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Abstract. The objective of this work is to learn descriptors suitable for
the sparse feature detectors used in viewpoint invariant matching. We
make a number of novel contributions towards this goal: first, it is shown
that learning the pooling regions for the descriptor can be formulated as
a convex optimisation problem selecting the regions using sparsity; sec-
ond, it is shown that dimensionality reduction can also be formulated as
a convex optimisation problem, using the nuclear norm to reduce dimen-
sionality. Both of these problems use large margin discriminative learning
methods. The third contribution is a new method of obtaining the pos-
itive and negative training data in a weakly supervised manner. And,
finally, we employ a state-of-the-art stochastic optimizer that is efficient
and well matched to the non-smooth cost functions proposed here. It is
demonstrated that the new learning methods improve over the state of
the art in descriptor learning for large scale matching, Brown et al. [2],
and large scale object retrieval, Philbin et al. [10].

1 Introduction

Feature descriptors are an important component of many computer vision al-
gorithms. In large scale matching, such as the Photo Tourism project [12], and
large scale image retrieval [9], the discriminative power of descriptors and their
robustness to image distortions is a key factor in the performance. During the
last two decades a plethora of descriptors have been developed, with SIFT [6]
certainly being the most widely used. Most of these methods are hand-crafted,
though recently machine learning techniques have been applied to learning de-
scriptors for wide-baseline matching [2] and image retrieval [10]. However, al-
though these methods succeed in improving over the performance of SIFT, they
use non-convex learning formulations and this can result in sub-optimal models
being learnt.

In this paper we propose a new framework that, by leveraging on recent
powerful methods for large scale learning of sparse models, can learn descriptors
much more efficiently and effectively than previous techniques. First, we refor-
mulate the learning of the shape of the spatial pooling regions of a descriptor
as the problem of selecting a few optimal shapes among a large set of candi-
date ones (Sect. 3). The significant advantage compared to previous approaches
is that selection can be performed by optimising a sparsity-inducing L1 regu-
lariser, yielding a convex problem and ultimately a globally-optimal solution.
Second, we propose to compress the resulting descriptors as well as improve dis-
crimination by learning a low-rank metric by penalising the nuclear norm of
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the corresponding matrix (Sect. 4). The nuclear norm is the equivalent of an L1

regulariser for subspaces. The advantage on standard techniques such as Princi-
pal Component Analysis (PCA) is the fact that the low-rank subspace is learnt
discriminatively to optimise the matching quality, while still yielding a convex
problem and a globally optimal solution.

In our framework the learning of the pooling regions and of the discrimina-
tive projections are thus formulated as large-scale max-margin learning problems
with non-smooth but convex regularisation terms. In order to optimise such ob-
jectives efficiently, we employ (for the first time for this purpose as far as we
know) a very effective stochastic learning technique [16] (Sect. 5). There are two
additional, more minor, technical contributions. First, we show that, contrary
to the common approach, descriptors need not be normalised a-posterori after
they are computed; instead, a normalisation factor can be computed directly
from the image patch once for all (Sect. 2.1). This fact is instrumental to the
convex learning of the descriptors as it removes the non-linear normalisation
step that affects standard pipelines. Second, we develop a new method for gen-
erating examples of matching and mismatching descriptors for the purpose of
discriminative learning which is more robust than the one of [10] (Sect. 6.2).

The result is that we have a principled, flexible, and convex framework for
descriptor learning that, as we demonstrate in the experiments of Sect. 6, out-
performs the descriptor learning of previous work [2,10] using the authors’ own,
quite challenging, datasets. Furthermore, the descriptor learning is very efficient
(in time and memory requirements) and is able to complete within a few hours
on a single core for very large scale problems.

Related work. The proposed framework consists of two independent algorithms
for learning descriptor pooling regions and discriminative dimensionality reduc-
tion. Most conventional feature descriptors are hand-crafted and use a fixed
configuration of pooling regions, e.g. SIFT [6] uses rectangular regions organised
in a grid, while DAISY [13] employs a set of multi-size circular regions grouped
into rings. In [2] the Powell minimisation technique was employed to optimise
the parameters of a DAISY-like descriptor. The corresponding objective is not
convex, making the optimisation prone to local extrema.

