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Abstract

We present a method that can dramatically accelerate
object detection with part based models. The method is
based on the observation that the cost of detection is likely
to be dominated by the cost of matching each part to the
image, and not by the cost of computing the optimal con-
figuration of the parts as commonly assumed. Therefore
accelerating detection requires minimizing the number of
part-to-image comparisons. To this end we propose a
multiple-resolutions hierarchical part based model and a
corresponding coarse-to-fine inference procedure that re-
cursively eliminates from the search space unpromising part
placements. The method yields a ten-fold speedup over the
standard dynamic programming approach and is comple-
mentary to the cascade-of-parts approach of [9]. Com-
pared to the latter, our method does not have parameters
to be determined empirically, which simplifies its use dur-
ing the training of the model. Most importantly, the two
techniques can be combined to obtain a very significant
speedup, of two orders of magnitude in some cases. We
evaluate our method extensively on the PASCAL VOC and
INRIA datasets, demonstrating a very high increase in the
detection speed with little degradation of the accuracy.

1. Introduction
In the last few years the interest of the object recogni-

tion community has moved from image classification and
orderless models such as bag-of-words [21, 2, 16, 28] to so-
phisticated representations that can explicitly account for
the location, scale, and spatial configuration of the ob-
jects [11, 10]. By reasoning about geometry instead of dis-
carding it, these models can extract a more detailed descrip-
tion of the image, including the object location, pose, and
deformation, and can result in better accuracy as well.

A major obstacle in dealing with geometry is the combi-
natorial complexity of the inference. For instance, consider
the part based models (or pictorial structures) pioneered by

(a) (b)

(c) (d)
Figure 1. Coarse-to-fine inference. We propose a method for the
fast inference of multi-resolution part based models. (a) exam-
ple detections; (b) scores obtained by matching the lowest reso-
lution part (root filter) at all image locations; (c) scores obtained
by matching the intermediate resolution parts, only at location se-
lected based on the response of the root part; (d) scores obtained by
matching the high resolution parts, only at locations selected based
on the intermediate resolution scores. A white space indicates that
the part is not matched at a certain image location, resulting in a
computational saving. The saving increases with the resolution.

Fischler and Elschlager [13]. The time required to estimate
such a model from an image can be as high as the num-
ber L of possible part placements to the power of the num-
ber P of parts, i.e. O(LP ). This cost can be reduced to
O(PL) by imposing further restrictions on the model ([11],
Sect. 2), but it is still significant due to the large number of
part placements L. For instance, just to test for all possible
translations of a part, L can be as large as the number of
image pixels. This analysis, however, does not account for
several aspects of typical part based models, such as defor-
mation bounds and discretization of the part configurations.

In Sect. 2 we reexamine the computational complexity of
part based models, and show that the standard analysis does
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not capture the bottleneck of recent state-of-the-art models
such as [3, 10, 29]. We show that, in practice, the cost of
inference is likely to be dominated by the cost of matching
each part to the image rather than by the cost of determin-
ing the optimal part configuration. This suggests a different
approach to accelerating the inference of part based models
that minimizes the number of times parts are matched to the
image.

Guided by this observation, we propose a novel multi-
resolution part based model and a corresponding coarse-to-
fine inference algorithm which is extremely efficient (Fig. 1,
Sect. 2,3,4). The method starts by matching the lowest res-
olution part, selecting for each image neighborhood only
its best placement (a form of local non-maximal suppres-
sion). These locally optimal placements are then propa-
gated recursively to the parts at higher resolution. In the
process, the possible locations of the parts are constrained
more and more, leaving only a few part-to-image compar-
isons to be computed. We show that, overall, this procedure
can be ten times faster than the distance transform approach
of [11, 10], while still resulting in excellent detection accu-
racy (Sect. 5).

