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a b s t r a c t

We present a method that can dramatically accelerate object detection with part based models. The
method is based on the observation that the cost of detection is likely dominated by the cost of matching
each part to the image, and not by the cost of computing the optimal configuration of the parts as
commonly assumed. To minimize the number of part-to-image comparisons we propose a multiple-
resolutions hierarchical part-based model and a corresponding coarse-to-fine inference procedure that
recursively eliminates from the search space unpromising part placements. The method yields a ten-fold
speedup over the standard dynamic programming approach and, combined with the cascade-of-parts
approach, a hundred-fold speedup in some cases. We evaluate our method extensively on the PASCAL
VOC and INRIA datasets, demonstrating a very high increase in the detection speed with little
degradation of the accuracy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years the interest of the object recognition
community has moved from image classification and orderless
models such as bag-of-words [1] to sophisticated representations
that can explicitly account for the location, scale, and deformation
of the objects [2–5]. By reasoning about geometry instead of
discarding it, these models can extract a more detailed description
of the image, including the object location, pose, and deformation,
and can result in better detection accuracy.

A major obstacle in dealing with deformable objects is the
combinatorial complexity of the inference. For instance, in the
pictorial structures pioneered by Fischler and Elschlager [6] an
object is represented as a collection of P parts, connected by
springs. The time required to find the optimal part configuration to
match a given image can be as high as the number L of possible
part placements to the power of the number P of parts, i.e. OðLPÞ.
This cost can be reduced to OðPL2Þ or even O(PL) by imposing
further restrictions on the model ([2], Sections 2, 3.1), but is still
significant due to the large number of possible part placements L.
For instance, just to test for all possible translations of a part, L can
be as large as the number of image pixels. This analysis, however,
does not account for several aspects of typical part based models,
such as the fact that useful object deformations are not very large
and that, with appearance descriptors such as histograms of

oriented gradients (HOG) [7], locations can be sampled in a
relatively coarse manner.

The first contribution of this paper, an extension of our prior
work [8,9], is a new analysis of the cost of part based models
(Section 3.1) which better captures the bottlenecks of state-of-the-
art implementations such as [7,3,10]. In particular, we show that
the cost of inference is likely to be dominated by the cost of
matching each part to the image rather than by the cost of
determining the optimal part configuration. This suggests that
accelerating inference requires minimizing the number of times
the parts are matched.

Reducing the number of part evaluations can be obtained by
using a cascade [11], a method that rejects quickly unpromising
object hypotheses based on cheaper models. For deformable part
models two different types of cascades have been proposed
(Sections 2, 3.1). The first one, due to Felzenszwalb et al. [12],
matches parts sequentially, comparing the partial scores to
learned thresholds in order to reject object locations as soon as
possible. The second one, due to Sapp et al. [13], filters the part
locations by thresholding marginal part scores obtained from a
lower resolution model.

The second contribution of the paper is a different cascade
design (Section 3.2). Similar to [11,13], our method is coarse-to-
fine. However, we note that, by thresholding scores independently,
standard cascades propagate to the next level clusters of nearly
identical hypotheses (as these tend to have similarly high scores).
Instead of thresholding, we propose to reject all but the hypothesis
whose score is locally maximal. This is motivated by the fact that
looking for a locally optimal hypothesis at a coarse resolution often
predicts well the best hypothesis at the next resolution level
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(Section 3.2). As suggested in Fig. 1, and as showed in Sections 3.2–
3.4, this results in an exponential saving, which has the additional
benefit of being independent of the image content. Experimentally,
we show that this procedure can be more than ten times faster
than the distance transform approach of [2,3], while still yielding
excellent detection accuracy.

Compared to using global thresholds as in the cascade of parts
approach of Felzenszwalb et al. [12], our method does not require
fine tuning of the thresholds on a validation set. Thus it is possible to
use it not just for testing, but also for training the object model, when
the thresholds of the cascade are still undefined (Section 3.5). More
importantly, the cascade of parts and our method are based on
complementary ideas and can be combined, yielding amultiplication
the speed-up factors. The combination of the two approaches can be
more than two order of magnitude faster than the baseline dynamic
programming inference algorithm [2] (Section 4).

2. Related work

In object category detection the goal is to identify and localize
in images natural objects such as people, cars, and bicycles.
Formally, we regard this as the problem of mapping an image x
to a label or interpretation y that specifies whether an instance of
the object is contained in the image and, if so, a bounding box
enclosing it.

In order to simplify analysis as well as learning, the map x↦y is
usually represented indirectly by a scoring function Sðx; yÞ, expres-
sing how well an interpretation y describes an image x. The
advantage is that the scoring function can have a simple form,
often linear in a vector of parameters w, i.e. Sðx; yÞ ¼ 〈w;Ψ ðx;yÞ〉.
Inferring the interpretation y from the image x reduces then to
finding which interpretations have a sufficiently large score,
typically by computing the maximizer y¼ arg maxŷ AYSðx; ŷÞ.
Unfortunately, maximizing the scoring function is often computa-
tionally quite challenging. Next, we briefly review the main ideas
that have been explored to address this issue.

Exhaustive and greedy search. If the interpretation space is
sufficiently small, an inference algorithm can score exhaustively
all interpretations yAY and pick the best one. Sometimes this
strategy can be applied even to continuous interpretations spaces
up to discretization. A notable example are sliding-window detec-
tors such as Dalal and Triggs [7]. A candidate interpretation y
obtained from a discretized model can be further improved by a
sequence of local greedy modifications, similar to gradient ascent.
Unfortunately local search can easily get stuck in local optima. In
less trivial cases, such as deformable part models, the interpreta-
tion space Y is far too complex for such simple strategies to suffice.

