurrence of
an object of interest. The symbol S0 = Ω − ∪kSk will denote the complemen-
tary region, representing background. The regions as well as their number are a
function of the image and the goal is to predict both.

In this paper, we are interested in methods that reduce instance segmentation
to a pixel-labeling problem. Namely, we seek to learn a function Φ : X → LΩ
that associates to each pixel u a certain label Φu(x) ∈ L so that, as a whole,
labels encode the segmentation Sx. Intuitively, this can be done by painting
different regions with different “colors” (aka pixel labels) making objects easy
to recover in post-processing. We call this process instance coloring (IC).

A popular IC approach is to use real vectors L = Rd as colors, and then re-
quire that the colors of different regions are sufficiently well separated. Formally,
there should be a margin M > 0 such that:

∀u, v ∈ Ω :

{
‖Φu(x)− Φv(x)‖ ≤ 1−M, ∃k : u, v ∈ Sk,
‖Φu(x)− Φv(x)‖ ≥ 1 +M, otherwise.

(1)

If this is the case, clustering colors trivially reconstructs the regions.
Unfortunately, it is difficult for a convolutional operator Φ to satisfy con-

straint (1) or analogous ones. While this is demonstrated formally in sec. 3.6, for
now an intuition suffices: if the image contains replicas of the same object, then
a convolutional network, which is translation invariant, must assign the same
color to each copy.

If convolutional operators are inappropriate, then, we must abandon them in
favor of non-convolutional ones. While this sounds complex, we suggest that very
simple modifications of convolutional operators, which we call semi-convolutional,
may suffice. In particular, if Φu(x) is the output of a convolutional operator at
pixel u, then we can construct a non-convolutional response by mixing it with
information about the pixel location. Mathematically, we can define a semi-
convolutional operator as:

Ψu(x) = f(Φu(x), u) (2)
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where f : L×Ω → L′ is a suitable mixing function. As our main example of such
an operator, we consider a particularly simple type of mixing function, namely
addition. With it, eq. (2) specializes to:

Ψu(x) = Φu(x) + u, Φu(x) ∈ L = R2. (3)

While this choice is restrictive, it has the benefit of having a very simple inter-
pretation. Suppose in fact that the resulting embedding can perfectly separate
instances, in the sense that Ψu(x) = Ψv(x) ⇔ ∃k : (u, v) ∈ Sk. Then for all the
pixels of the region Sk we can write in particular:

∀u ∈ Sk : Φu(x) + u = ck (4)

where ck ∈ R2 is an instance-specific point. In other words, we see that the effect
of learning this semi-convolutional embedding for instance segmentation is to
predict a displacement field Φ(x) that maps all pixels of an object instance to
an instance-specific centroid ck. An illustration of the displacement field can be
found fig. 2.

Relation to Hough voting and implicit shape models. Eq. (3) and (4)
are reminiscent of well known detection methods in computer vision: Hough
voting [13,5] and implicit shape model (ISM) [30]. Recall that both of these
methods map image patches to votes for the parameters θ of possible object
occurrences. In simple cases, θ ∈ R2 can be the centroid of an object, and
casting votes may have a form similar to eq. (4).

This establishes, a clear link between voting-based methods for object detec-
tion and coloring methods for instance segmentation. At the same time, there
are significant differences. First, the goal here is to group pixels, not to recon-
struct the parameters of an object instance (such as its centroid and scale).
Eq. (3) may have this interpretation, but the more general version eq. (2) does
not. Second, in methods such as Hough or ISM the centroid is defined a-priori
as the actual center of the object; here the centroid ck has no explicit meaning,
but is automatically inferred as a useful but arbitrary reference point. Third,
in traditional voting schemes voting integrates local information extracted from
individual patches; here the receptive field size of Φu(x) may be enough to com-
prise the whole object, or more. The goal of eq. (2) and (3) is not to pool local
information, but to solve a representational issue.

3.2 Learning additive semi-convolutional features

Learning the semi-convolutional features of eq. (2) can be formulated in many
different ways. Here we adopt a simple direct formulation inspired by [12] and
build a loss by considering, for each image x and instance S ∈ S in its seg-
mentation, the distance between the embedding of each pixel u ∈ S and the
segment-wise mean of these embeddings:

L(Ψ |x,S) =
∑
S∈S

1

|S|
∑
u∈S

∥∥∥∥∥Ψu(x)− 1

|S|
∑
u∈S

Ψu(x)

∥∥∥∥∥ . (5)
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Fig. 2. Semi-convolutional embedding. The first two dimensions of the embedding
Φu(x) are visualized as arrows starting from the corresponding pixel location u. Arrows
from the same instance tend to point towards a instance-specific location ck.

