
ON-THE-FLY SPECIFIC PERSON RETRIEVAL

Omkar M. Parkhi Andrea Vedaldi Andrew Zisserman

Department of Engineering Science, University of Oxford, United Kingdom.

{omkar,vedaldi,az}@robots.ox.ac.uk

ABSTRACT

We describe a method of visual search for finding people in

large video datasets. The novelty is that the person of interest

can be specified at run time by a text query, and a discrimi-

native classifier for that person is then learnt on-the-fly using

images downloaded from Google Image search. The perfor-

mance of the method is evaluated on a ground truth dataset

of episodes of Scrubs, and results are also shown for retrieval

on the TRECVid 2011 IACC.1.B dataset of over 8k videos.

The entire process from specifying the query to receiving the

ranked results takes only a matter of seconds.

1 Introduction

Imagine that you have a large corpus of videos, such as a TV

station archive or a large archive of internet videos like “The

Moving Image Archive”, and you need to find shots con-

taining a particular person (and the corpus, of course, lacks

complete meta-data describing who is in each video). We

describe here a system to meet this need. Our goal is to

be able to search for anyone in the corpus (based on their

face [1, 2, 3, 4]) with the novelty that we wish to achieve

this ‘on-the-fly’, in the manner of a Google search, where the

person is specified by their name and the retrieval is almost

immediate for any size of video corpus. We achieve this by

pre-processing the video corpus so that it is searchable for

any person and then, given a text query specifying the person,

learning a discriminative classifier for that person from face

images downloaded from Google image search. The classifier

is used to rank the faces in the corpus, and thereby retrieve

the person of interest. This paper extends the original method

of [4] by using face tracks on the data set side, and no manual

annotation on the downloaded faces for a query. The method

is outlined in figure 1.

In the following section we describe the off-line and on-

line steps of the web based search system in detail, explaining

in particular how the design choices and parallel architecture

enable the complete process from a text query to results to

be carried out in matter of seconds for a corpus with mil-

lions of detected faces. Section 3 then gives a quantitative

performance evaluation of the system on a dataset consisting

of episodes of television program “Scrubs” for which there is

ground truth person annotation.

ON THE FLY PERSON RETRIEVAL SYSTEM

Text Query
“Courteney Cox”

Google Image Search
“Courteney Cox”

Negative
Training Images

Fast Linear
Classifier

Ranking

Results

Video Search
Corpus

Face Tracks
Facial Features
& Descriptors

Facial Features
& Descriptors

Facial Features
& Descriptors

ON-LINE

PROCESSING

OFF-LINE

PROCESSING

Fig. 1. Block diagram of the On-The-Fly Face Search System.

The text query for “Courtney Cox” (CC) is used to obtain training

images from Google Image search. A feature vector is computed

from each of these faces (with the option of manual supervision to

reject faces that are not CC), and a linear Support Vector Machine

(SVM) classifier is trained using these as positives together with a

reservoir of negative feature vectors. The video data has been pre-

processing into face tracks, and the tracks are then ranked by the

classifier to obtain the shots in which CC appears. In this example

the corpus is of episodes of the TV comedy ‘Scrubs’ in which CC

appeared for a time. The entire process from typing the query to

obtaining the ranked shots takes a matter of seconds.

2 Off-line and On-line Processing

In order to achieve the on-the-fly person-specific training and

retrieval it is necessary to carry out much of the processing in

advance of a query. We describe the off-line steps next, fol-

lowed by the processing that occurs at run time once a query

is typed into the search window.

2.1 Off-line Processing

The off-line part of the system, pre-computes non query spe-

cific features in order for the run-time query specific opera-

tions to be fast. Non query specific processing includes com-

puting feature vectors for the entire video corpus as well as

feature vectors for a set of negative training samples.

The entire video collection is processed in three steps. In

the first step, faces are detected in every frame of every video

and linked together to form face tracks. In the second step,

false tracks are removed and an exemplar faces detection se-

lected to represent each face track. In the final step feature

vectors are computed for the exemplar face of each track to

be used for ranking by the SVM classifier.

Face tracks. A face track is a temporal connection of de-

tected faces of a single person. Face tracks are automatically

generated using the method described in [5]: near-frontal faces

are detected in every frame using the OpenCV Viola-Jones

detector [6]. The detector is configured to return high con-

fidence face detections of size greater than 40 × 40 pixels.

These faces are then associated temporally through the video

using a RBF kernel-based regressor tracker.