Sampling. By interpreting the score Sðx; yÞ as a posterior prob-
ability pðyjxÞ on the interpretations, inference can be reduced to the
problem of drawing samples y from pðyjxÞ (because the most likely
interpretations are also the ones with larger scores). Sampling ideas

have been explored in the context of sliding-window object detec-
tors in [14] demonstrating a two fold speed-ups over exhaustive
search. Similar in spirit, but based on prior knowledge about the
general shape of an object, are selective search [15] and objectness
[16]. The main speed-up of these methods is again due to a reduced
set of samples. However, in this case the samples are category
independent (.i.e the same bounding boxes are used to represent
different categories) so that the feature encoding can be computed
only once for all categories.

Branch-and-bound. It is sometimes possible to compute effi-
ciently upper bounds on the scores of large subsets Y0 �Y of
interpretations at once. If a better interpretation is found some-
where else, then the whole subset Y0 can then be removed without
further consideration. Branch-and-bound methods apply this idea
to a recursive partition of the interpretation space Y. If the splits
are balanced and the bounds sufficiently tight, these strategies can
find the optimal interpretation very quickly. This idea has been
popularized in the recent literature on sliding-window object
detectors by Lampert and Blaschko [17].

Dynamic programming (DP). Sometimes interpretations are
obtained by combining smaller interpretations of portions of the
image. For example, in pictorial structures [6] an object is an
arrangement y¼ ðy1;…; yNÞ of N object parts (e.g., the head, torso,
arms, and legs of a person), where yi is the location of the
corresponding part in the image. While there is a combinatorial
number of such arrangements, in constellation models [18], the
score decomposes as Sðy0; y1ÞþSðy0;y2Þþ⋯þSðy0; yNÞ, where y0 is
a reference part connected in a star to the other parts. Hence the
optimal arrangement can be obtained by finding the optimal
position of each part arg maxyi Sðy0; yiÞ relative to the reference
part y0, and then optimizing over the location of the reference.
Efficient inference extends to more complex topologies such as
trees and can be further improved under certain assumptions on
the scores, yielding to the efficient pictorial structures of [2]
(Section 3.1).

Cascades. A cascade considers cheaper scoring functions along
with Sðx; yÞ and uses them to prune quickly unpromising inter-
pretations y from consideration. Applied to an exhaustive search
of the possible object locations, this yields the well-known cascade
approach to sliding-window object detection [19]. The idea has
been popularized by its application to AdaBoost [20–23] and has
remained popular through the years, including applications to
multiple kernels detectors [24]. The same idea has been applied
directly to part-based models to either prune object locations by
visiting only a small number of parts [12] or by finding plausible
placements of the parts based on scoring functions with a lower
degree of part dependencies [25] or lower resolution parameters
[13]. Section 3.2 introduces an alternative coarse-to-fine cascade
design. A more general analysis of other problems related with fast
detection can be found in [26].

Recent methods. In parallel with the submission of this work
and during the revision period several new methods for speeding

Fig. 1. Coarse-to-fine inference. We propose a method for the fast inference of multi-resolution part based models. (a) example detections; (b) scores obtained by matching
the lowest resolution part (root filter) at all image locations; (c) scores obtained by matching the intermediate resolution parts, only at location selected based on the
response of the root part; (d) scores obtained by matching the high resolution parts, only at locations selected based on the intermediate resolution scores. A white space
indicates that the part is not matched at a certain image location, resulting in a computational saving. The saving increases with the resolution.
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up object detection have been presented. Dollar et al. [27]
integrate the principle of locally maximal score introduced in this
work for hypotheses rejection with a traditional cascade approach
obtaining a noticeable gain in speed. Song et al. [28] represent the
object parts of a deformable model as a sparse linear composition
of a reduced set of basic parts shared among different categories.
This produces an important speed-up in the convolution of the
object model with the HOG features especially when dealing with
several object categories. Dubout et al. [29] show how to speed-up
the convolution of the object model with HOG features using the
Fourier Transform. Dean et al. [30] propose a locality-sensitive
hashing for the object search that can be several orders of
magnitude faster than the standard HOG convolution, especially
when dealing with a large number of object classes. Finally
Sadeghi et al. [31] and Yan et al. [32] combine several of the
previously mentioned techniques to obtain a complete deformable
detector that can run at several frames per second. Further details
and other relevant works will be given throughout the paper.

3. Our method

3.1. The cost of inference in deformable part models

This section studies the cost of inference in state-of-the-art
models for object detection based on the notion of deformable
parts, deriving key results that will be used in Section 3.2 to
accelerate this process. A deformable part based model, or pictor-
ial structure as introduced by Fischler and Elschlager [6], repre-
sents an object as collection of P parts arranged in a deformable
configuration through elastic connections. Each part can be found
at any of L discrete locations in the image. For instance, in order to
account for all possible translations of a part, L is equal to the
number of image pixels. If parts can also be scaled and rotated, L is
further multiplied by the number of discrete scales and rotations,
making it very large. Since even for the simplest topologies (trees)
the best known algorithms for the inference of a part based model
require OðPL2Þ operations, these models appear to be intractable.
Fortunately, the distance transform technique of [2] can be used to
reduce the complexity to O(PL) under certain assumptions, making
part models if not fast, at least practical.

The analysis so far represents the standard assessment of the
speed of part based models, but it does not account for all the factors
that contribute to the true cost inference. In particular, this analysis
does not predict adequately the cost of state-of-the-art models such
as [12] for the three reasons indicated next. First, the complexity
OðPL2Þ reflects only the cost of finding the optimal configuration of
the parts, ignoring the cost of matching each part to the image.
Matching a part usually requires computing a local filter for each
tested part placement. Filtering requires O(D) operations where D is
the dimension of the filter (this can be for instance a HOG descriptor
[7] for the part). The overall cost of inference is then OðPðLDþL2ÞÞ.
Second, depending on the quantization step δ of the underlying
feature representation, parts may be placed only at a discrete set of
locations which are significantly less than the number of image
pixels L. For instance, [3] uses HOG features with a spatial quantiza-
tion step of δ¼8 pixels, so that there are only L=δ2 possible
placements of a part. Third, in most cases it is sufficient to consider
only small deformations1 between parts. That is, for each placement
of a part, only a fraction 1=c of placements of a sibling part are

possible. All considered, the inference cost becomes

O P
L

δ2
Dþ L

δ2c

� �� �
: ð1Þ

Consider for example a typical pictorial structure of [3]. The part
filters are composed of 6�6 HOG cells, so that each part filter has
dimension 6� 6� 31¼ 1116 (where 31 is the dimension of a HOG
cell). Typically the elastic connections between the parts deform by
no more than 6 HOG cells in each direction. Thus the number of
operations required for inferring the model is ð1116þ36ÞPL=δ2
where the first term reflects the cost of evaluating the filters, and
the second the cost of searching for the best part configuration.
Hence the cost of evaluating the part filters is 1116=36¼ 31 times
larger than the cost of finding the optimal part configuration. The
next section proposes a new method to reduce this cost.