Note that while this quantity resembles the variance of the embedding values
for each segment, it is not as the distance is not squared; this was found to be
more robust.

Note also that this loss is simpler than the margin condition (1) and than
the losses proposed in [12], which resemble (1) more closely. In particular, this
loss only includes an “attractive” force which encourages embeddings for each
segment to be all equal to a certain mean value, but does not explicitly encourage
different segments to be assigned different embedding values. While this can be
done too, empirically we found that minimizing eq. (5) is sufficient to learn good
additive semi-convolutional embeddings.

3.3 Coloring instances using individuals’ traits

In practice, very rarely an image contains exact replicas of a certain object.
Instead, it is more typical for different occurrences to have some distinctive
individual traits. For example, different people are generally dressed in different
ways, including wearing different colors. In instance segmentation, one can use
such cues to tell right away an instance from another. Furthermore, these cues
can be extracted by conventional convolutional operators.

In order to incorporate such cues in our additive semi-convolutional formu-
lation, we still consider the expression Ψu(x) = û + Φu(x). However, we relax
Φu(x) ∈ Rd to have more than two dimensions d > 2. Furthermore, we define û
as the pixel coordinates of u, ux and uy, extended by zero padding:

û =
[
ux uy 0 . . . 0

]> ∈ Rd. (6)

In this manner, the last d−2 dimensions of the embedding work as conventional
convolutional features and can extract instance-specific traits normally.
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3.4 Steered bilateral kernels

The pixel embedding vectors Ψu(x) must ultimately be decoded as a set of
image regions. Again, there are several possible strategies, starting from simple
K-means clustering, that can be used to do so. In this section, we consider
transforming embeddings in an affinity matrix between two pixels, as the latter
can be used in numerous algorithms.

In order to define the affinity between pixels u, v ∈ Ω, consider first the
Gaussian kernel

K(u, v) = exp

(
−‖Ψu(x)− Ψv(x)‖2

2

)
. (7)

If the augmented embedding eq. (6) is used in the definition of Ψu(x) = û+Φu(x),
we can split Φu(x) into a geometric part Φgu(x) ∈ R2 and an appearance part
Φau(x) ∈ Rd−2 and expand this kernel as follows:

K(u, v) = exp

(
−‖(u+ Φgu(x))− (v + Φgv(x))‖2

2

)
exp

(
−‖Φ

a
u(x)− Φav(x)‖2

2

)
.

(8)
It is interesting to compare this definition to the one of the bilateral kernel :3

Kbil(u, v) = exp

(
−‖u− v‖

2

2

)
exp

(
−‖Φ

a
u(x)− Φav(x)‖2

2

)
. (9)

The bilateral kernel is very popular in many applications, including image fil-
tering and mean shift clustering. The idea of the bilateral kernel is to consider
pixels to be similar if they are close in both space and appearance. Here we have
shown that kernel (8) and hence kernel (7) can be interpreted as a generalization
of this kernel where spatial locations are steered (distorted) by the network to
move pixels that belong to the same underlying object instance closer together.

In a practical implementation of these kernels, vectors should be rescaled
before being compared, for example in order to balance spatial and appearance
components. In our case, since embeddings are trained end-to-end, the network
can learn to perform this balancing automatically, but for the fact that (4)
implicitly defines the scaling of the spatial component of the kernel. Hence, we
modify eq. (7) in two ways: by introducing a learnable scalar parameter σ and
by considering a Laplacian rather than a Gaussian kernel:

Kσ(u, v) = exp

(
−‖Ψu(x)− Ψv(x)‖

σ

)
. (10)

This kernel is more robust to outliers (as it uses the Euclidean distance rather
than its square) and is still positive definite [17]. In the next section we show an
example of how this kernel can be used to perform instance coloring.

3 In the bilateral kernel, a common choice is to set Φau(x) = xu ∈ R3 as the RGB
triplet for the appearance features.
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3.5 Semi-convolutional Mask-RCNN

The semi-convolutional framework we proposed in sec. 3.1 is very generic and
can be combined with many existing approaches. Here, we describe how it can
be combined with the Mask-RCNN (MRCNN) framework [23], the current state-
of-the-art in instance segmentation.

