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Abstract

We present a method for fast 3D reconstruction and real-
time rendering of dynamic humans from monocular videos
with accompanying parametric body fits. Our method can
reconstruct a dynamic human in less than 3h using a sin-
gle GPU, compared to recent state-of-the-art alternatives
that take up to 72h. These speedups are obtained by us-
ing a lightweight deformation model solely based on lin-
ear blend skinning, and an efficient factorized volumetric
representation for modeling the shape and color of the per-
son in canonical pose. Moreover, we propose a novel local
ray marching rendering which, by exploiting standard GPU
hardware and without any baking or conversion of the radi-
ance field, allows visualizing the neural human on a mobile
VR device at 40 frames per second with minimal loss of vi-
sual quality. Our experimental evaluation shows superior
or competitive results with state-of-the art methods while
obtaining large training speedup, using a simple model, and
achieving real-time rendering.

1. Introduction
Emerging technologies such as virtual and mixed reality

make photorealistic 3D reconstruction increasingly relevant
and impactful. We can envisage a future in which, instead of
taking pictures or movies with smartphone cameras, anyone
will be able to capture and experience full 360◦ holograms
with equal quality, simplicity, and generality. However, de-
spite recent progress in methods such as neural rendering,
we remain quite far from this objective.

Many neural rendering approaches assume static scenes
and the availability of dozens if not hundreds of input views
for each reconstructed scene [1, 2, 24, 31, 32, 38]. Many dy-
namic extensions of neural rendering [21,25–27,30] handle
small deformations. The most interesting content, however,
is highly dynamic and often involves people. This has mo-
tivated the development of specialised models that can ac-
count for the highly-deformable structure of such objects,
but most of these still assume that scenes are captured from
multiple cameras [20,22,29,44], which is incompatible with

Figure 1. Given a monocular video with a SMPL parametric body
fit, our method quickly reconstructs a 3D model of the person in
canonical pose using a factorized radiance field representation [5].
Then, it extracts a tight rigged mesh and uses a new local ray-
marching render which, without baking or otherwise converting
the radiance field, can render the dynamic human on a consumer
VR device at 40FPS. Videos and demos are available at https:
//real-time-humans.github.io/.

consumer applications. When data is captured by a smart-
phone or pair of AR glasses, only a single slowly-varying
viewpoint is available for 3D reconstruction.

A few methods such as HumanNeRF-UW [41],
A-NeRF [36] and NeuMan [17] can obtain photorealistic
reconstructions of articulated humans from such monocular
videos. These methods use articulated human models such
as SMPL [23] to define a scaffold to model the object de-
formation, using a pre-trained predictor to obtain an initial
estimate of the 3D body shape and pose. Then, they cap-
ture the shape of the subject over time as a deformation of
a canonical radiance field, which is time-invariant. Unfor-
tunately, jointly learning a radiance and deformation fields
with a neural network requires several days of optimiza-
tion to reconstruct a single monocular video. Furthermore,
3D video playback using the standard emission-absorption
method is also slow due to the necessity of evaluating the
neural network hundreds of times for each rendered pixel.
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In this paper, we reconsider these architectures and we
improve them significantly in terms of training and render-
ing speed, achieving fast training and real-time rendering.
This is achieved by three design decisions, discussed next.

First, instead of representing the radiance field with a
neural network, we use a tensor-based decomposition of
the field, inspired by [4, 5, 33]. This representation leads
to faster convergence than when using an MLP.

Second, we directly leverage linear blend skinning
(LBS) in SMPL to model motion during training and ren-
dering. This differ from previous approaches that trained a
module to invert SMPL [20, 41] or learned a 3D scene flow
field using a separate MLP [17, 22, 41], which is costly. In-
stead, we map each 3D point to canonical space solely by
approximating the inverse LBS function using the inverse
transformation of the closest SMPL face. This approxima-
tion is good where it matters, namely when the queried 3D
point is already in the vicinity of the body surface.

Third, we propose to extract a personalized human mesh
template from the reconstructed human in the factorized ra-
diance field. During training, the exact shape of the per-
son is not known, and the continuous volumetric represen-
tation allows to learn it though back-propagation. However,
neural rendering requires sampling the full estimated ob-
ject bounding box, which is too slow for real-time render-
ing. After the training is completed, we thus extract a mesh
that is close to the surface of the reconstructed person. This
mesh can then be used as a tight scaffold to implement neu-
ral rendering efficiently on device. Specifically, we describe
a new local ray marching algorithm that carries out, using
a custom shader, ray marching and emission absorption on
a short distance from the mesh triangles as these are pro-
cessed by the GPU rasteriser. Compared to other recent
hardware-accelerated neural rendering techniques, our tech-
nique avoids baking, i.e., sampling the radiance field values
and storing them in a different specialized data structure,
which is usually expensive and lossy. Instead, it displays
the unmodified radiance field directly.