3.2. Fast coarse-to-fine inference

This section proposes a new method based on a coarse-to-fine
analysis of the image to speed-up detection by deformable part
models. All the best performing part based models incorporate
multiple resolutions [8,10]. Therefore it is natural to ask whether
the multi-scale structure can be used not just for better modeling,
but also to accelerate inference.

Multiple resolutions have been used in the design of a cascade
for deformable part models by [13]. Here we propose an alter-
native design based on a principle different from global thresh-
olding [8,9]. Consider the hierarchical part model of Fig. 2a,b
similar to the one proposed by [10]. Our method starts by
evaluating the root (coarser-resolution) filter at all image locations
(Fig. 3). It then looks for the best placement of the root filter in,
say, all 3�3 neighborhoods and propagates only this hypothesis to
the next level. We call this procedure Coarse-to-Fine (CF) search.

The CF algorithm is justified by the fact that locally optimal
placements of parts at a coarse resolution are often good pre-
dictors of the optimal part placements at the finer resolution
levels. Fig. 2c shows the empirical probability that the CF proce-
dure finds the same part locations as a globally optimal search
procedure based on DP. As it can be seen, for detections with a
threshold higher than �0.5 (which approximatively correspond to
80% recall), this probability is more than 70%, whereas suboptimal
placements for hypotheses that have a small score are not
detrimental to performance since those hypotheses would be
discarded anyways. Section 4 gives more evidence of the validity
of this assumption.

In order to estimate the cost of the CF search, start from the
lowest resolution level r¼0, corresponding to the root of the tree.
Let this be a HOG filter of dimension w� h, let L be the number of
image pixels, and let δ the spatial quantization of the HOG
features. Then there are L=δ2 possible placements for the root
part, evaluating which requires Lwhd=δ2 operations, where d is the
dimension of a HOG cell.

At the second resolution level r¼1, the resolution of the HOG
features doubles, so that there are 4rL=δ2 possible placements of
each part. Since each part is as large as the root filter and there are
4r of those, matching all the parts requires ð4rwhdÞ � ð4rL=δ2Þ
operations. The CF search avoids most of these computations by
guiding the search based on the root filter. Specifically, of all the
4rL=δ2 placements of the root filter, we keep only the ones that
have maximal response in neighborhoods of size m�m, reducing
the number of placements by a factorm2. Then, for each placement
of the root filter, the parts at the next resolution levels are also
searched in m�m neighbors only, exploiting the fact that, in
practice, deformations are bounded. Thus each higher resolution
part is searched at only m2ðL=m2δ2Þ ¼ L=δ2 positions. Note that this
is the same number of evaluations of the root part, even though there

1 In sect. we will experimentally show that it is not necessary to search for
deformation on the entire image. Instead, the region where to search is a fraction of
the image size that for the moment we generally call c, but it will be better
specified in the experimental results.

M. Pedersoli et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: M. Pedersoli, et al., A coarse-to-fine approach for fast deformable object detection, Pattern Recognition (2014),
http://dx.doi.org/10.1016/j.patcog.2014.11.006i

http://dx.doi.org/10.1016/j.patcog.2014.11.006
http://dx.doi.org/10.1016/j.patcog.2014.11.006
http://dx.doi.org/10.1016/j.patcog.2014.11.006


are four times as many possible part locations at this resolution level.
This is true for all the parts in the model, even the ones at higher
resolutions.

Considering all levels together, the cost of evaluating naively all
the part placements for the multi-resolution model is ðLwhdÞ=δ2 �
ð16R�1Þ=15 where R is the number of resolution levels in the model.
The CF procedure reduces this cost to ðLwhdÞ=δ2 � ð4R�1Þ=3. For
instance, if there are R¼3 levels the CF procedure is thirteen times
faster than the standard DP approach, at least in terms of the effort
required to match parts to the image.

Notice that, with this formulation, the cost is independent of m,
which controls the size of the neighborhoods where parts are
searched. However, in practice, we use a small value of m for
the root part to avoid missing overlapping objects, and a larger one
for the other resolution levels in order to accommodate larger
deformations of the model which changes the expression of the
cost slightly (Section 4). A more detailed analysis is presented in
Sections 3.3 and 3.4.

Lateral connections. Weaknesses of the coarse-to-fine strategy
can be compensated by enforcing additional geometric constraints
among the parts. In particular, we add constraints among siblings,
dubbed lateral connections, as shown in Fig. 2b (red dashed edges).
This makes the motion of the siblings coherent and improves the
robustness of the model. Fig. 4a,b demonstrates the importance of
the lateral connections in learning a model of a human. Without
lateral connections the model captures two separate human
instances, but when the connections are added the model is
learned properly (Section 3.4).

3.3. Object model

This section describes formally the model briefly introduced in
Section 3.1. The model is a hierarchical variant of [3] (Fig. 2a,b)

where parts are obtained by subdividing regularly and recursively
parent parts. At the root level, there is only one part represented
by a 31-dimensional HOG filter [12,7] of w� h cells. This is then
subdivided into four subparts and the resolution of the HOG
features is doubled, resulting in four w � h filters for the subparts.
This construction is repeated to obtain sixteen parts at the next
resolution level and so on. In practice, we use only three resolution
levels in order to be able to detect small objects.