The important issue here is that the granularity of repre-

senting people in the video is reduced from a face per frame

to a track. Since a face track can link tens or hundreds of

face detections this is a substantial data reduction. Table 1

gives statistics for the datasets used in the experiments. Note

that the number of tracks is a hundred times less than that

of the detections. Also, since a track is a temporal connec-

tion of faces of the same person, it provides a quick way of

transferring a classification label to detections in a video. Ad-

ditionally, tracking provides robustness against false face de-

tections.

Facial feature localization. Nine facial features are then

detected and localized on every face detection using the method

of [7]. These features are left and right corners of each eye,

two nostrils and tip of nose, and left and right corners of

mouth. Additional features corresponding to centres of the

eyes, a point between eyes, and the centre of mouth, are com-

puted from the detected features giving in total 13 different

facial feature locations. These facial features are detected us-

ing a pictorial structure model [8] consisting of a mixture of

Gaussian trees for the layout with discriminative feature ap-

pearances. Facial features can be located with high reliability

in the faces detected by the face detector despite variation in

pose, lighting, and facial expression.

The output of these modules is a consistent linking of

faces detections and corresponding feature locations.

Cleaning and representing tracks. Due to erroneous face

detections there will be a number of false face-tracks gener-

ated. A significant proportion of these can be removed sim-

ply based on their length. Face tracks are also filtered out

based on the score of the facial feature detector. The remain-

ing tracks are then each represented by combining temporally

sampled detections from the track with selecting the ‘best’ de-

tection based on the facial feature detector score. This score is

a measure of confidence of facial feature locations and proves

to be useful for selecting suitable candidates.

Representing face appearance. A representation of the face

appearance is extracted by computing descriptors for each of

the located facial features. Extracting descriptors based on

the location of the facial features [2, 9] gives robustness to

pose variation, lighting, and partial occlusion. Before extract-

Dataset Videos Hours Faces Shots Tracks

Scrubs 12 5 303,251 4,955 5,743

TRECVid 2011(IACC.1.B) 8,216 226 2,911,805 137,152 25,535

Table 1. Dataset statistics.

ing the descriptors, the image is converted to grayscale and

faces are normalized and affine transformed to a canonical

size (80 × 80) and layout of the feature locations. This is

done to reduce the scale uncertainty in detector output and to

reduce the effects of pose variations. A facial feature descrip-

tor is computed from the gradients of the pixels in a circular

region of radius 7 pixels around each facial feature point, and

normalizing them to have zero mean and unit variance. A

3, 849 dimensional descriptor for every face is then formed

by concatenating the descriptors for each facial feature.

Processing negative training data. Negative training face

images are pre downloaded from the Internet and are kept the

same for all queries. We use a publicly available face dataset

as the negative training set (the details are given in section 3).

The assumption is that the negative data will not contain a sig-

nificant number of faces from the particular person we wish

to search for. The face detector, facial feature detector and ap-

pearance representation pipeline described above is applied to

each of the negative images to produce a feature vector.

2.2 On-line Processing

This part performs all query specific tasks which include: query-

ing and downloading images from the Internet; computing

feature vectors from the downloaded images to provide posi-

tive training samples; training the classifier; and ranking and

displaying the results.

Selecting positive training images. When a user enters a

text query, the query is transferred to Google Image Search,

and the top results are downloaded using a parallel download-

ing module. This module is a python web service and queries

the user string to Google Image Search service. Google Im-

age Search provides an advance search facility to restrict the

search to only face images. We use this feature to inhibit any

non face images from being downloaded. Figure 2 shows

examples of images downloaded for the query “Courteney

Cox”.

The face detector, facial feature detector and appearance

representation pipeline is then applied to each of the down-

loaded images to obtain a feature vector for every detected

face. As expected, some non-faces are detected and some

faces will not be of the query person (e.g. if there is more

than one person in the downloaded image). There are then

two possibilities: either these problems can be ignored and

all feature vectors are used to provide the positive training

samples for the classifier; or a user can manually select which

faces to use. We evaluate both possibilities over a number of

examples in section 3. In the case of manual supervision, a

simple web-interface is provided using a web service imple-

mented with a combination of Python, HTML and JavaScript.

Dataset/Actor Brendan Fraser Courteney Cox Michel Fox

1 Training – Scrubs Episode (Pos/Neg) 59/409 99/464 101/445

2 Testing – Scrubs Data (Pos/Neg) 80/3718 45/3753 38/3760

3 Training – Google (Pos) 45 54 34

4 Training – Caltech Faces (Neg) 4559

Table 2. Training and testing data statistics.1: Number of posi-

tive and negative tracks in the episode used for training the model for

a particular actor. 2: number of positive and negative tracks present

for the actor in the test episodes. 3: Number of training samples

obtained from Google Image search for the actor. 4: Number of

negative training samples from the Caltech Face dataset [11].