Related work. Traditionally, object detection has been
accelerated by the use of cascades [25, 14, 15, 7, 1, 22, 9].
Recently, for example, cascades have been applied to kernel
based methods [23] resulting in models that, while very ac-
curate, are still orders of magnitude slower than the method
proposed here.

Our method accelerates part based and deformable mod-
els such as [12, 24] by reducing the number of image
locations where part filters must be evaluated. The same
principle has been used by the cascade of parts [9], which
extends [12] directly: parts are tested sequentially and lo-
cations are discarded as soon as a partial detection score
falls below a certain threshold, determined during a training
phase. This avoids testing most of the parts at unpromising
image locations, yielding a substantial computational sav-
ing.

Compared to the cascade of parts approach, our method
does not require fine tuning of the thresholds on a validation
set. Thus it is possible to use it not just for testing, but also
for training the object model, when the thresholds of the
cascade are still undefined. More importantly, the cascade
of parts and our method are based on complementary ideas
and can be combined, yielding a multiplication the speed-
up factors. The combination of the two approaches can be
more than two order of magnitude faster than the baseline
dynamic programming inference algorithm [11] (Sect. 5).

Other relevant works will be cited throughout the paper.

2. Accelerating part based models
A part based model, or pictorial structure as introduced

by Fischler and Elschlager [13], represents an object as col-
lection of P parts arranged in a deformable configuration
through elastic connections. Each part can be found at any
of L discrete locations in the image. For instance, to ac-
count for all possible translations of a part, L is equal to
the number of image pixels. If parts can also scale and ro-
tate, L is further multiplied by the number of discrete scales
and rotations, making it very large. Since even for sim-
plest topologies (trees) the best known algorithms for the
inference of a part based model requireO(PL2) operations,
these models appear to be intractable. Fortunately, the dis-
tance transform technique of [11] can be used to reduce the
complexity to O(PL) under certain assumptions, making
part models if not fast, at least practical.

The analysis so far represents the standard assessment of
the speed of part based models, but it does not account for
all the factors that contribute to the true cost inference. In
particular, this analysis does not predict adequately the cost
of recent part based models such as [9] for the three reasons
indicated next. First, the complexity O(PL2) reflects only
the cost of finding the optimal configuration of the parts, ig-
noring the cost of matching each part to the image. Match-
ing a part usually requires computing a local filter for each
tested part placement. Filtering requires O(D) operations
where D is the dimension of the filter (this can be for in-
stance a HOG descriptor [3] for the part). The overall cost
of inference is thenO(P (LD+L2)). Second, depending on
the quantization step δ of the underlying feature representa-
tion, parts may be placed only at a discrete set of locations
which are significantly less than the number of image pix-
els L. For instance, [12] uses HOG features with a spatial
quantization step of δ = 8 pixels, so that there are only
L/δ2 possible placements for a part. Third, in most cases
it is sufficient to consider only small deformations between
parts. That is, for each placement of a part, only a fraction
1/c of placements of a sibling part are possible. All consid-
ered, the inference cost becomes

O

(
P
L

δ2

(
D +

L

δ2c

))
. (1)

Consider for example a typical pictorial structure of [12].
The part filters are composed of 6 × 6 HOG cells, so that
each part filter has dimension dimension 6×6×31 = 1,116
(where 31 is the dimension of a HOG feature for a cell).
Typically the elastic connections between parts deform by
no more than 6 HOG cells in each direction (which is the
size of a part). Thus the number of operations required for
inferring the model is

P
L

δ2
(1,116 + 36) (2)
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(a) (b)

Figure 2. Hierarchical part based model of a person. (a) The
model is composed of a collection of HOG filters [3] at differ-
ent resolutions. (b) The HOG filters form a parent-child hierarchy
where connections control the relative displacement of the parts
when the model is matched to an image (blue solid lines); ad-
ditional sibling-to-sibling deformation constraints are enforced as
well (red dashed lines).

where the first term reflects the cost of the filtering, and
the second the cost of searching for the best part config-
uration. Hence the cost of evaluating the part filters is
1,116/36 = 31 times larger than the cost of finding the
optimal part configuration.