MRCNN is based on the RCNN propose & verify strategy and first produces
a set of rectangular regions R, where each rectangle R ∈ R tightly encloses an
instance candidate. Then a fully convolutional network (FCN) produces fore-
ground/background segmentation inside each region candidate. In practice, it
labels every pixel ui in R with a foreground score logit s(ui) ∈ R. However,
this is not an optimal strategy for articulated objects or occluded scenes (as
validated in sec. 4.2), as it is difficult for a standard FCN to perform individual
foreground/background predictions. Hence we leverage our pixel-level transla-
tion sensitive embeddings in order to improve the quality of the predictions
s(ui).

Extending MRCNN. Our approach is based on two intuitions: first, some
points are easier to be recognized as foreground than others, and, second, once
one such seed point has been determined, its affinity with other pixels can be
used to cut out the foreground region.

In practice, we first identify a seed pixel us in each region R using the MR-
CNN foreground confidence score map s = [s(u1), . . . , s(u|R|)]. We select the
most confident seed point as us = argmax1≤i≤|R| s(ui), evaluate the steered bi-
lateral kernel Kσ(us, u) after extracting the embeddings Ψus for the seed and
Ψui

of each pixel ui in the region, and then defining updated scores ŝ(ui) as
ŝ(ui) = s(ui) + logKσ(us, ui). The combination of the scores and the kernel is
performed in the log-space due to improved numerical stability. The final per-
pixel foreground probabilities are obtained as in [23] with sigmoid(ŝ(ui)).

The entire architecture —the region selection mechanism, the foreground
prediction, and the pixel-level embedding —is trained end-to-end. For differ-
entiability, this requires the following modifications: we replace the maximum
operator with a soft maximum over the scores ps = softmax(s) and we ob-
tain the seed embedding Ψus

as the expectation over the embeddings Ψu under
the probability density ps. The network optimizer minimizes, together with the
MRCNN losses, the image-level embedding loss L(Ψ |x,S) and further attaches a
secondary binary cross entropy loss that, similar to the MRCNN mask predictor,
minimizes binary cross entropy between the kernel output Kσ(us, ui) and the
ground truth instance masks.

The predictors of our semi-convolutional features Ψu were implemented as
an output of a shallow subnetwork, shared between all the FPN layers. This
subnet consists of a 256-channel 1×1 convolutional filter followed by ReLU and
a final 3×3 convolutional filter producing D = 8 dimensional embedding Ψu.
Due to an excessive sensitivity of the RPN component to perturbations of the
underlying FPN representation, we downscale the gradients that are generated
by the shallow subnetwork and received by the shared FPN tensors by a factor
of 10.
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3.6 The convolutional coloring dilemma

In this section, we prove some properties of convolutional operators in relation
to solving instance segmentation problems. In order to do this, we need to start
by formalizing the problem.

We consider signals (images) of the type x : Ω → R, where the domain Ω is
either Zm or Rm.4 In segmentation, we are given a family x ∈ X of such signals,
each of which is associated to a certain partition Sx = {S1, . . . , SKx} of the
domain Ω. The goal is to construct a segmentation algorithm A : x 7→ Sx that
computes this function. We look in particular at algorithms that pre-process
the signal by assigning a label Φu(x) ∈ L to each point u ∈ Ω of the domain.
Furthermore, we assume that this labeling operator Φ is local and translation
invariant5 so as to be implementable with a convolutional neural network.

There are two families of algorithms that can be used to segment signals in
this manner, discussed next.

Propose & verify. The first family of algorithms submits all possible regions
Sr ⊂ Ω, indexed for convenience by a variable r, to a labeling function Φr(x) ∈
{0, 1} that verifies which ones belong to the segmentation Sx (i.e. Φr(x) = 1⇔
Sr ∈ Sx). Since in practice it is not possible to test all possible subsets of Ω, such
an algorithm must focus on a smaller set of proposal regions. A typical choice
is to consider all translated squares (or rectangles) Su = [−H,H]m + u. Since
the index variable u ∈ Ω is now a translation, the operator Φu(x) has the form
discussed above, although it is not necessarily local or translation invariant.