This interface allows the user to quickly indicate negative ex-

amples simply by clicking on them (the default is that every-

thing is positive).

Training the classifier and ranking. We use a linear SVM

as the classification method. A linear SVM is used because

it is both fast to train and fast to test (since testing only in-

volves a scalar product between the learnt weight vector and

the feature vector, i.e. no sum over many support vectors as

in the non-linear SVM case). The training data consists of the

feature vectors computed on the downloaded images for the

query as positives, together with the pre-computed negative

data (as described in the off-line processing of section 2.1

above). The classifier is trained using the software pack-

age LibLinear [10] which is optimized for linear classifiers

and has complexity linear in the number of training samples.

Parameters of the classifier (such as the C value) are opti-

mized using cross-validation off-line and are kept fixed for all

searches.

The trained classifier is then used to rank the representa-

tive image of each track in the video corpus. An example of

the top ranked results trained for Courteney Cox can be seen

in figure 2.

3 Datasets and Performance Evaluation

Datasets. Performance is quantitatively evaluated by creat-

ing a ground truth dataset for the television comedy series

“Scrubs”. The dataset consists of 12 episodes from differ-

ent seasons of the series. Each episode is about 20-25 min-

utes in length. We have annotated tracks (as positive or nega-

tive) for a number of guest actors: Brendan Fraser, Courteney

Cox, and Michel J. Fox.; and use these actors to assess per-

formance. It is important to note that by choosing to use guest

actors, we increase the difficulty level of the problem as these

actors do not appear frequently in the collection compared to a

principal cast member. The dataset is split into three episodes

for training and nine episodes for testing. Each of the guest

actors appears two different videos in the dataset, one them

is used for the training and the other one is used for testing

purposes. Statistics of the training and test sets are given in

table 2.

The negative training data is obtained from images taken

from the publicly available Caltech 10,000 Web Faces Dataset

[11]. Face detection on this data results in 4559 faces (there

Training Data Average Precision

Brendan Fraser Courteney Cox Michel J. Fox

Positives Negatives E1 E2 E1 E2 E1 E2

1 Scrubs Scrubs 0.56 0.60 0.88 0.88 0.49 0.53

2 Scrubs Caltech 0.25 0.24 0.62 0.72 0.52 0.56

3 Scrubs Scrubs+Caltech 0.44 0.55 0.83 0.93 0.58 0.70

4 Google Scrubs 0.40 0.42 0.48 0.47 0.38 0.34

5 Google Caltech 0.41 0.41 0.56 0.56 0.57 0.57

6 Google Scrubs+Caltech 0.41 0.42 0.57 0.59 0.56 0.54

7 Chance 0.02 0.01 0.01

Table 3. Classifier Performance. Average Precision values for

various combinations of the training data. E1: uses a single sample

per track in training and testing. E2: uses additional samples per

track (see text). See figure 2 for examples of ranked results.

is a minimum size for detected faces).

Retrieval performance evaluation. Performance is assessed

by computing the Average Precision (AP) for the retrieval of

each of the three actors in the test set. Classifiers are trained

with different combinations of positives and negative training

data.

In the experiments the positive data is either from Google

Image search (for that query) or from the Scrubs training set;

and the negatives either from the Scrubs training set or from

the Caltech negative images, or from both. As can be seen

in table 3 in almost all cases there is a drop in performance

by using positives from Google (with the same set of neg-

atives) compared to positives from the Scrubs training set.

However, the performance with Google images is still quite

reasonable. Increasing the number of negative examples (us-

ing both Scrubs and Caltech) always improves performance,

even though the negative images are from a different distri-

bution to the positives. Note, the Google image results are

after manual rejection of false faces. If instead all the Google

images are used, there is a drop in performance of only 3.0%.

Given this small drop there is little need for manual or auto-

mated selection (e.g. by clustering of the faces as in [9, 12]).

We evaluate retrieval performance for two sampling strate-

gies. The first, Experiment 1, uses a single sample per track

for training and testing, as described in section 2.1. The sec-

ond, Experiment 2, adds more samples per track using the

first, middle and last faces of the track (in addition to the one

having highest facial features detection score). For training

data, samples are only added if their facial feature confidence

is above a threshold (of 5 here). All samples selected are used

in training (up to four per track), so there is more training

data, and during testing a track is ranked by the maximum

classifier score over the selected samples. Note, in almost all

cases adding samples improves performance.