Fast coarse-to-fine inference. All the best performing
part based models incorporate multiple resolutions [18, 29].
Therefore it is natural to ask whether the multi-scale struc-
ture can be used not just for better modeling, but also to ac-
celerate inference. This idea was used by [18] for the case
of rigid models; here we extend it to the case of deformable
parts.

Consider for instance the hierarchical part model of
Fig. 2, which is not dissimilar from the one proposed
by [29]. The lowest resolution level r = 0 corresponds
to the root of the tree. Let this be a HOG filter of dimension
w×h, letL be the number of image pixels, and let δ the spa-
tial quantization of the HOG features. Then there are L/δ2

possible placements for the root part, evaluating which re-
quires Lwhd/δ2 operations, where d is the dimension of a
HOG cell.

At the second resolution level r = 1, the resolution of
the HOG features doubles, so that there are 4rL/δ2 pos-
sible placements of each part. Since each part is as large
as the root filter and there are 4r of those, matching all the
parts requires (4rwhd)× (4rL/δ2) operations. We propose
to avoid most of these computations by guiding the search
based on the root filter. Specifically, of all the 4rL/δ2 place-
ments of the root filter, we keep only the ones that have
maximal response in neighborhoods of size m × m, re-
ducing the number of placements by a factor m2. Then,
for each placement of the root filter, the parts at the next
resolution levels are also searched in m × m neighbors

(a) (b)
Figure 3. Effect of lateral connections in learning a model. (a)
Detail of a human model learned with lateral connections active.
(b) The same model without lateral connections.

only, exploiting the fact that, in practice, deformations are
bounded. Thus each higher resolution part is searched at
only m2(L/m2δ2) = L/δ2 positions. Note that this is the
same number of evaluations of the root part, even though
there are four times as many possible part locations at this
resolution level. This is true for all the parts in the model,
even the ones at higher resolutions.

Considering all levels together, the cost of evaluating
naively all the part placements for the multi-resolution
model is

Lwhd

δ2
16R − 1

15
(3)

where R is the number of resolution levels in the model.
The coarse-to-fine procedure reduces this cost to

Lwhd

δ2
4R − 1

3
. (4)

For instance, if there are R = 3 levels the coarse-to-fine
procedure is thirteen times faster than the standard Dynamic
Programming (DP) approach, at least in term of the effort
required to match parts to the image.

Notice that the cost is independent of m, which controls
the the size of the neighborhoods where parts are searched.
In practice, we use a small value of m for the root part to
avoid missing overlapping objects, and a larger one for the
other resolution levels in order to accommodate larger de-
formations of the model.

A more detailed analysis is presented in Sect. 3 and 4.

Lateral connections. The speed-up in our model is due
to the fact that the placement of higher resolution parts
is guided by the placement of lower resolution ones.
This yields high computational savings, but makes infer-
ence more sensitive to partial occlusion, blurring, or other
sources of noise.

This effect can be compensated by enforcing additional
geometric constraints among the parts. In particular, we add
constraints among siblings, dubbed lateral connections, as
shown in Fig. 2 (red dashed edges). This makes the mo-
tion of the siblings coherent and improves the robustness of
the model. Fig. 3 demonstrates the importance of the lat-
eral connections in learning a model of a human. Without
lateral connections the model captures two separate human
instances, but when the connections are added the model is
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learned properly. In Sect. 3 it will be shown that the increase
in computational complexity due to the lateral connections
is negligible.

3. Object model
Our model is a hierarchical variant of [10] (Fig. 2) where

parts are obtained by subdividing regularly and recursively
parent parts. At the root level, there is only one part repre-
sented by a 31-dimensional HOG filter [9, 3] of w×h cells.
This is then subdivided into four subparts and the resolu-
tion of the HOG features is doubled, resulting in four w×h
filters for the subparts. This construction is repeated to ob-
tain sixteen parts at the next resolution level and so on. In
practice, we use only three resolution levels in order to be
able to detect small objects and our root filter is small to en-
able relatively large displacements for the higher resolution
parts.