Instance coloring. The second family of approaches directly colors (labels)
pixels with the index of the corresponding region, i.e. Φu(x) = k ⇔ u ∈ Sk. Dif-
ferently from P&V, this can efficiently represent arbitrary shapes. However, the
map Φ needs implicitly to decide which number to assign to each region, which is
a global operation. Several authors have sought to make this more amenable to
convolutional networks. A popular approach [15,12] is to color pixels arbitrarily
(for example using vector embeddings) so that similar colors are assigned to pix-
els in the same region and different colors are used between regions, as already
detailed in eq. (1).

S−2 S−1 S0 S1 S2

u

Convolutional coloring dilemma. Here
we show that, even with the variants dis-
cussed above, IC cannot be approached
with convolutional operators even for
cases where these would work with P&V.

We do so by considering a simple 1D example. Let x be a signal of period 2
(i.e. xu+2 = xu) where for u ∈ [−1, 1] the signal is given by xu = min(1−u, 1+u).

4 We assume that the domain extends to infinity to avoid having to deal explicitly
with boundary conditions.

5 We say that Φ is translation invariant if Φu(x(· − τ)) = Φu−τ (x) for all translations
τ ∈ Ω. We say that it is also local if there exists a constant M > 0 such that xu = xu′

for all |u− u′| < M implies that Φu(x) = Φ′u(x).
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(a) Training image (b) GT instance
labels

(c) Convolutional
embedding

(d) Semi-conv.
embedding (ours)

Fig. 3. Experiment on synthetic data. An instance segmentation pixel embedding
is trained for a synthetic training image consisting of a regular dot pattern (a). After
training a model on that image, the produced embeddings are clustered using k-means,
encoding the corresponding cluster assignments with consistent pixel colors. A stan-
dard convolutional embedding (c) cannot successfully embed each dot into a unique
location due to its translational invariance. Our proposed semi-convolutional operator
(d) naturally embeds dots with identical appearance but distinct location into distinct
regions in the feature space and hence allows for successful clustering of the instances.

Suppose that the segmentation associated to x is S = {[−1, 1] + 2k, k ∈ Z}. If
we assume that a necessary condition for a coloring-based algorithm is that at
least some of the regions are assigned different colors, we see that this cannot
be achieved by a convolutional operator. In fact, due to the periodicity of x,
any translation invariant function will assign exactly the same color to pixels
2k, k ∈ Z. Thus all regions have at least one point with the same color.

On the other hand, this problem can be solved by P&V using the proposal set
{[−1, 1] + u, u ∈ Ω} and the local and translation invariant verification function
Φu(x) = [xu = 1], which detects the center of each region.

The latter is an extreme example of a convolutional coloring dilemma: namely,
a local and translation invariant operator will naturally assign the same color
to identical copies of an object even if when they are distinct occurrences (c.f.
interesting concurrent work that explores related convolutional dilemmas [36]).

Solving the dilemma. Solving the coloring dilemma can be achieved by using
operators that are not translation invariant. In the counterexample above, this
can be done by using the semi-convolutional function Φu(x) = u + (1 − xu)ẋu.
It is easy to show that Φu(x) = 2k colors each pixel u ∈ Sk = [−1, 1] + 2k with
twice the index of the corresponding region by moving each point u to the center
of the closest region. This works because such displacements can be computed
by looking only locally, based on the shape of the signal.

4 Experiments

We first conduct experiments on synthetic data in order to clearly demonstrate
inherent limitations of convolutional operators for the task of instance segmen-
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Fig. 4. Sample image crops (top) and corresponding ground-truth (bottom) from the
C. Elegans dataset.

Table 1. Average precision (AP) for instance segmentation on C. Elegans
reporting the standard COCO evaluation metrics [35]

AP AP AP0.5 AP0.75 APS APM
Ours 0.569 0.885 0.661 0.511 0.671
MRCNN [24] 0.559 0.865 0.641 0.502 0.650

tation. In the ensuing parts we demonstrate benefits of the semi-convolutional
operators on a challenging scenario with a high number of overlapping articu-
lated instances and finally we compare to the competition on a standard instance
segmentation benchmark.

4.1 Synthetic experiments

In sec. 3.1 and 3.6 we suggested that convolution operators are unsuitable for
instance segmentation via coloring, but that semi-convolutional ones can do.
These experiments illustrate this point by learning a deep neural network to
segment a synthetic image xS where object instances correspond to identical
dots arranged in a regular grid (fig. 3 (a)).