To summarize, our contributions are the following: 1.
We show that adopting a factorized radiance field represen-
tation and a simple LBS-based deformation model allows
for fast reconstruction (24 times faster than HumanNeRF-
UW) with comparable or better rendering quality on the
ZJU-Mocap [29] scenes. 2. We show that it is possible
to extract a canonical mesh from the learned radiance field,
together with a rig derived from the LBS model in SMPL,
which approximates well each individual. 3. We show that,
given these design choices, it is possible to use GPU hard-
ware to renderer the deformable radiance field model pre-
serving quality while achieving real-time playback (at 40
FPS on the mobile GPU of a consumer VR device), which
is three orders of magnitude faster than the HumanNeRF-
UW approach (0.05 FPS).

2. Related work

Reconstructing humans from single images. Perform-
ing 3D reconstruction of humans from single images is ill-
posed and requires leveraging prior information on human
geometry and poses. Several methods [3, 19, 37] use the
SMPL model [23] as prior, but they result in only approxi-
mate reconstructions which are insufficient for VR/AR ap-
plications. PIFu [33, 34] directly predicts a volumetric rep-
resentation of a human from a single RGB image using an
MLP, but generalizes poorly beyond the training data dis-
tribution. ARCH [14, 16] combines parametric models and
implicit function representations to obtain higher fidelity re-
constructions, which are also rigged and animatable, but
achieve limited overall quality due to the fact that they use
a single image and cannot take advantage of video data.

Reconstructing humans from multiple videos. In or-
der to obtain higher quality reconstructions, several meth-
ods [20, 22, 29, 44] leverage multiple synchronized videos.
Neural Actor [22] learns neural radiance fields [24] to
model a human in canonical pose, and uses the inverse lin-
ear blend skinning (LBS) transform from SMPL to map be-
tween posed and canonical spaces. TAVA [20] uses a simi-
lar approach, but proposes to learn the inverse LBS weights
and use Mip-NeRF [1] instead of vanilla NeRF. Neu-
ral Body [29] attaches neural codes to the SMPL vertices,
poses them, and converts them to a full volumetric represen-
tation of the radiance field using a 3D sparse CNN [9, 13].
HumanNeRF-ShanghaiTech [44] combines NeRF and the
inverse LBS mapping (as in Neural Actor), but conditions
the NeRF model on features sampled from neighbouring in-
put views similar to IBRNet [39] for rigid scenes. However,
these methods require multiple views, and are thus inappli-
cable when only a monocular sensor is available.

Reconstructing humans from monocular videos. Re-
cent methods considered 3D human reconstruction from
monocular videos. Vid2Actor [40] extracts from SMPL
a motion basis, uses it for inverse LBS, and trains two
3D CNNs to regress the inverse LBS weights in posed
space and the density and color of the canonical human.
HumanNeRF-UW [41] extends Vid2Actor by replacing
their voxel-grid representation with a coordinate MLP and
further refine deformations using SMPL pose refinement
and a non-rigid scene-flow MLP. A-NeRF [36] computes
codes of the posed 3D points that are relative to the SMPL
skeleton and use those to construct a pose-dependent NeRF
model (somewhat analogously to the approach used in Neu-
ral Body). NeuMan [17] decomposes the scene into a static
background component and the foreground dynamic hu-
man, and learns a different NeRF model for each compo-
nent separately. They use inverse LBS for warping points
from posed to canonical space and a standard NeRF MLP
for modelling the canonical human.
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While powerful, these models are typically very slow to
train (sometimes in the order of days on a single GPU) and
to render, making them unsuitable for playback in mobile
devices such as in VR headsets.

Real-time neural and volumetric rendering. Most of
the works discussed above represent radiance fields us-
ing MLPs and use raymarching for rendering. Hence, the
MLPs need to be evaluated hundreds of time for each pixel,
which requires seconds for each rendered image. For real-
time rendering, several methods have proposed to “bake”
or cache the NeRF MLP [11, 15, 42]. However, such rep-
resentations are memory intensive, do not support dynamic
content, and require a high-end GPU for achieving real-time
rendering.

Closer to ours, MobileNeRF [7] leverages the fast tri-
angle rasterization hardware in modern GPUs for real-time
rendering of NeRF, but with substantial differences. They
also need to “bake” the radiance field into an especially-
crafted mesh to avoid emission-absorption rendering. Be-
cause they change the rendering model, they require a con-
version step that involves further learning and approxima-
tions, which also does not support dynamic content. In
contrast, our technique renders in real time the original dy-
namic radiance field, accelerating emission absorption. Be-
cause we load the original model into the GPU, we do not
require conversion, and we can preserve the shape and ap-
pearance details in the source radiance field with only minor
approximations. As far as we are aware of, our method is
the first one to be able to render dynamic radiance fields in
real-time on mobile hardware without resorting to baking.