Let yi, i = 1, . . . , P be the locations of the P object
parts. Each yi ranges in a discrete setDi of locations (HOG
cells), whose cardinality increases with the fourth power of
the resolution level. Given an image x, the score of the con-
figuration y is a sum of appearance and deformation terms:

S(y;x,w) =

P∑
i=1

SHi(yi;x,w)+
∑

(i,j)∈F

SFij (yi,yj ;w)

+
∑

(i,j)∈P

SPij (yi,yj ;w) (5)

where F are the parent-child edges (solid blue lines in Fig.
2), P are the lateral connections (dashed red lines), and w is
a vector of model parameters, to be estimated during train-
ing. The term SHi measures the compatibility between the
image appearance at location yi and the i-th part. This is
given by the linear filter

SHi
(yi;x,w) = H(yi;x) ·MHi

(w) (6)

whereH(yi;x) is thew×hHOG descriptor extracted from
the image x at location yi and MHi extracts the portion of
the parameter vector w that encodes the filter for the i-th
part. The term SFij

penalizes large deviations of the loca-
tion yj with respect to the location of its parent yi, which
is one resolution level above. This is a quadratic cost of the
type

SFij
(yi,yj ;w) = D(2yi,yj) ·MFi

(w), (7)

where i is the parent of j, MFi
(w) extracts the deformation

coefficients from the parameter vector w, and

D(2yi,yj) =
[
(2xi − xj)2, (2yi − yj)2

]
(8)

where yi = (xi, yi). The factor 2 maps the low resolution
location of the parent yi to the higher resolution level of the

child. Similarly, SP penalizes sibling-to-sibling deforma-
tions and is given by

SPij
(yi,yj ;w) = D(yi,yj) ·MPij

(w;yi). (9)

In this case no additional factors are needed as sibling parts
have the same resolution.

In addition to the quadratic deformation costs, the pos-
sible configurations are limited by a set of additional con-
straints, namely parent-child constraints of the form yj ∈
Cj + 2yi. In particular, Cj + 2yj is a set of (2m + 1) ×
(2m + 1) small displacements around the parent location
2yj (the parameter m is used again in Sect. 4 in the defini-
tion of the accelerated inference procedure, and specified in
the experiments in Sect. 5).

As in [10, 24] the model is further extended to multi-
ple aspects in order to deal with large viewpoint variations.
Thus we stack N models w1, . . . ,wN , one for each as-
pect, into a new combined model w. Then the inference
selects both one of the n models and its configuration y by
maximizing the score (5). Moreover, similarly to [24], the
model is extended to encode explicitly the symmetry of the
aspects. Namely, each model wk is tested twice, by mirror-
ing it along the vertical axis, in order to detect the direction
an object is facing.

4. DP and coarse-to-fine inference
If the hierarchical model does not have lateral connec-

tions (i.e. P = ψ), the structure is a tree and inference can
be performed by using the standard DP technique. Namely,
if part j is a tree leaf, define V (yj) = SHj

(yj) (here and
in the following equations we drop the dependency on the
parameter w for compactness). For any other part i define
recursively

V (yi) = SHi
(yi)+

∑
j:π(j)=i

max
yj∈Cj+2yi

(
SFij (yi,yj) + V (yj)

)
where yj ∈ Dj and i = π(j) denotes the fact that i is the
parent of j. Computing V (yi) requires

|Di|

D +
∑

j:π(j)=i

|Cj |


operations, where D is the dimension of a part filter and
Cj the deformation constraints introduced above. The terms
|Ci| can be reduced to one by using the distance transform
of [11], but the saving is small since |Ci| is small to start
with.

