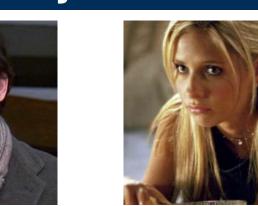
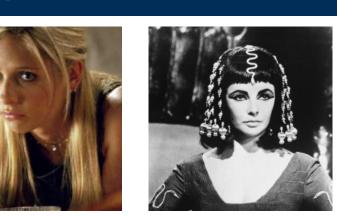


A Compact and Discriminative Face Track Descriptor

Omkar M Parkhi Andrew Zisserman Karen Simonyan Andrea Vedaldi Visual Geometry Group, Department of Engineering Science, University of Oxford, UK





same

B. Murray

different S. Gellar E. Taylor

Goal: Recognise and verify face identities in very large video collections

Video Fisher Vector Faces

A novel, discriminative, efficient, and very compact face track descriptor:

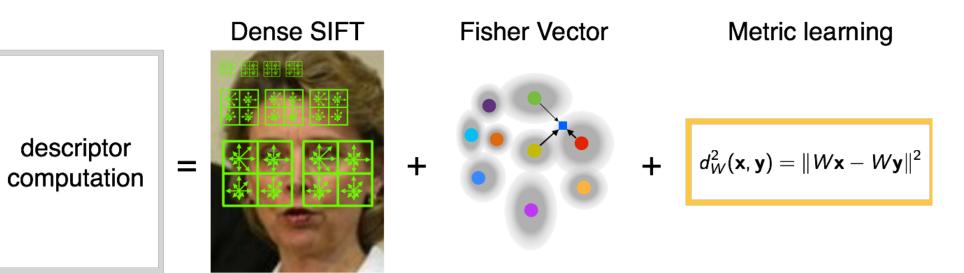
- Robust to face misalignments
- A single descriptor per track
- Compact: low dimensional & binarised

Video Fisher Vector Faces (VF²)

Fisher Vector Faces applied to face tracks:

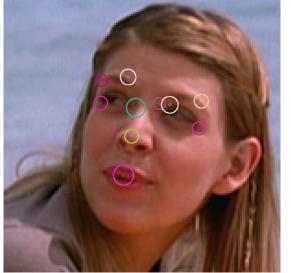
- Video pooling: one easy-to-use descriptor per track
- Jittered pooling: efficient data augmentation
- **Binarisation**: extreme compression
- Hard-assignment fisher vector: 6 times faster

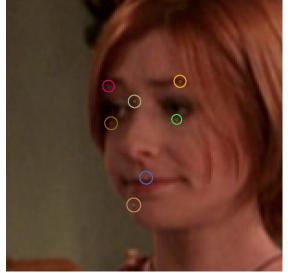
Fisher Vector Faces (FVF)



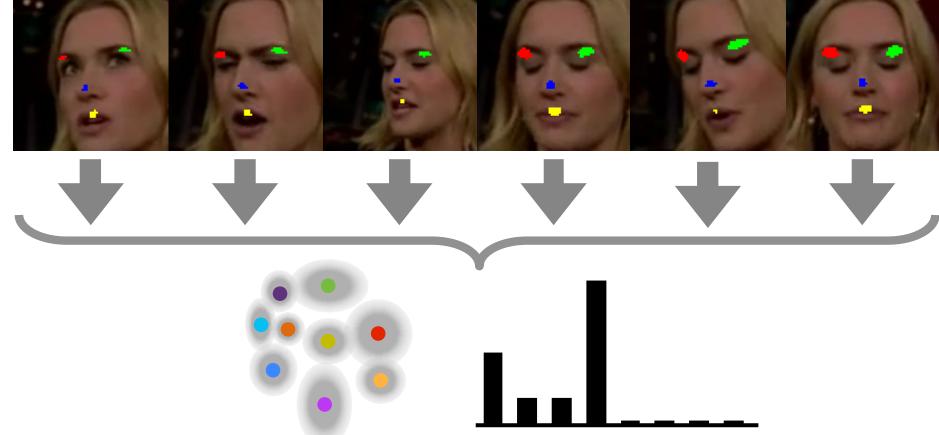
A powerful single-frame face descriptor:

- Dense sampling of local descriptors (SIFT) with spatial (x,y) augmentation
- Fisher Vector encoding
- Gaussian Mixture Model codebook
- First and second order descriptor statistics





• Discriminative low-rank Mahalanobis metric



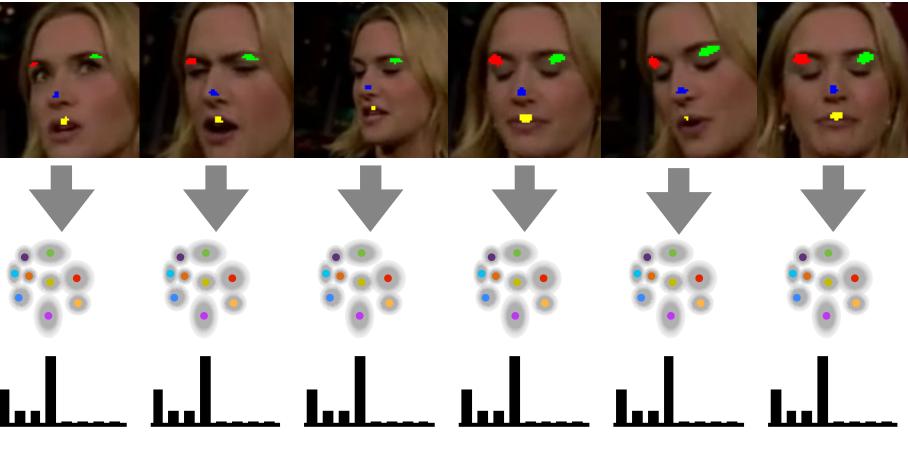
We also test joint similarity-metric learning:

Video and Jittered Pooling

Objective Function and Learning

Video Pooling

Conventional face track descriptors compute one vector for each frame:



A face track is then a collection of descriptors that need to be either combined or jointly compared. Instead we pool all frames in a single Fisher Vector:

Jittered Pooling

Pooling can be extended to jittered versions of the data, such as horizontal flips:

Learn to Compare & Compress

Goal: learn to simultaneously compare and compress descriptors.

Method: discriminative **low-rank metric learning**, parametrised by the projection W:

$$\begin{split} \mathcal{A}^2_W(\phi_i,\phi_j) &= \|W\phi_i - W\phi_j\|_2^2 \ &= (\phi_i - \phi_j)^\top W^\top W(\phi_i - \phi_j) \end{split}$$

$$\begin{aligned} d_{V,W}^2(\phi_i,\phi_j) = & (\phi_i - \phi_j)^\top W^\top W(\phi_i - \phi_j) \\ & - \phi_i V^\top V \phi_j \end{aligned}$$

Non-convex functions optimised using SGD. Large reduction in dimensionality without performance loss (68K \rightarrow 128).

	Parameter Tuning				
	Method	Proj. Dim.	EER		
1	Image Pool. (soft assignment FV)	128	17.3		
2	Video Pool. (soft assignment FV)	128	15.0		
3	Video Pool.	128	16.2		
4	Video Pool. + jitt.	128	14.2		
5	Video Pool.	256	16.9		
6	Video Pool.	512	17.0		
7	Video Pool.	1024	17.0		
8	Video Pool. + binar. 1024 bit	128	15.0		
9	Video Pool. + binar. 2048 bit	128	15.0		
10	Video Pool. + binar. 1024 bit + jitt.	128	13.4		
11	Video Pool. + joint sim.	128 x 2	14.4		
12	Video Pool. + joint sim. + flip	128 x 2	13.0		
13	Video Pool. + joint sim. + jitt.	128 x 2	12.3		

 $\min_{V,W} \sum_{i,j} \max\left[1 - y_{ij}(b - d_{V,W}^2(\phi_i, \phi_j))\right]$

Binarisation

Goal: further reduce memory footprint.

Method: Parseval Tight Frame Expansion

Start with *m*-dimensional descriptors Ψ

Sample a random $n \times n$ matrix M with n > m

Decompose M = QR

 $U \leftarrow \text{first m columns of } Q$

Binarisation sign($U \psi$) has q bits only

Typical use case: compress 128-D float descriptors (4096 bit) down to 1024 bits without accuracy loss ($4 \times$ reduction).

Experiments

• Excellent performance with small training sets Cross-task and cross-dataset transfer

Face Verification on YouTube Faces

• Restricted: train on only pre-specified pairs • Unrestricted: use any pair

	Method	EER
1	MGBS & SVM -	21.2
2	APEM Fusion	21.4
3	STFRD & PMML	19.9
4	VSOF & OSS (Adaboost)	20.0
5	Our VF2 (restricted)	16.1
6	Our VF2 (restricted & flip)	14.9
7	Our VF2 (unrestricted & flip)	13.0
8	Our VF2 (unrestricted & jitt.)	12.3
9	DeepFace (additional training data)	8.6

Face Verification on INRIA Buffy Dataset

	Method	Feat. Dim.	EER
1	Cinbis et al.	3.5K	42.50
2	Our VF2 (GMM trained on Buffy) & Flip	68K	30.11
3	Cinbis et al. (trained on LFW)	-	36.20
4	Cinbis et al. (trained on Buffy)	-	30.00
5	Our VF2 (trained on YTF) + joint sim + flip	128 x 2	25.77
6	Our VF2 (trained on YTF) + binar. 2048 bit + flip	128	21.90

Face Classification on Oxford Buffy

- Vampire Slayer"

	GMM & Proj-n train set.	Proj-n.	Bin-n.	Avg. AP
1	Sivic et al. (RBF-MKL)	0.81		
2	Sivic <i>et al.</i> (Average Kernel)			0.79
3	Sivic <i>et al.</i> (Average Kernel; ours)			0.80
4	Buffy	none	none	0.81
5	Youtube Faces	none	none	0.80
6	Youtube Faces + jitt.	1024	none	0.86
7	Youtube Faces	1024	2048	0.82
			bits	

Acknowledgement: This work was supported by ERC grant VisRec no. 228180 and EU Project AXES ICT-269980

Comparison with the State of the Art

• 327 test tracks from 3 episodes of Buffy

• Training set doesn't contain identities

• 7 episodes from season 5 of "Buffy the

• Training data obtained from alignment of transcripts and subtitles