3. Fast reconstruction of dynamic humans

Our method leverages recent progress in neural fields
and monocular 3D reconstruction in order to allow for fast
3D reconstruction of humans from monocular videos and
corresponding parametric SMPL fits. During reconstruc-
tion, our method employs the following modules: (i) a fac-
torized volumetric representation that learns the shape and
color of the human in canonical pose, (ii) a deformation
module which performs inverse linear blend skinning to
map 3D points from posed space to canonical space. In
addition, we propose (iii) a rasterization-based method for
rendering the trained model in real-time. Our full model is
illustrated in Fig. 2. Each of these components is presented
next in more detail.

3.1. Factorized volumetric radiance fields

In this work, we leverage recent progress on neural ra-
diance fields [5, 24] as a continuous and differentiable rep-
resentation for modeling shape and color. Next, we review
these models and present the factorized formulation that we
adopt in this work.

Radiance fields. An image I : Ω → R3 is a map from
pixels u ∈ Ω = [0, . . . ,W ] × [0, . . . ,H] to correspond-
ing colors I(u) ∈ R3. The camera projection function
π : R3 → R2 is a map from 3D points x ∈ R3 in the world
space to corresponding pixels (image points) u ∈ R2. A ra-
diance field is a pair of functions mapping each 3D point x
to a corresponding density σ(x) ∈ R+ and corresponding
color c(x) ∈ R3.

The color of a pixel u is obtained by marching along the
ray ru originating from the camera center and propagating
in the direction of pixel u (interpreted as a 3D point). Let
(xi)

N−1
0 be a sequence of N samples along ray ru sepa-

rated by steps ∆. The color of pixel u is extracted from the
radiance field via the following emission-absorption render-
ing equation:

I(u) =
N−1∑
i=0

(Ti−Ti+1)c(xi), Ti = e−∆
∑i−1
j=0 σ(xi). (1)

where Ti is the accumulated transmittance up to xi, namely
the probability that a photon is transmitted from point xi
back to the camera center without being absorbed.

Deformable radiance fields. The radiance field of eq. (1)
could be extended to represent the different poses of an ar-
ticulated object by adding the object’s pose parameters θ
as an additional parameter of the density σ(x; θ) and color
c(x; θ) functions. Modelling such functions directly, how-
ever, would be statistically inefficient because it would not
account for the fact that the different poses are not arbitrary,
but related by geometric deformations.

Therefore, in this work we adopt more efficient approach
with considers canonical density σ̄(x̄) and color c̄(x̄) fields
that are pose-invariant and, separately, a posing function
x = h(x̄; θ) mapping points x̄ from the canonical space to
their posed locations x. The pose-dependent fields are the
composition of the pose-invariant fields and of the inverse
of the posing function:

σ(x; θ) = σ̄(h−1(x; θ)), c(x; θ) = c̄(h−1(x; θ)). (2)

Tensorial fields. We leverage the recent factorized volu-
metric neural field formulation from TensoRF [5] to repre-
sent the shape and color of the canonical human.

In order to model the field (σ, c), we do not use the
standard approach of adopting an MLP and positional en-
coding [24], but use instead the TensoRF parameteriza-
tion. Specifically, we consider a voxel grid of resolution
D ×H ×W and further decompose it as the sum of three
matrix-vector products:

σ̄(x̄)=ρ

(
Rσ∑
r=1

MY X
r,ȳ,x̄v

Z
r,z̄+MY Z

r,ȳ,z̄v
X
r,x̄+MXZ

r,x̄,z̄v
Y
r,ȳ

)
. (3)
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Figure 2. Overview of the proposed method. During training, we shoot rays from the training cameras onto the scene and sample points
withing the bounding box of the parametric human body mesh. Points which are close to the mesh are warped to canonical space via
inverse linear-blend-skinning (LBS), where the factorized volumetric representation is sampled for density and color, and whose values
are used to perform raymarching. After training, a canonical mesh is extracted from the learnt factorized volumetric representation. For
real-time rendering, the canonical mesh is posed, rasterized, and used to guide the inverse skinning and local raymarching.

Here x̄ = (x̄, ȳ, z̄), r is the channel index, and the sub-
indices indicate the tensor sampling position.1 In addition,
MY X is a Rσ ×H ×W tensor, vZ a Rσ ×D matrix, and
the other terms follow a similar pattern, so in total there are
Rσ(HW +HD +WD +H +W +D) parameters only,
far less than HWD as long as the number of components
Rσ � (HWD)

1
3 . The activation function ρ(a) = log(1 +

exp(Ga)) is the softplus operator with a fixed gain G ≈
1/∆, where ∆ is the step between ray samples.

The color field c̄ is defined in a similar manner, for each
of the three RGB components, and uses the sigmoid as ac-
tivation function.

The adoption of these factorized representation not only
allows for faster training compared to the MLP-based mod-
els, but is particularly suitable for fast real-time render-
ing by storing the different tensor factors as textures that
are naturally interpolated by the graphic shaders of GPUs
(cf. Sec. 4).