DP for lateral connections. The lateral connections in
Fig. 4 introduce cycles and prevent a direct application of
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(a) (b)

Figure 4. Part-to-part constraints. The loopy graph generated by
the lateral connections is transformed into a chain by clamping the
value yi and then solved with dynamic programming.

DP. However, these connections form pyramid-like struc-
tures (Fig. 4(a)) that can be “opened” by clamping the value
of one of the base nodes (Fig. 4(b)). In particular, denote
with i the parent node, j the child being clamped, and k
the other children. Then the cost of computing the function
V (yi) becomes

|Di|

D + |Cj |
∑

k:π(k)=i,k 6=j

|Ck|

 ,

which is slightly higher than before but still quite manage-
able due to the small size of Ci.

Coarse-to-fine inference. Despite the increased com-
plexity of the geometry, the cost of inference is still domi-
nated by the cost of applying each part filter to each image
location. This cost cannot be reduced by dynamic program-
ming; instead, we propose to prune the search top-down,
by starting the inference from the root filter and propagat-
ing only the solutions which are locally the more promising.
Note that, instead of using a fixed threshold to discard par-
tial detections as done by the part based cascade [9], here
pruning is performed locally and adaptively. We now de-
scribe the process in detail, and estimate its cost.

First, the root part is tested everywhere in the image, with
cost |D0|D. Note that, since the root part is coarse, |D0| is
relatively small. Then non-maxima suppression is run on
neighbors of size m × m, leaving only |D0|/m2 possible
placements of the root part. For each placement of the root
y0, the parts j at the level below are searched at locations
yi ∈ Ci + 2y0, which costs

|D0|
m2

 ∑
k:π(k)=0

|Ck|D + |Ci|
∑

k:π(k)=j,k 6=i

|Ck|


where i is the child clamped, as explained above, to account
for the sibling connections. The dominant cost is match-
ing the parts at |D0| |Ck|/m2 locations (if filters are memo-
ized [9] the actual cost is a little smaller due to possible in-
teractions between nearby placements of the root part). The

process is repeated recursively, by selecting the optimum
placement of each part at resolution r and using it to con-
strain the placement of the parts at the next resolution level
r+1. In this way each part is matched at most |D0| |Ck|/m2

times. This should be compared to the |Dk| comparisons of
the DP approach, which grow with the fourth power of the
resolution. Hence the computational saving becomes sig-
nificant very quickly.

Note that, while each part location is determined by ig-
noring the higher resolution levels, the sibling constraints
help integrating evidence from a large portion of the im-
age and improve the localization of the parts. This idea
bears some resemblance to the Cascaded Models proposed
in [19], which prune hypothesis based on the combined ev-
idence local to a part and the best global configuration of
other parts a certain resolution level, obtained by MAP in-
ference.

Learning. In order to learn the model parameters w we
use the latent structural SVM formulation of [24]. Inference
is used during training for two purposes: to estimate the part
placements for the ground truth detections (latent variable
estimation) and to extract from the negative images hard
negative examples [10, 24]. The coarse-to-fine inference
procedure can be used to do this because, contrary to the
part based cascade of [9], it does not have parameters to be
learned. This yields a substantial speedup of training too.

5. Experiments
We evaluated our method on two well known bench-

marks: the INRIA pedestrians [3] and the 20 PASCAL VOC
2007 object categories [8]. Performance is measured in
term of Average Precision (AP) according to the PASCAL
VOC protocol [8].

For the VOC classes we use an object model with two
components (aspects), while for the INRIA pedestrians we
use a single one as using more did not help. The aspect
ratio of each component is initialized by subdividing uni-
formly the aspects ratio of the training bounding boxes and
taking the average in each interval. The structural latent
SVM performs multiple passes on the training data in or-
der to extract hard negative examples and estimate the pose
(part placements) for the positive examples; we limit the la-
tent variable re-estimation passes to 8 and for each we do at
most 10 rounds of retraining (selecting hard negatives).