We use a network consisting of a pretrained ResNet50 model truncated after
the Res2c layer, followed by a set of 1×1 filters that, for each pixel u, produce
8-dimensional pixel embeddings Φu(xS) or Ψu(xS). We optimize the network
by minimizing the loss from eq. (5) with stochastic gradient descent. Then, the
embeddings corresponding to the foreground regions are extracted and clustered
with the k-means algorithm into K clusters, where K is the true number of dots
present in the synthetic image.

Fig. 3 visualizes the results. Clustering the features consisting of the posi-
tion invariant convolutional embedding Φu(xS) results in nearly random clus-
ters (fig. 3 (c)). On the contrary, the semi-convolutional embedding Ψu(xS) =
Φu(xS)+u allows to separate the different instances almost perfectly when com-
pared to the ground truth segmentation masks (fig. 3 (d)).

4.2 Parsing biological images

The second set of experiments considers the parsing of biological images. Or-
ganisms to be segmented present non-rigid pose variations, and frequently form
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Fig. 5. Instance segmentation on Pascal VOC 2012. Each pair of rows visualizes
instance segmentations produced with method, together with the corresponding semi-
convolutional embeddings

clusters of overlapping instances, making the parsing of such images challenging.
Yet, this scenario is of crucial importance for many biological studies.

Dataset and evaluation. We evaluate our approach on the C. Elegans dataset
(illustrated fig. 4), a subset of the Broad Biomedical Benchmark collection [39].
The dataset consists of 100 bright-field microscopy images. Following standard
practice [52,54], we operate on the binary segmentation of the microscopy images.
However, since there is no publicly defined evaluation protocol for this dataset,
a fair numerical comparison with previously published experiments is infeasible.
We therefore compare our method against a very strong baseline (MRCNN) and
adopt the methodology introduced by [54] in which the dataset is divided into
50 training and 50 test images. We evaluate the segmentation using average
precision (AP) computed using the standard COCO evaluation criteria [35].
We compare our method against the MRCNN FPN-101 model from [23] which
attains results on par with state of the art on the challenging COCO instance
segmentation task.

Results. The results are given in table 1. We observe that the semi-convolutional
embedding Ψu brings improvements in all considered instance segmentation met-
rics. The improvement is more significant at higher IoU thresholds which under-
lines the importance of utilizing position sensitive embedding in order to precisely
delineate an instance within an MRCNN crop.
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Table 2. Instance-level segmentation comparison using mean APr metric at
0.5 IoU on the PASCAL VOC 2012 validation set

SDS [20] PFN [33] DIN [3] MNC [10] FCIS [31] R2-IOS [32] DML [15] R. Emb. [28] BAIS [22] MRCNN [24] Ours

43.8 58.7 61.7 63.5 65.7 66.7 62.1 64.5 65.7 69.0 69.9

Table 3. Average precision (AP) for instance segmentation on PASCAL
VOC 2012 reporting the standard COCO evaluation metrics [35]

AP AP AP0.5 AP0.75 APS APM APL
Ours 0.412 0.699 0.424 0.107 0.317 0.538
MRCNN [24] 0.401 0.690 0.412 0.111 0.313 0.525

4.3 Instance segmentation

The final experiment compares our method to competition on the instance seg-
mentation task on a standard large scale dataset, PASCAL VOC 2012 [14].

As in the previous section, we base our method on the MRCNN FPN-101
model. Because we observed that the RPN component is extremely sensitive
to changes in the base architecture, we employed a multistage training strat-
egy. First, MRCNN FPN-101 model is trained until convergence and then our
embeddings are attached and fine-tuned with the rest of the network . We fol-
low [23] and learn using 24 SGD epochs, lowering the initial learning rate of
0.0025 tenfold after the first 12 epochs. Following other approaches, we train on
the training set of VOC 2012 and test on the validation set.

Results. The results are given in table 2. Our method attains state of the art on
PASCAL VOC 2012 which validates our approach. We further compare in detail
against MRCNN in table 3 using the standard COCO instance segmentation
metrics from [35]. Our method outperforms MRCNN on the considered metrics,
confirming the contribution of the proposed semi-convolutional embedding.

5 Conclusions

In this paper, we have considered dense pixel embeddings for the task of instance-
level segmentation. Departing from standard approaches that rely on translation
invariant convolutional neural networks, we have proposed semi-convolutional
operators which can be easily obtained with simple modifications of the convo-
lutional ones. On top of their theoretical advantages, we have shown empirically
that they are much more suited to distinguish several identical instances of the
same object, and are complementary to the standard Mask-RCNN approach.
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