3.2. Skinning-based deformation module

Several previous works use MLP-based deformation
models [17, 22, 26, 27, 41], alone, or in conjunction with
articulated deformations [17,22,41]. Because these models
are slow to evaluate, we propose to use only a linear blend
skinning (LBS) articulated deformation model, and show
that this simple deformation model can still achieve com-
petitive results while being much simpler and allowing for
real-time rendering. We next review LBS and present our
proposed approach.
Posing via blend skinning. Given that humans are articu-
lated objects, we leverage the parametric SMPL model [23]

1In order to map coordinates x̄ = (x̄, ȳ, z̄) defined in canonical space
to indices in the respective tensors and matrices above, we use bilinear
interpolation after remapping the nominal bounding box of the object to
the corresponding grid dimensions.

and the linear blend skinning formulation which allows to
easily build the posing function h, given the SMPL tem-
plate mesh model and the pose parameters. In particular, the
SMPL model provides a template meshM = (V,F) with
points v̄ ∈ V ⊂ R3 and triangular faces f ∈ F . In addition,
the template mesh is associated with a skeleton, which is a
collection of bones b ∈ {1, . . . , B} whose angles define the
pose parameters. Each template vertex v̄ is softly attached
to the different bones by its skinning weights w(v̄) ∈ RB+.
Then, the posed vertices can be obtained by an affine map
v = h(v̄; θ) = A(v̄; θ)v̄ , where:

A(v̄; θ) =

B∑
b=1

wb(v̄)Ab(θ), (4)

and Ab(θ) is the affine transform associated to bone b for
the pose θ. More details are provided in Appendix A.1.
Volumetric and inverse blend skinning. Skinned mod-
els like SMPL only define the skinning weightsw(v̄) for the
vertices of the template mesh, which approximates the real
object surface. However, because the radiance field is a vol-
umetric representation, we need transformations to be de-
fined around the object surface, and not just on the surface,
and thus the skinning weights need to be extended to nearby
3D points. Furthermore, in order to perform ray march-
ing and compute the pose-invariant fields from eq. (2), we
need to map points x from the posed space back to canon-
ical space, and therefore knowledge of the posing function
h(x̄; θ) is not enough; instead, we require its inverse:

x̄=h−1(x; θ)=A(x̄; θ)−1x=

[
B∑
b=1

wb(x̄)Ab(θ)

]−1

·x. (5)

Because x̄ appears on the l.h.s. and r.h.s. of this expression,
this defines x̄ as the solution to an equation which cannot be
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Figure 3. Real-time radiance fields via rasterization. The posed
face f is used to determine the portion of the radiance field that
is likely to affect given pixel u and to map computations to the
rasterization unit of the GPU.

solved in closed form. Prior works [6, 10] addressed these
issues by learning the extended skinning weights and/or the
inverse posing function, but these approaches increase the
complexity of the model and therefore the training and ren-
dering time.

In contrast, we employ the approach introduced in [22],
where the inverse transformation of a point x is approxi-
mated to that of the closest mesh vertex v̄i∗ :

x̄ = h−1(x; θ) ≈ A(v̄i∗ ; θ)−1x,

s.t. i∗ = argmin
i
‖x− vi‖2. (6)

This approximation is only valid locally, and therefore only
applied to ray points x where the distance to the closest ver-
tex is below a threshold τ . Otherwise, points are discarded
and not used for raymarching, which is equivalent to setting
σ(x; θ) = 1[d(x,vi∗ )≤τ ] σ̄(h−1(x; θ)).

Contrary to prior work, we do not combine this deforma-
tion with any additional trainable model, in order to allow
for real-time evaluation of the deformation model in mobile
hardware. Our experimental results show that our method
performs similarly to prior state-of-the-art despite of this
simplified deformation model.

4. Real-time dynamic radiance fields
The factorized radiance field and deformation model pre-

sented in Sec. 3.1 and Sec. 3.2 were chosen specifically to
allow for real-time rendering, through a customized GPU
shader program that implements an efficient local emission-
absortion raymarching. Our approach avoids baking or con-
version steps and allows to replay the original radiance field
with only minor approximations.
Customized human mesh. Our proposed local ray-
marching is guided by an initial rasterization step of the
posed mesh. In order to handle occlusions and object
boundaries properly, we replace the SMPL mesh with one
that more accurately approximates the body shape at rest,

and transfer to the SMPL joints and blendshapes so that it
is fully-rigged and amenable for posing.

We extract this mesh from the radiance field by: (i) ren-
dering frames with masks and depth-maps from the canon-
ical model, (ii) unprojecting these depth maps to form a
dense point cloud and, (iii) converting this point cloud onto
a mesh. An example of the extracted mesh is shown on
Fig. 2. Please refer to the Appendix A.2 for further details.