The top results for a search on “Courteney Cox” for a clas-

sifier trained on a combination of Google Images and Caltech

images for positives and negatives respectively are shown in

figure 2. We also show qualitative results for queries on the

TRECVid 2011 IACC.1.B dataset.

Timings for on-the-fly retrieval. Near real time performance

is achieved by exploiting parallel computing architectures.

Fig. 2. Retrieved Results. Even Rows: images downloaded from

Google for Courteney Cox (CC), Michel Fox (MF), George Bush

(GB) and Tony Blair (TB). Odd Rows: Top results retrieved by our

system on Scrubs (CC,MF) and IACC.1.B data (GB,TB). For Tony

Blair, the displayed results are positives in top 10 results. Notice the

difference in the lighting, pose etc. between the downloaded Google

images and the ones in the video corpus.

Typically 100–150 images are downloaded, which results in

80–90 extracted frontal faces. This process of downloading

and extracting faces with feature computation takes less than

10 seconds on 20 parallel threads. The optional labelling of

the 80–90 faces takes about a minute, and is the major bottle-

neck in the system. Linear classifier training and ranking is

also done within couple of seconds. So the entire end-to-end

process typically takes less than 20 seconds for the fully au-

tomated method, and about a minute more if a user annotates

the positive face instances.

4 Conclusion and Future Work

We have described an on-the-fly search method applicable to

any person known to Google Image Search. There are many

variations on this theme. A similar system could be built

for searching one’s own personal video collection (clips from

mobile phones and cameras).

Once the video corpus has been processed, any face (track)

within it can provide positive examples for the classifier train-

ing, and so any person in the video corpus found initially by

browsing can then be searched for. To this end, we also pro-

vide the user with an option to find similar faces to one se-

lected in the retrieved results. This is achieved by using the

selected face as a positive example and training a SVM classi-

fier using negative training examples from the Caltech dataset.

This functionality can be extended in the future by applying

various schemes for relevance feedback.

Since a vector represents each track, standard methods

such as bag of visual words [13], product quantization [14],

etc can be applied to improve retrieval speed and scalability.

Acknowledgements. We are grateful to Ken Chatfield for

providing the Google Image Downloader service. Financial

support was provided by ERC grant VisRec no. 228180 and

EU Project AXES ICT-269980.

References

[1] L. Jin, S. Satoh, F. Yamagishi, D. Le, and M. Sakauchii, “Per-

son X detector,” in TRECVID Workshop, 2004.

[2] J. Sivic, M. Everingham, and A. Zisserman, “Person spotting:

Video shot retrieval for face sets,” in CIVR, 2005.

[3] J. Yang, M. Chen, and A. Hauptmann, “Finding person x: Cor-

relating names with visual appearances.,” in CIVR, 2004.

[4] J. Philbin, A. Bosch, O. Chum, J. Geusebroek, J. Sivic, and

A. Zisserman, “Oxford TRECVID 2006 – notebook paper,” in

TRECVID Workshop, 2006.

[5] N. E. Apostoloff and A. Zisserman, “Who are you? – real-time

person identification,” in BMVC, 2007.

[6] P. Viola and M. Jones, “Rapid object detection using a boosted

cascade of simple features,” in CVPR, 2001.

[7] M. Everingham, J. Sivic, and A. Zisserman, “Taking the bite

out of automatic naming of characters in TV video,” Image

and Vision Computing, 2009.

[8] P. Felzenszwalb and D. Huttenlocher, “Pictorial structures for

object recognition,” IJCV, 2005.

[9] T. Berg, A. Berg, J. Edwards, and D. Forsyth, “Who’s in the

Picture,” in NIPS, 2004.

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin, “LIBLINEAR: A library for large linear classification,” J.

Machine Learning Research, 2008.

[11] “Caltech 10,000 web faces,” http://www.vision.

caltech.edu/Image_Datasets/Caltech_10K_

WebFaces/.

[12] A. D. Holub, P. Moreels, and P. Perona, “Unsupervised clus-

tering for google searches of celebrity images.,” in Proc. Int.

Conf. Autom. Face and Gesture Recog., 2008.

[13] J. Sivic and A. Zisserman, “Efficient visual search of videos

cast as text retrieval,” IEEE PAMI, 2009.

[14] H. Jégou, M. Douze, and C. Schmid, “Product quantization for

nearest neighbor search,” IEEE PAMI, 2011.