Let yi, i¼ 1;…; P be the locations of the P object parts. Each yi
ranges in a discrete set Di of locations (HOG cells), whose
cardinality increases with the fourth power of the resolution level.
Given an image x, the score of the configuration y is a sum of
appearance and deformation terms:

Sðy; x;wÞ ¼ ∑
P

i ¼ 1
SHi

ðyi;x;wÞþ ∑
ði;jÞAF

SFij ðyi; yj;wÞþ ∑
ði;jÞAP

SPij
ðyi; yj;wÞ

where F are the parent–child edges (solid blue lines in Fig. 2c), P
are the lateral connections (dashed red lines), and w is a vector of
model parameters, to be estimated during training. The term SHi

measures the compatibility between the image appearance at
location yi and the i-th part. This is given by the linear filter
SHi

ðyi; x;wÞ ¼Hðyi; xÞ �MHi
ðwÞ where Hðyi; xÞ is the w� h HOG

descriptor extracted from the image x at location yi and MHi

extracts the portion of the parameter vector w that encodes the
filter for the i-th part. The term SFij penalizes large deviations of
the location yj with respect to the location of its parent yi, which is
one resolution level above. This is a quadratic cost of the type
SFij ðyi; yj;wÞ ¼Dð2yi; yjÞ �MFi ðwÞ, where i is the parent of j, MFi ðwÞ
extracts the deformation coefficients from the parameter vector w,
and Dð2yi; yjÞ ¼ ½ð2xi�xjÞ2; ð2yi�yjÞ2� where yi ¼ ðxi; yiÞ. The factor
2 maps the low resolution location of the parent yi to the higher

Fig. 2. Coarse-to-fine models and predictions. (a) The model is composed of a collection of HOG filters [7] at different resolutions. (b) The HOG filters form a parent–child
hierarchy where connections control the relative displacement of the parts when the model is matched to an image (blue solid lines); additional sibling-to-sibling
deformation constraints are enforced as well (red dashed lines). (c) Probability that the coarse-to-fine search results in exactly the same part locations as the globally optimal
DP algorithm for each part of the hierarchical model. The probability is very high for highly scoring hypotheses (true positive) as desired. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Coarse-to-fine cascade designs. Left. Our proposed CF cascade starts by matching the coarse resolution part at a set of L discrete locations, here denoted by circles
along one image axis. It then propagates to the next resolution level only the best hypotheses (marked by a rounded blue box) for each 3�3 neighborhood. As a result, parts
are always evaluated at only L locations (filled circles) regardless of the resolution, yielding to a constant saving. Right. By contrast, a standard cascade such as [12] propagates
all locations whose score is larger than a threshold (rounded blue box). This (i) tends to propagate clusters of neighbor hypothesis at once as these tend to have similar score
and (ii) results in a saving that depends on the image content. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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resolution level of the child. Similarly, SP penalizes sibling-to-sibling
deformations and is given by SPij

ðyi; yj;wÞ ¼ Dðyi; yjÞ �MPij ðwÞ. In this
case the factor 2 is not used in D as sibling parts have the same
resolution.

In addition to the quadratic deformation costs, the possible
configurations are limited by a set of parent–child constraints of
the form yjACjþ2yi. In particular, Cjþ2yi is a set of m�m small
displacements around the parent location 2yi. The parameter m,
bounding the deformations, is discussed again in Section 3.4 in the
analysis of the CF inference procedure, and its impact is evaluated
in the experiments (Section 4).

As in [3,33] the model is further extended to multiple aspects in
order to deal with large viewpoint variations. To this end, we stack
N models w1;…;wN , one for each aspect, into a new combined
model w. Then the inference selects both one of the n models and
its configuration y by maximizing the score. Moreover, similar to
[33], the model is extended to encode explicitly the symmetry of
the aspects. Namely, each model wk is tested twice, by mirroring it
along the vertical axis, in order to detect the direction an object is
facing.

3.4. DP and CF inference

This section analyses in detail inference with the model intro-
duced in Section 3.3. If the hierarchical model does not have lateral
connections, the structure is a tree and inference can be performed
by using the standard DP technique. In detail, if part j is a leaf of
the tree, let VðyjÞ ¼ SHj

ðyjÞ, where we dropped for compactness the
dependency of the score on w and x. For any other part i define
recursively VðyiÞ ¼ SHi

ðyiÞþ∑j:πðjÞ ¼ imaxyj ACj þ2yi ðSFij ðyi; yjÞþVðyjÞÞ
where yjADj and i¼ πðjÞ implies that i is the parent of j. Computing
VðyiÞ requires

jDij Dþ ∑
j:πðjÞ ¼ i

jCjj
 !

ð2Þ

operations, where D is the dimension of a part filter and Cj is the set
of allowable deformations given in Section 3.3. The terms jCij in the
cost can be reduced to one by using the distance transform of [2],
but the saving is small since jCij is small to start with. Most
importantly, the distance transform is advantageous only in the
case parts are tested at all locations, which is incompatible with the
use of a cascade.

DP with lateral connections. The lateral connections in Fig. 4c
introduce cycles and prevent a direct application of DP. However,
these connections form pyramid-like structures (Fig. 4c) that can be
“opened” by clamping the value of one of the base nodes (Fig. 4d).
In particular, denote with i the parent node, j the child being
clamped, and k the other children. Then the cost of computing the

function VðyiÞ becomes

jDij DþjCjj ∑
k:πðkÞ ¼ i;ka j

jCkj
 !

; ð3Þ

which is slightly higher than (2) but still quite manageable due to the
small size of Ci.

CF inference. Despite the increased complexity of the geometry
of a model with lateral connections, the cost of inference is still
dominated by the cost of evaluating each part filter to each image
location. This cost cannot be reduced by DP; instead, we propose
to prune the search top-down, by starting the inference from the
root filter and propagating only the solutions which are locally the
more promising. Note that, instead of using a fixed threshold to
discard partial detections as done by the part based cascade [12],
here pruning is performed locally and adaptively. We now
describe the process in detail, and estimate its cost.