Rasterization of the posed mesh. Without any guidance,
volumetric rendering using eq. (1) requries to sample hun-
dreds of ray points for each generated pixel. For an opaque
object, this is extermely inefficient, as only a tiny fraction
of those samples land close enough to the surface to make a
significant contribution to the final color. Instead, we resort
to rasterization of the customized posed mesh as an initial
step of our rendering pipeline, which provides guidance for
performing a local volumetric rendering.

In this case, the rasterizer iterates over the triangles
f ∈ F of the mesh, quickly finding the pixels u that are
contained in them (Fig. 3). The rasterizer also quickly com-
putes the barycentric coordinates αi of the 3D face point
vfu ∈ f that projects onto pixel u, defined as:

vfu =

3∑
i=1

αivfi, αi ≥ 0,

3∑
i=1

αi = 1, (7)

where vfi are the three mesh vertices. Then, the color I(u)
of the pixel is obtained by computing the color c(vfu) of
point vfu. This calculation is done in parallel for all pixels
using a shader program running in the GPU.

Local emission-absorption raymarching. Instead of
computing the color c(vfu) by using an UV-texture map-
ping, as it is usually done for coloring meshes, we com-
pute c(vfu) by performing a local emission-absorption ray-
marching in the vicinity of point vfu, as illustrated in Fig. 3.

In practice, we first map the point vfu from the posed
mesh to its counterpart in canonical space v̄fu by apply-
ing the transformation A(v̄fu)−1. For this, A(v̄fu)−1 is
efficiently and automatically approximated by the vertex
shader through barycentric interpolation, by storing the in-
verse transformation A(v̄)−1 of each vertex v̄ ∈ V as a
vertex property.

Once v̄fu is computed, we can consider a small number
of samples x̄i (as illustrated in the right side of Fig. 3) to
perform local emission-absorption raymarching. For this,
the evaluation of the factors M and v of the density and
color for fields can be done very efficiently on the GPU by
mapping these 2D and 1D tensors to 2D and 1D textures
maps and using the native GPU texture sampling functions.

Once the densities and colors are computed for all sam-
ples x̄i in the local ray segment, eq. (1) is used to obtain the
final pixel color I(u).
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(a) Ground-truth (b) NeuralBody [29] (c) HumanNeRF-UW [41] (d) Ours - reconstruction (e) Ours - real-time

Figure 4. Qualitative results on ZJU-Mocap. We show a qualitative comparison between our proposed method and other state-of-the-
art methods on test images. Our method produces sharp images, perceptually similar to those of HumanNeRF-UW, despite presenting a
simpler deformation model. Faces have been blurred for privacy reasons.
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LPIPS*1000 ↓ PSNR ↑ SSIM ↑

Sequence ID Sequence ID Sequence ID
Method 377 386 387 392 393 394 377 386 387 392 393 394 377 386 387 392 393 394

Neural Body (14h) 43.08 48.08 57.34 50.39 57.09 54.36 28.87 30.12 26.76 29.84 27.80 28.90 0.9609 0.9588 0.9462 0.9575 0.9472 0.9497

HumanNeRF-UW (72h) 30.28 34.16 41.10 36.24 40.30 38.12 30.19 32.83 28.06 30.91 28.44 30.47 0.9642 0.9669 0.9551 0.9641 0.9544 0.9567
Ours - reconstruction (2-3h) 27.72 34.42 43.44 35.68 41.28 38.00 30.00 32.90 28.08 31.08 28.51 30.28 0.9710 0.9687 0.9545 0.9645 0.9535 0.9564

Ours - real-time (40FPS) 32.76 35.01 42.87 37.79 41.86 40.53 28.42 32.19 27.76 30.35 27.91 29.46 0.9671 0.9677 0.9540 0.9635 0.9531 0.9555

Table 1. Results on the ZJU-mocap benchmark. Our method obtains the best reconstruction results on most of the scenes on the PSNR
metric, and on half of the scenes, with respect to the LPIPS and SSIM metrics, while being significantly faster to train (2–3h vs 14h or
72h). Our real-time variant introduces a small performance drop but mantains similar visual quality (cf. Fig. 4).

Limitations. The proposed local emission-absorption
raymarching relies on the rasterization of the posed cus-
tomized human mesh to define the local ray segments where
ray marching is performed. This can cause small issues
around occlusion boundaries, if the estimated mesh is either
too small or too large. If the occluding part of the object is
too small, the render will show a slight “loss of mass” when
rendered. If it is too large, this additional occluding part of
the object will produce ”black pixels”, which should in re-
ality show the background part of the object. This issue is
minimized by making the scaffold as tight as possible.

5. Experimental evaluation

In order to demonstrate the performance of our proposed
method, we evaluate results on two different benchmarks,
the ZJU-Mocap scenes and the NeuMan scenes. In addi-
tion, we show the results of the proposed on-device real-
time renderer and ablations on the color model employed
by the factorized volumetric representation.