5.1. INRIA pedestrians

Table 1 compares different variants of our coarse-to-fine
(CF) detector with the part based cascade of [9] by evalu-
ating the average detection time and precision for the IN-
RIA pedestrian dataset. Our CF search algorithm is slightly
slower than the part based cascade (0.33s vs 0.23s per im-
age). However, the two methods are orthogonal and can
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method det. time (s) AP (%)
cascade [9] 0.23 85.6
CF 0.25 78.8
CF + siblings 0.33 84.0
CF + sib. + casc. 0.12 83.6

Table 1. Accuracy and detection speed on the INRIA data. The
table reports the average precision and detection time in seconds
for images in the INRIA dataset. Cascade denotes the part based
cascade of [9]. CF, CF + sibling, and CF + sib. + casc. denote
our coarse-to-fine inference scheme, respectively without sibling
constraints, with sibling constraints, and combined with the cas-
cade of [9]

.
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MultiFtr  (15.6%)
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Figure 5. Comparison to the state-of-the-art on the INRIA
dataset. The miss rate at 1 FPPI is reported in the legend. VJ
[25], HOG [3], FtrMine [6], MultiFtr [27], HikSvm [17], LatSvm
[10], ChnFtrs [5], FPDW [4], Pls [20], MultiFtr+CSS [26], RCFL
[18].

be combined to further reduce the detection time to 0.12s,
with just a marginal decrease in the detection accuracy. In
fact, for simplicity our cascade implementation only prunes
based on a single threshold at the intermediate resolution
level; a full implementation is expected to be even faster.

Fig. 5 compares the CF detector with other published
methods in term of miss rate vs false positives per image
(FPPI) rate. The CF detector obtains a detection rate of
88% at 1 FPPI, which is just a few points lower than the
current state-of-the-art (91%), but uses only HOG features.
In particular, due to the deformable parts and the CF infer-
ence, our detection rate is 10% better that the standard HOG
detector while being much faster.

Effect of the neighborhood sizem. Table 2 evaluates the
influence of the neighborhood size m, which controls the
amount of deformation that the model allows. Even though
humans are in general highly deformable, pedestrians are

m 1 2 3
testing AP (%) 83.5 83.2 83.6
testing time [s] 0.33 2.0 9.3

Table 2. Effect of the neighborhood size m. On the INRIA
Pedestrian dataset setting m to 1 is sufficient to obtain optimal
performance. Increasing the value of m does not change substan-
tially the AP, but has a negative impact on speed.

relatively rigid, so the performance saturates for m = 1.
Larger values ofm do not change substantially the detection
performance for this model, but greatly affect the inference
time, which increases from 0.33s per image for m = 1 to
almost 10s for m = 3.

Note that, although a deformation of a HOG cell (m = 1)
may seem very small, the actual amount of deformation
must be measured in relation of the size of the root filter.
If the root filter is three HOG cells wide, as in our setting,
then a deformation of one HOG cell corresponds to a dis-
placement that is as large as 33% of the object size, which
is substantial.

Exact and CF detection scores. Fig. 6 shows a scatter
plot of the detection scores obtained on the test set of the IN-
RIA database, where the horizontal axis reports the scores
obtained by DP (exact inference) and the vertical axis the
scores obtained by the CF inference algorithm. The red line
represents the ideal case, where the CF inference gives ex-
actly the same results as DP. We distinguish two cases for
the analysis: (a) with lateral constraints and (b) without lat-
eral constraints. We note two facts: First, in both cases
the CF approximation improves as the detection score in-
creases. This is reasonable because, if the object is easily
recognizable, the local information drives the placement of
the parts to optimal locations without much ambiguity. Sec-
ond, in (a) the scatter plot is tighter than in (b), indicating
that the lateral connections are in fact helping the CF infer-
ence to stay close to the ideal DP case.