First, the root part is tested everywhere in the image, with cost
jD0jD. Note that, since the root part resolution is coarse, jD0j is
relatively small. Then non-maxima suppression is run on neigh-
bors of sizem�m, leaving only jD0j=m2 possible placements of the
root part. For each placement of the root y0, the parts k at the level
below are searched at locations ykACkþ2y0, which costs

jD0j
m2 ∑

k:πðkÞ ¼ 0
jCkjDþjCij ∑

k:πðkÞ ¼ 0;ka i
jCkj

 !

where i is the child clamped, as explained above, in order to
account for the sibling connections. The dominant cost is matching
the parts at jD0j jCkj=m2 locations (if filters are memoized [12] the
actual cost is a little smaller due to the fact that the same part
location can be obtained frommore than one root hypothesis). The
process is repeated recursively, by selecting the optimum place-
ment of each part at resolution r and using it to constrain the
placement of the parts at the next resolution level rþ1. In this way
each part is matched at most jD0j jCkj=m2 times, where jCkj can be
chosen equal or similar to m2. This should be compared to the jDkj
comparisons of the DP approach, which grows with the fourth
power of the resolution. Hence the computational saving becomes
significant very quickly.

Note that, while each part location is determined by ignoring
the higher resolution levels, the sibling constraints help integrat-
ing evidence from a large portion of the image and improve the
localization of the parts.

Extension: CF and cascade of parts. The CF cascade can easily
integrate global rejection thresholds analogous to the cascade of
parts of Felzenszwalb et al. [12] resulting in a multiplication of the
speed-up factors of our and their technique. In detail, one can
learn thresholds to prune an object hypothesis based on the partial
scores obtained by evaluating only a subset of the parts. In the
experiments, a simplified version of this idea will be tested where
pruning is applied after all parts at a given resolution levels have

Fig. 4. Effect of lateral connections in learning a model: (a) Detail of a human model learned with lateral connections active. (b) The same model without lateral connections.
Inference on the lateral connections: The loopy graph generated by the lateral connections is transformed into a chain by clamping the value yi and then solved with DP.
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been evaluated. We call this CFþcascade, summarize it in Fig. 5,
and report its empirical performance in Section 4.

Extension: CF and DP. CF can be used as a pre-filtering step to
run the standard DP algorithm at a subset of promising image
locations, obtaining almost always globally optimal solutions at a
fraction of the cost. In more detail, the idea is to first estimate a
small set of candidate object locations using CF, and then comput-
ing the exact part placements, and hence the exact detection
scores, using DP only at those locations. Since CF estimates
correctly the object locations in the vast majority of the cases
and since its computed scores are fairly good by themselves,
retaining up to a hundred object hypothesis per image is sufficient
to reconstruct the output of the globally optimal DP nearly exactly.
This idea is evaluated in Section 4.

3.5. Learning

This section describes in detail the learning of the model
introduced in Section 3.3 and how to leverage on the fast inference
methods of Section 3.4 to do so. Learning is needed to obtain the
parameters w of the scoring function. This uses a variant of the
latent structural support vector machine (SVM) formulation of
[34,33], which is also very similar to the latent SVM method of [3].

Training uses a dataset of images and the corresponding
bounding box annotations for an object category of interest. Each
object bounding box is initially associated with the best matching
location and scale y for the model. This is defined as the location y
in the HOG coordinate space for which the root filter yields
maximal intersection-over-union overlap score with the object
bounding box. If there are multiple model components, one for
each object aspect, the one with best overlap score is selected. This
defines a set of positive examples ðxi; yiÞ, iAP, one for each object
bounding box, where xi denotes the corresponding image. All the
other locations that yield an overlap score of less than a threshold
T with all the object bounding boxes are used as negative
examples ðxi; yiÞ, iAN (in the case of the CF inference, one negative
per root-level neighborhood is generated instead). Note that
different xi can refer to the same image as detections at different
locations are considered independent by learning.

From this construction, one obtains a number of negative
samples far larger than the positive ones jNjb jPj, so that the data
is highly unbalanced. Nevertheless, this was not found to be a
problem in learning. This is due to the fact that, for the purpose of
ranking, only the relative scores are important. The imbalance may
result in scores that are not perfectly calibrated for binary
classification, but this does not affect ranking.

Note that the ground-truth locations yi are effectively unknown
and the procedure just described simply suggests an initial value.
During training these are consider latent variables and gradually
re-estimated. Training itself optimizes the latent SVM objective

function

Eðw; yi; iAP
� �Þ ¼ ‖w‖2

2
þC ∑

iAP
max 0;1�Sðyi; xi;wÞ� �

þC ∑
jAN

max 0;1þmax
yj

Sðyj; xi;wÞ
� �

: ð4Þ

This trades off the usual quadratic regularizer ‖w‖2 with a hinge-
loss term for the positive samples, encouraging their score to be
above 1 (the margin), and a corresponding term for the negative
samples, encouraging their scores to be below �1. Note that the
object location and pose yj is maxed-out in the negative terms.
This is possible without compromising convexity [3,34]; on the
other hand, the pose parameters yi, iAP must be kept constant as
w is determined to make the energy convex. Subsequently, w is
fixed and these parameters are re-estimated by maximizing
Sðyi; xi;wÞ and the procedure is repeated. This is known as the
Concave–Convex Procedure (CCCP) and is only guarantee to find a
locally optimum solution [3].

Updating the latent variables. When the latent variables yiAP [
N are optimized, the corresponding object locations are searched in
a neighborhood of their initial values. In particular, for the negative
examples the object location is kept fixed (or within a root-level
neighborhood with CF) while the part locations are re-estimated.
This is because the goal is to have in the energy function one
negative example for each candidate image location. For the
positive variables yi instead, the object location is adjusted in order
to better align the model to the corresponding object instance. This
also means that in rare cases there might be no location that, after
the locations of the parts have been re-estimated, still fits the object
bounding box, or that the one that does has lower score than the
current setting of yi. This is handled below, accounting for the
approximation due to the CF inference as well.