Implementation details. We implement our model using
PyTorch [28]. In particular, we use 8 channels for modeling
density and color (Rσ=Rc=8) in the tensorial model. In ad-
dition, we use a coarse-to-fine training approach, increasing
the voxel grid resolution D ×H ×W several times during
training, following [5]. We begin training with a resolution
HWD = 106 and end with HWD = 4.096 × 106, scaled
accordingly to the person’s bounding box. At each train-
ing iteration, a batch of training rays ru is constructed by
sampling six 32 × 32 image patches, each centered around
a foreground point. The models are trained for 30 epochs
of 1000 iterations each, regardless of the number of train-
ing images. Before posing the SMPL template with the
provided θdata parameters from each dataset, we compute
a small refinement θref using a 4-layer MLP with 256 hid-
den units, following [41]. The final body parameters are
thus θ = θref ◦θdata. The factorized neural field and the pose
correction MLP are trained jointly. For training, we employ
a photometric loss, a sparsity regularization loss, as well
as a perceptual loss (LPIPS). The whole training procedure
takes between 2 and 3 hours on a single modern GPU.

ZJU-Mocap benchmark. We first evaluate our method
on the ZJU-Mocap dataset introduced in [29]. We follow
the evaluation protocol from [29] and, for each sequence,
use images from 19 unseen cameras for testing, sampled at
a 30 frames interval for the first 300 frames, giving 190 test
images per sequence. Following [41], we evaluate on 6 se-
quences, identified by their sequence IDs (377, 386, 387,
392, 393, and 394). In Tab. 1 and Fig. 4 we present the
quantitative and qualitative results of our method compared
to NeuralBody [29] and HumanNeRF-UW [41]. We present
results both for the reconstruction phase (Sec. 3) using stan-
dard emission-absorption raymarching and for the proposed
real-time rendering (Sec. 4) that can run at 40FPS on mo-
bile hardware. Our reconstructions obtain the best PSNR
results for most of the scenes, and best LPIPS and SSIM re-
sults for half of the scenes, while being significantly faster
to train than the baselines (2–3h for our method vs. 72h
for HumanNeRF-UW and 15h for Neural Body). In ad-
dition, we observe that the rasterization-guided raymarch-
ing introduces a small performance loss, while allowing for
real-time rendering. As shown in Fig. 4, the visual qual-
ity of our reconstuction and real-time variants is on-par or
superior to previous methods.
NeuMan benchmark. In addition, we evaluate our
method on the scenes from NeuMan [17]. The NeuMan
method uses a NeRF [24] module to model the background
scene, which is used for segmenting the person. As our
model does not explicitly model the background, we use
XMeM [8] to segment the foreground person by scribbling
the first frame of each sequence and propagating results
automatically. The results in Tab. 2 show that our recon-
structions outperform NeuMan on two scenes according to
LPIPS, and are slightly inferior for the other four scenes.
Nevertheless, qualitative results from Fig. 5 show that the
perceptual quality of our method is similar to that of Neu-
Man, even for our real-time renders.
Model ablations. We also evaluate the effect of modify-
ing the color model of the factorized volumetric represen-
tation. In Sec. 3.1 we proposed to model color directly, i.e.
outputting RGB values directly from the factorized volu-
metric representation. Alternatively, we can have the factor-
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LPIPS*1000 ↓ PSNR ↑ SSIM ↑

Sequence name Sequence name Sequence name
Method bike citron jogging lab parkinglot seattle bike citron jogging lab parkinglot seattle bike citron jogging lab parkinglot seattle

NeuMan 44.65 28.00 41.53 43.38 44.23 24.23 26.73 27.88 26.31 28.37 27.43 27.80 0.9521 0.9633 0.9496 0.9593 0.9581 0.9687
Ours - reconstruction 49.63 29.60 42.00 42.18 49.24 19.76 26.37 26.60 25.88 28.29 24.12 28.43 0.9465 0.9588 0.9461 0.9574 0.9524 0.9722

Ours - real-time 48.04 31.43 41.86 42.71 56.54 21.14 25.86 26.12 25.13 27.39 23.12 27.86 0.9457 0.9580 0.9451 0.9552 0.9438 0.9706

Table 2. Quantitative results on the NeuMan benchmark. Our method obtains comparable reconstruction performance to NeuMan [17]
for most sequences, with superior performance for seattle, while having real-time rendering capabilities without significant loss in visual
quality (cf. Fig. 5).

Ground-truth NeuMan Ours - recon. Ours - real-time

Figure 5. Qualitative results on NeuMan scenes. Our method
obtains state-of-the-art visual quality, comparable to that of Neu-
Man, while being fast to train and render. Faces have been blurred
for privacy reasons.