Training speed and detection accuracy. Table 3 evalu-
ates the effect of using the CF and exact (DP) inference
methods for training and testing the model. Using the CF
inference method instead of the exact DP-based inference
improves the training speed by an order of magnitude, from
20 hours down to just 2. This is because the cost of train-
ing is dominated by the iterative re-estimation of the latent
variables and retraining, each of which requires running
inference multiple times. Note that, differently from [9]
which requires tuning after the model has been learned, our
method can be applied while the model is learned.

An notable result from Table 3 is the fact that, for each
training method (exact DP or CF) and model type (with or
without lateral constraints), the accuracy never decreases,
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Figure 6. Exact vs coarse-to-fine inference scores. Scatter polt
of the scores obtained by the exact (DP) and approximated (CF)
inference algorithms: (a) with lateral constraints in the model, (b)
without.

training testing AP (%)
model method time DP CF
SF DP 20h 83.0 84.0
SF + SP DP 22h 83.4 84.0
SF CF 1.9h 78.0 80.7
SF + SP CF 2.2h 83.5 83.5

Table 3. Learning and testing a model with exact and coarse-
to-fine inference. The table compares learning the model without
lateral connection (SF ) and with lateral connections (SF + SP )
and testing it with the exact (DP) or coarse-to-fine (CF) inference
algorithm. For each case, training base on the DP or CF inference
is also compared.

and in fact increases slightly, when the exact test procedure
(DP) is substituted with the CF inference algorithm. This
is probably due to the aggressive hypothesis pruning of the
CF search which promotes less ambiguous detections. A
second observation is that the lateral constraints are very
effective and increase the AP by about 4–5% (depending on
the training method). Note also that the improvement due
to the lateral constraints is larger when training uses the CF
inference algorithm.

5.2. PASCAL VOC data

We evaluate our CF model on the 20 classes of the PAS-
CAL VOC 2007 data using the variant with sibling con-
straints. Table 4 shows that the classification accuracy of
the CF detector is similar to the one of state-of-the-art meth-
ods which are about an order of magnitude or more slower.
The CF detector is also compared to the part base cascade
of [9], which is only slightly more accurate (%1 AP better)
– however the results reported in [9] are generated from de-
tectors trained on the VOC 2009 data, which contains twice
as many training images as found in the VOC 2007 data.

Finally, Fig. 7 evaluates the combination of our CF in-
ference with the part based cascade, by reporting the trade-

Figure 7. Combination of the cascade and CF inference. The
figure reports the average precision vs speed-up (over the exact DP
inference algorithm) for the CF detector combined with a pruning
step analogous to the one used by the part based cascade [9]. As
pruning becomes more aggressive, the speed improves at the ex-
pense of the detection accuracy.

off of detection speed and accuracy that can be achieved by
varying the pruning threshold (as indicated above, we use a
simplified version of the cascade with only one threshold).
For some classes such as horse, the combinations of the two
methods results in a speed-up of almost two orders of mag-
nitude (compared to the exact DP inference) with only a
marginal decrease in detection accuracy.

6. Conclusions
We have presented a method that can substantially speed-

up object detectors based on multi-resolution deformable
part models. We have shown that, for this type of mod-
els, the cost of detection is likely to be dominated by the
cost of matching each part to the image, rather than by the
cost of finding the optimal configuration of the parts. Based
on this observation, we have proposed a new hierarchical
model that, combined with a coarse-to-fine inference algo-
rithm, can dramatically speed-up detection by reducing the
number of times parts are matched to the image. While the
speedup that can be obtained is similar to the one of the part
based cascade [9], this method does not require the learn-
ing of thresholds or other parameters which simplify its use
during the training of the model; moreover, the speed of
detection does not depend on the image content. Finally,
since our method is orthogonal to the part based cascade, it
can be combined with the latter to obtain speedups of up to
a factor 100 in some cases. In the future we plan to inte-
grate in the coarse-to-fine architecture even more complex
geometric properties of the objects, including rotations and
foreshortening.
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