Constraint generation. The negative samples N are too many to
be extracted and stored in memory. Instead, one starts with an
empty set of negatives N¼ϕ and then iteratively re-estimates w
and searches the dataset for a batch of fresh examples N that are in
margin violation (i.e. whose score is larger than �1), updates the
model, and repeats. This procedure, which is equivalent to con-
straint generation [35] or mining of hard negatives [3], is guaran-
tee to end in polynomial time provided that the set of support
vectors (i.e. the examples violating the margin at the optimum)
can fit in memory.

Using CF inference in training. Inference is used during training
for two purposes: to estimate the optimal part layout yi, iAP for
the example object instances (CCCP) and to obtain the most
confusing part layout yj, jAN for the negative examples. The
accelerated CF inference can be used to do this because, contrary
to the part based cascade of [12], it does not have parameters to be
learned. This fact can be used to substantially accelerate training
too (see Section 4 Table 1).

Fig. 5. Combining CF with a cascade of parts. The score at each resolution level is
determined by using the fast CF inference procedure. As soon as the score up to a
certain resolution level has been computed, this is compared to a threshold to
discard unpromising object locations quickly. The threshold is learned on a
validation set as [12].

Table 1
Learning and testing a model with exact and coarse-to-fine inference. The table
compares learning the model without lateral connection (SF) and with lateral
connections (SF þSP) and testing it with the exact (DP) or coarse-to-fine (CF)
inference algorithm. For each case, training base on the DP or CF inference is also
compared.

Model Training Testing AP (%)

Method Time (h) DP CF

SF DP 20 83.0 84.0
SF þSP DP 22 83.4 84.0
SF CF 1.9 78.0 80.7
SF þSP CF 2.2 83.5 83.5
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While the CF inference has been found empirically to be quite
reliable, it still returns approximated maximizers of the scoring
function. From the viewpoint of the constraint generation proce-
dure (hard negatives), this means that CF might not find all the
hard negative constraints that could be determined by a globally
optimal algorithm such as DP. However, such hard negatives are
unlikely to be found at test time as well, so this slight relaxation of
the constraints is not a problem. The estimation of the part
locations for the positive examples yi is more delicate as sub-
optimal inference may cause the energy function to increase
rather than decrease, compromising the stability of the algorithm.
This problem is easily sidestepped by comparing the energy of the
latent variable before and after update and retaining the latent
variable configuration with lower energy.

4. Experiments

This section evaluates our method on three well known bench-
marks: the INRIA pedestrians [7] and the 20 PASCAL VOC 2007 and
2009 object categories [36]. Performance is measured in terms of
false positive per window (FPPI) and Average Precision (AP)
according to the PASCAL VOC protocol [36]. For the VOC 2007
classes we use an object model with two components (aspects),
for the VOC 2009, we use three components, while for the INRIA
pedestrians we use a single one as using more did not help. The
aspect ratio of each component is initialized by subdividing
uniformly the aspects ratio of the training bounding boxes and
taking the average in each interval.

4.1. INRIA pedestrians

Fig. 6-left compares different variants of our coarse-to-fine (CF)
detector with the part based cascade of [12] by evaluating the
average detection time and precision for the INRIA pedestrian
dataset. Our CF search algorithm is slightly slower than the part
based cascade (0.33 s vs 0.23 s per image). However, the two
methods are orthogonal and can be combined to further reduce
the detection time to 0.12 s, with just a marginal decrease in the
detection accuracy as suggested in Section 3.2.

Fig. 6-right compares the CF detector with other published
methods in terms of miss rate vs false positives per image (FPPI)
rate. The CF detector obtains a detection rate of 88% at 1 FPPI,
which is just a few points lower than the current state-of-the-art
(91%), but uses only HOG features. In particular, due to the
deformable parts and the CF inference, our detection rate is 10%
better that the standard HOG detector while being much faster.

Effect of the neighborhood size m. Fig. 6-left evaluates the
influence of the neighborhood size m, which controls the amount
of deformation that the model allows. Compared to Section 3.2 in
which the same m is chosen at all resolution levels, here this
parameter is fixed to m¼3 for the coarser resolution and changed
in the range m¼ 3;5;7 for the higher resolutions, to evaluate
absorbing larger deformations while still being able to detect
multiple close instances of the objects. While inference slows
down by increasing the deformation range m, this is unnecessary
as the detection performance saturates at m¼3. Larger deforma-
tions do not change substantially the detection performance for
this model, but greatly affect the inference time, which increases
from 0.33 s per image for m¼3 to almost 10 s for m¼7.

Fig. 6. Left: evaluation on the INRIA dataset. Cascade denotes the part based cascade of [12]. CF, CFþsibling, and CFþsib.þcasc. denote our coarse-to-fine inference scheme
trained with DP and tested respectively without sibling constraints, with sibling constraints, and combined with the cascade of [12]. Effect of the neighborhood size m on the
INRIA Pedestrian dataset using CF inference. Setting m to 3 is sufficient to obtain optimal performance. Increasing the value ofm does not change substantially the AP, but has
a negative impact on speed. Right: Comparison to the state-of-the-art. The miss rate at 1 FPPI is reported in the legend. VJ [20], HOG [7], FtrMine [37], MultiFtr [38], HikSvm
[39], LatSvm [3], ChnFtrs [40], FPDW [41], Pls [42], MultiFtrþCSS [43], RCFL [8].

Fig. 7. Exact vs coarse-to-fine inference scores. Scatter plot (a,c) and score distributions (b,d) of the scores obtained by the exact (DP) and approximated (CF) inference
algorithms: (a,b) with lateral constraints in the model, (c,d) without. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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This is probably due to two reasons. First, pedestrians are
relatively rigid compared to humans in general pose. Second,
although a deformation of one HOG cell in each direction for with
respect to a part rest position (m¼3) may seem small, the actual
amount of deformation must be assessed in relation of the size of the
root filter. If the root filter is three HOG cells wide as in our setting,
then a deformation of one HOG cell corresponds to a displacement
that is as large as 33% of the object size, which is substantial.