Color
model

Pose
correction

LPIPS
*1000↓ PSNR↑ SSIM↑

Ours - recon. Direct Yes 36.76 30.14 0.9614
FA-Spherical Harm. SH Yes 36.97 30.17 0.9612
FA-MLP color MLP Yes 37.57 30.20 0.9616
FA-No pose corr. Direct No 38.63 29.95 0.9607

Table 3. Ablation study. We analyze the performance drop in-
curred by modifying several components of the proposed method.
We show the mean LPIPS, PSNR and SSIM metrics over all ZJU-
Mocap sequences.

ized representation output spherical harmonic coefficients
or color descriptors which are then used to and compute
the final RGB values via spherical harmonic functions or a
small color MLP, respectively. The results of using these
different color models are presented in Tab. 3. We observe
that the choice of the color model does not affect perfor-
mance significantly. We therefore propose to use direct
color prediction (RGB values), for its simplicity compared
to using spherical harmonics or MLP for color prediction,
allowing for faster real-time rendering. Finally, we observe
that disabling the body pose correction also diminishes per-
formance to a small extent.

6. Conclusion

We have introduced a method capable of learning neu-
ral radiance fields of articulated humans from monocular
videos. By adopting a factorized radiance field model and
a simple deformation model, we were able to cut down the
training time by an order of magnitude or more compared
to prior work, while matching these methods in visual qual-
ity. Furthermore, we have introduced a novel approach to
render these dynamic reconstructions in real-time on a mo-
bile GPU. This is done through a rasterization-guided local
raymarching which leverages a refined customized human
mesh for rendering the neural radiance field without resort-
ing to baking, and with minimal loss of quality. As far as
we know, this is the first work to perform realtime render-
ing of dynamic humans in mobile hardware using radiance
fields, and without resorting to baking. We hope this work
will inspire other future work in this area.
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Appendix A. Additional technical details
A.1. Linear blend skinning

Given a canonical mesh and its associated skeleton,
which is a collection of bones b ∈ {1, . . . , B}, and the pose
parameters θ, which are the rotations of the bone joints, lin-
ear blend skinning (LBS) allows to pose the canonical mesh
using the pose parameters alone. In order to account for
transitions between bones, each canonical vertex x̄ is not
assigned to a single bone, but rather softly attached to dif-
ferent bones by its skinning weights w(x̄).

Bones form a tree, where b′ = par(b) denotes the parent
of bone b, except for the root bone b = 1 which has no
parent.

Then, given a 3D point x̃ defined in the reference frame
of bone b, we can express it in the reference frame of the
parent bone as x′ = gb(θ)x̃, where gb(θ) ∈ SE(3) is
the rigid transformation between the two bones. Hence,
the pose vector θ specifies three rotation angles for each
transformation gb (the translation component is given by
the parent bone’s length); only for the root transformation
g1, which positions the skeleton in world space, θ specifies
the translation component as well. In order to express the
3D point in world coordinates x = Gb(θ)x̃, we compose
recursively the transformation towards the root:

Gb(θ) = Gpar(b)(θ) ◦ gb(θ), G1(θ) = g1(θ).

Consider now a 3D point x̄ in canonical space, rigidly at-
tached to bone b. In order to pose it, we first express it rela-
tive to its bone as x̃ = G−1

b (θ0)x̄, where θ0 is the canonical
pose. Then, we map it to world space by as x = Gb(θ)x̃.
In practice, each point x̄ is attached to all bones to a de-
gree expressed by the skinning weights w(x̄) ∈ RB , which
are non-negative and sum to one. The individual maps are
linearly combined (called blend skinning), resulting in the
affine map

A(x̄; θ) =

B∑
b=1

wb(x̄) Gb(θ) ◦G−1
b (θ0). (8)

For simplicity, in the main paper we consider the composed
affine map for each boneAb(θ) = Gb(θ)◦G−1

b (θ0), assum-
ing θ0 as fixed.

Finally, the corresponding posing function resulting
from linear blend skinning is

x = h(x̄; θ) = A(x̄; θ)x̄. (9)

A.2. Customized human mesh extraction

While previous methods have used algorithms such as
marching cubes to extract meshes from implicit volumetric
representations, we propose to use a render-based approach
instead, as our canonical model contains noise in the regions

where no supervision was provided due to the threshold τ .
To this end, we render frames from the trained canonical
factorized model, along with their depth maps and estimated
foreground masks, with a circular camera trajectory around
the object (in a turntable fashion).

The depth maps are computed by measuring the depth
w.r.t. to the current camera of the expected termination x̂t
of each camera ray, defined as

x̂t =
∑

i=0,...,N−1

(Ti − Ti+1)xi, (10)

as done in NeRF [21]. Similarly, the foreground masks are
obtained by computing the expected ray opacity as

ô =
∑

i=0,...,N−1

(Ti − Ti+1) = 1− TN , (11)

The estimated object foreground masks are obtained by re-
taining the pixels where ô > 0.5.

Then, each depth-map is unprojected using the camera
parameters and combined with the color render to obtain a
set of 3D points, which are then fused with those from other
images to obtain a dense point cloud. This point cloud is
finally filtered using the foreground masks, such that only
points that are classified as foreground for all images are
kept.