Exact and CF detection scores. Fig. 7 shows a scatter plot of the
detection scores obtained on the test set of the INRIA database, where
the horizontal axis reports the scores obtained by DP (exact inference)
and the vertical axis the scores obtained by the CF inference algorithm.
The red line represents the ideal case, where the CF inference gives
exactly the same results as DP. We distinguish two cases for the
analysis: (a) with lateral constraints and (c) without lateral constraints.
We note two facts: First, in both cases the CF approximation improves
as the detection score increases. This is reasonable because, if the
object is easily recognizable, the local information drives the place-
ment of the parts to optimal locations without much ambiguity.
Second, in (a) the scatter plot is tighter than in (c), indicating that
the lateral connections are in fact helping the CF inference to stay close
to the ideal DP case. The same can be observed from the score
distribution (b) and (d).

Training speed and detection accuracy. Table 1 evaluates the
effect of using the CF and or the exact (DP) inference methods for
training and testing the model. Using the CF inference method
instead of the exact DP inference improves the training speed by
an order of magnitude, from 20 h down to just 2. This is because
the cost of training is dominated by the iterative re-estimation of
the latent variables and retraining, each of which requires running
inference multiple times. Note that, differently from [12] which
requires tuning after the model has been learned, our method can
be applied while the model is learned.

A notable result from Table 1 is the fact that, for each training
method (exact DP or CF) and model type (with or without lateral
constraints), the accuracy never decreases, and in fact increases
slightly, when the exact test procedure (DP) is substituted with
the CF inference algorithm. This is probably due to the aggressive
hypothesis pruning of the CF search which promotes less ambiguous
detections. A second observation is that the lateral constraints are very
effective and increase the AP by about 4–5% when using CF inference.

4.2. PASCAL VOC

We compare our CF model with state-of-the-arts methods on
VOC 2007 using the variant with sibling constraints. Table 2 shows
that the classification accuracy of the CF detector is similar to the
one of state-of-the-art methods which are about an order of
magnitude or more slower. The CF detector is also compared to
the part-based cascade of [12], which has a similar speed. How-
ever, the results reported in [12] are generated from detectors

Table 2
Detection AP and speed on the PASCAL VOC 2007 test data. Our method has similar accuracy than other state-of-the-art methods but much faster, both in training and test.

Plane Bike Bird Boat Bottle Bus Car Cat Chair Cow Table

BOW [24] 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5
PS [3] 29.0 54.6 0.6 13.4 26.2 39.4 46.4 16.1 16.3 16.5 24.5
Hierarc. [10] 29.4 55.8 9.40 14.3 28.6 44.0 51.3 21.3 20.0 19.3 10.3
Cascade [12] 22.8 49.4 10.6 12.9 27.1 47.4 50.2 18.8 15.7 23.6 10.3
CF 27.9 54.8 10.2 16.1 16.2 49.7 48.3 17.5 17.2 26.4 21.4

Dog Horse Mbike Person Plant Sheep Sofa Train Tv Mean Time

BOW [24] 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 32.1 � 70
PS [3] 5.0 43.6 37.8 35.0 8.8 17.3 21.6 34.0 39.0 26.8 � 10
Hierarc. [10] 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6 � 8
Cascade [12] 12.1 36.4 37.1 37.2 13.2 22.6 22.9 34.7 40.0 27.3 o1
CF 11.4 55.7 42.2 30.7 11.4 20.9 29.1 41.5 30.0 28.9 o1

Fig. 8. Performance of Rigid and Deformable models with CF inference on the PASCAL
VOC 2007. The figure reports the average precision obtained for the 20 classes by the
two models.

Table 3
Comparison of inference methods on PASCAL VOC 07. Models are trained using
either Exact inference or CF inference and evaluated using either Exact inference,
CFþEx(100,10) where the best 100 or 10 hypothesis of CF inference are refined
using exact inference, and CF inference.

Train Exact CF

test Exact CFþEx
(100)

CFþEx
(10)

CF Exact CFþEx
(100)

CF10) CF

Plane 32.2 32.2 32.6 28.1 29.8 30.2 30.8 27.9
Bicycle 58.4 58.1 54.5 56.2 58.6 58.4 54.2 54.4
Bird 10.7 10.7 10.7 7.4 6.4 6.5 6.5 10.2
Boat 13.9 14.1 12.5 12 16 15.9 15.5 16.1
Bottle 19.0 19.1 17.8 17.8 16.3 16.4 14.2 16.2
Bus 49.8 50.0 49.1 45.5 52.6 52.5 51.1 49.7
Car 52.0 51.7 49.1 48.2 51.2 50.8 49.4 48.3
Cat 23.1 23.1 22.0 19.5 17.1 17.0 18.1 17.5
Chair 20.3 19.3 17.7 16.0 19.2 19.2 17.2 17.2
Cow 29.4 29.7 28.3 27.5 28.6 28.2 28.2 26.4
Table 29.3 29.2 28.3 22.2 23.6 24.3 24.6 21.4
Dog 13.5 13.5 13.7 12.4 12.0 12.0 12.7 11.4
Horse 59.6 59.3 57.8 57.3 57.7 57.7 56.3 55.7
Mbike 44.5 44.3 43.2 43.6 43.1 43.0 42.5 42.2
Person 29.7 29.5 26.4 29.7 31.7 31.6 28.3 30.7
Plant 12.9 12.2 12.5 12.9 12.4 12.4 12.4 11.4
Sheep 26.2 26.2 26.1 23.5 25.2 25.1 23.8 20.9
Sofa 29.6 29.8 28.5 28.5 26.2 28.0 27.9 29.1
Train 44.0 44.2 45.2 43.5 43.0 43.2 44.0 41.5
Tv 39.2 39.5 39.4 36.9 36.8 36.6 35.6 30.0

Mean 31.9 31.8 30.8 29.4 30.4 30.5 29.7 28.9
HOG

(M)
66.5 8.12 5.75 4.72 66.5 8.12 5.75 4.72

Speed-
Up

1.0 8.1 11.6 14.1 1.0 8.1 11.6 14.1
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trained on the VOC 2009 data, which contains twice as many
training images as found in the VOC 2007 data. Note that, as
explained in Section 3.5, our results are obtained using the fast CF
inference during training too, reducing the training process for
each class to few hours.