Next, this dense point cloud is converted into a mesh
by applying the screened Poisson surface reconstruction al-
gorithm [18], and simplified using an edge-collapse tech-
nique [12] such that the number of final faces is around
15K, which is on the order of magnitude to the template
mesh in SMPL. The surface normals for the extracted
canonical mesh are mapped to the surface normals of the
closest vertices of the underlying SMPL template mesh.
Note that these normals are not used for shading, but only
for running the screened Poisson surface reconstruction.

Finally, in order to be able to perform skinning of the
extracted canonical mesh, we transfer the skinning weights
from the SMPL template using the nearest vertices. The
process of canonical mesh extraction is illustrated in Fig. 6.
Note that the colors of the extracted canonical mesh are
solely used for visualization purposes, and not used in the
proposed rasterization-based raymarching, which only re-
quires the vertices and triangles of the canonical mesh to
guide the raymarching on the factorized volumetric repre-
sentation.

A.3. Training losses

We present some additional details about the losses used
for training. At each training iteration, a batch B =
{Pi}i=1,...,6 of six image patches P of size 32× 32 is con-
structed, and the our proposed model is used to estimate the
image color I(u) for each pixel u ∈ P . Then we use three
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different loss terms for optimizing the proposed model: (i)
a photometric loss Lrgb, (ii) a perceptual loss (LPIPS) Llpips,
and, (iii) a sparsity regularization loss Lsparse. Our overall
loss is thus:

L(B) = αLrgb(B) + βLlpips(B) + γLsparse,

with:

Lrgb(B) =
1

N

∑
u∈B
‖I(u)− Igt(u)‖22 (12)

Llpips(B) =
1

6

∑
P∈B

LPIPSvgg(I(P), Igt(P)) (13)

Lsparse =
1

Rσ ·HWD

∑
(M,v)∈W

∑
rxyz

(Mv)+, (14)

where N = 6 × 32 × 32 is the total number of pixels
in the training batch, LPIPSvgg is the perceptual loss pro-
posed in [43] using the VGG-Net feature extractor [35],
and the sparsity loss is applied over all three factors
W = {(MY X , vZ), (MY Z , vX), (MXZ , vY )} of the im-
plicit volumetric representation of the density σ, and across
all channels Rσ . In addition, the coefficients α, β, γ which
modulate each loss term vary as the training progresses, and
we can therefore define them as functions of the training it-
eration i = 1, . . . , 30 000:

α(i) =

{
1− 0.8 · i/10 000 if i < 10 000

0.2 otherwise
(15)

β(i) =

{
0.8 · i/10 000 if i < 10 000

0.8 otherwise
(16)

γ(i) =


0 if i < 2 000

8 · 10−5 if 2 000 ≤ i < 4 000

5 · 10−5 otherwise
(17)

(a) Dense PCL (b) Mesh (100K faces) (c) Mesh (15K faces)

Figure 6. Canonical mesh extraction. We first generate a dense
point cloud (a), from which we perform screened Poisson recon-
struction (b), and, finally mesh simplification to 15K faces (c).

A.4. Proposed rasterization-guided local raymarch-
ing vs. phong shading

As an ablation study, we show in Fig. 7 the comparison
of rendering the posed template mesh with our proposed
method against using standard phong shading based on ver-
tex colors. Note that as a texture of the human is not avail-
able, many details are lost when applying phong shading
directly. In addition, this rendering technique requires an
artificial light source and generates unrealistic reflection ef-
fects. On the contrary, our proposed method recovers the
textures details from the learnt volumetric representation,
and new views can be rendered directly without any addi-
tional artificial light source.

Appendix B. Demos and source code
B.1. VR Mixed reality demo

We have built a VR Mixed reality demo that demon-
strates our proposed method, and rendering at 40FPS in
consumer-level standalone VR headset, using the recon-
structions obtained from the ZJU-mocap scenes.

Several recordings of these scenes playing on the VR
headset, as illustrated in Figure 8, are available in our web-
site https://real-time-humans.github.io/.
Note that the background scene is rendered in mixed reality
thorough RGB passthrough using the VR headset’s frontal
RGB camera, giving the effect of an AR device.

B.2. Desktop WebGL demo

Additionally we developed a Desktop WebGL demo that
implements the proposed real-time volumetric rendering
and runs inside the web browser, as illustrated in Figure 9.
The demo is available in our website https://real-
time-humans.github.io/.

B.3. Source code.

We will release our source code to allow for repro-
ducibility. It will be released under an open-source licence.
The VR and WebGL demo apps will be released in binary
format.
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(a) Local volumetric rendering

(b) Phong shading

Figure 7. Comparison between rendering techniques. We illus-
trate the results of the proposed local rasterization-based emission-
absorption raymarching against rendering the template mesh di-
rectly with a standard phong shading.

Figure 8. VR Mixed reality demo. The dynamic human is ren-
dered using VR-passthrough at 40FPS on a standalone VR device.

Figure 9. WebGL desktop demo. The demo is available in our
website.
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