Rigid vs. deformable model. Fig. 8 compares a rigid and a deformable
model both using CF inference. The rigid model (rigid CF) is a
simplified version of our deformable model, where each model
resolution is a rigid block without moving parts. This model is very
similar to the one presented in [8]. The gain obtained by the
deformable model is around 6 AP points. This shows that the
increment in the model complexity due to the introduction of local
deformations is worth.

CF, DP, and their combination. Table 3 evaluates the different
inference methods on the PASCAL VOC 2007 data on top of models
trained for each class using the exact DP inference procedure.
Therefore approximations are for now factored out during training.

The most accurate detections are obtained by Exact (DP)
inference which obtains a mAP close to 32 points. This is very
close to the state-of-the-art, and probably equivalent since it does
not use any post-processing such as contextual models or bound-
ing box refinement [3]. The row labelled HOG(M) reports the
number of HOG cells (in millions) that are involved in a filtering
operation during inference, as this dominates the cost of inference
and in fact is shown here to correlate very well with the speed of
each method. The speed of DP is used as reference and speed-ups
are expressed relative to it (so DP has a speed-up of 1.0).

Using CF inference the number of HOG cells that enter filtering is
reduced from 66 millions to less than 5 millions, with a corresponding
speed-up of more than one order of magnitude. However, the mAP
decreases slightly. A trade-off between exact and approximate infer-
ence is given by the combination of CF and DP (labelled CFþEx),

as described in Section 3.2. Applying DP to the best 100 or 10 best
hypotheses selected by CF strategy results in nearly optimal accuracy
and a speed-up factor of either 8 or 11 times compared to standard DP.

CF and cascade of parts This paragraph evaluates the combination
of our CF inference with a threshold-based filtering, as explained in
Section 3.2. In order to simplify the visualization of the results,
we set the two thresholds τ1 ¼ τ2 ¼ τ. Setting independently the
optimal value of the two thresholds can further improve the speed-
up. For all VOC classes we draw the trade-off between detection
speed (taking as reference exact inference computed using DP) and
Average Precision (AP) achieved by varying τ.

For classes with high AP (Fig. 9a), a speed-up of more than two
orders of magnitude with marginal decrease in detection accuracy is
obtained. For classes with moderate AP (Fig. 9b), the speed-up
achievable before the AP is reduced noticeably is smaller, but often
above 100-fold. For classes with low AP (Fig. 9c), the speed-up is
limited because the detection accuracy decreases abruptly as more
solutions are pruned. Overall, this analysis indicates that by increasing
the quality of the detector we can also expect a higher margin of gain
in speed.

VOC 2009. Table 4 evaluates the CF inference on the PASCAL VOC
2009 [36]. The conclusions are analogous to the 2007 data in terms
of speed-up and overall accuracy. While the PASCAL challenge
results do not include the method speeds, a simple analysis of the
HOG-based methods UOCTTI and MIZZOU suggests that their com-
plexity is at least an order larger than ours.

5. Summary

We have presented a method that can substantially speed-up
object detectors that use multi-resolution deformable part models.

Fig. 9. Speed-Up vs AP. for classes with high AP. The figure reports the average precision vs speed-up (over the exact DP inference algorithm) for the CF detector combined
with a pruning cascade on PASCAL VOC 2007 for classes with: high AP (a), medium AP (b), and low AP (c).

Table 4
Detection AP on the PASCAL VOC 2009 test data. We compare our method with the official results of the PASCAL VOC 2009 [36]. Using much less computation in both
training and test, CF inference achieves results comparable to the state-of-the-art.

Plane Bike Bird Boat Bottle Bus Car Cat Chair Cow Table

OXFORD 47.8 39.8 17.4 15.8 21.9 42.9 27.7 30.5 14.6 20.6 22.3
UOCTTI 39.5 46.8 13.5 15.0 28.5 43.8 37.2 20.7 14.9 22.8 8.7
MIZZOU 11.4 27.5 6.0 11.1 27.0 38.8 33.7 25.2 15.0 14.4 16.9
CF 41.3 45.5 10.9 13.6 18.3 44.0 33.3 24.2 11.7 19.1 14.9
CFþEx(100) 41.5 46.6 11.5 15.3 20.0 44.3 35.9 23.9 13.1 20.7 15.9

Dog Horse Mbike Person Plant Sheep Sofa Train Tv Mean

OXFORD 17.0 34.6 43.7 21.6 10.2 25.1 16.6 46.3 37.6 27.7
UOCTTI 14.4 38.0 42.0 41.5 12.6 24.2 15.8 43.9 33.5 27.9
MIZZOU 15.1 36.3 40.9 37.0 13.2 22.8 9.6 3.5 32.1 21.9
CF 12.4 37.2 42.5 22.1 10.3 20.6 18.3 39.4 31.8 25.6
CFþEx(100) 13.4 40.4 44.1 22.4 10.7 23.4 21.9 43.4 34.3 27.1
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This method uses a coarse-to-fine inference procedure to dramatically
reduce the cost of matching object parts to the image, which
dominates the cost of inference in most detectors. Compared to other
speed-up techniques [12], this method does not require the learning of
thresholds or other parameters, which simplifies its use during the
training of the model, results in a constant speed-up regardless of the
image content, and can be combined with the deformable part
cascade [12] multiplying the speed-up factors. Finally, we have
evaluated the coarse-to-fine search with DP rescoring, resulting in
performance nearly identical to the full DP model at a fraction of
the cost.
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