Discriminative dimensionality reduction can also be related to metric learn-
ing, on which a vast literature exists. Of particular relevance here are the large
margin formulations designed for nearest-neighbour classification, such as [15],
the reason being that feature matching is usually performed by nearest-neighbour
search in the descriptor space. While our ranking constraints are similar to those
of [15], the authors themselves do not consider simultaneous dimensionality re-
duction. One approach to reduce dimension is to optimise directly over the pro-
jection matrix of the required size [14], but this leads to non-convex objectives.
A similar formulation with application to learning descriptors for image retrieval
was used in [10]. Another off-the-shelf metric learning technique is Linear Dis-
criminant Analysis (LDA); in [2] it was shown that PCA outperforms LDA if
applied to descriptors with already optimised pooling region configuration.
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To encourage dimensionality reduction, we utilise the matrix nuclear norm
as a convex surrogate of matrix rank. The resulting learning objective is con-
vex, but non-smooth. In [11] the nuclear norm was used for max-margin matrix
factorisation, but the implementation resorted to smooth surrogates to simplify
the optimisation. We tackle the optimisation problem in principled way and
perform large-scale optimisation of the non-smooth objective using the recently
developed Regularised Dual Averaging (RDA) method [8,16], which we employ
for both L1-regularised learning of pooling regions and nuclear norm regularised
learning of discriminative dimensionality reduction.

2 Descriptor computation

This section describes the computation of the descriptors used in our framework,
which closely follows that of [2]. The input is an image patch x which is assumed
to be pre-rectified with respect to affine deformation and dominant orientation.
The descriptor Ψ(x) of the patch is a compressed statistics of the local gradient
orientations obtained from the following steps:

Smoothing, binning, and normalisation. First, Gaussian smoothing is ap-
plied to the patch x. Then the intensity gradient is computed at each pixel and
soft-assigned to the two closest orientation bins, weighted by the gradient mag-
nitude as in [2,6,13]. This results in p feature channels for the patch, where p is
the number of orientation bins (we used p = 8). Finally, a normalisation factor
T (x) proportional to the gradient magnitude is computed (Sect. 2.1).

Spatial pooling. The oriented gradients computed at the previous step are
spatially aggregated via convolution with a set of kernels (e.g., Gaussians or box
filters normalised to unitary mass) with different location and spatial support
(Sect. 3); we refer to them as descriptor Pooling Regions (PR). Pooling is applied

separately to each feature channel, which results in the descriptor vector φ̃(x)
with dimensionality pq, where q is the number of PRs. The output of each filter
is divided by the pre-computed normalisation factor T (x) and thresholded to
obtain responses φ(x) invariant to intensity changes and robust to outliers.

Discriminative dimensionality reduction. After pooling, the descriptor φ(x)
is compressed into a lower-dimensional vector Wφ(x) by projection through a
matrix W learnt to improve descriptor matching (Sect. 4).

The resulting descriptor can be used in feature matching directly or vector-
quantised to compute visual words in retrieval applications [10].

2.1 Descriptor normalisation and cropping

After the spatial pooling step, the un-normalised descriptor φ̃(x) is essentially
a spatial convolution of gradient magnitudes distributed across p orientation
bins. While the descriptor is invariant to an additive intensity change, it does



4 Descriptor Learning Using Convex Optimisation

Fig. 1. Pooling region candidate rings. The blue circle shows
a ring of a single PR, the red circles – four PRs, the green circle –
eight PRs. Each PR is defined by the Gaussian kernel σ and polar
coordinates (ρ, α) of its centre relative to the patch centre. The
candidate rings are obtained by sampling these parameters in the
ranges: ρ ∈ [0; ρ0] (one-pixel step), α ∈ {0, π/12, π/8, π/6, π/4},
σ ∈ [0.5; ρ0] (half-pixel step), and then reflecting the resulting
PRs (ρ0 is the patch radius).

vary with intensity scaling. This is usually addressed by normalising (and crop-
ping) the descriptor vector a-posteriori. Unfortunately, this method introduces a
non-linear step involving the aggregate responses of the PRs which makes their
learning complicated. Instead, a suitable normalisation factor T (x) can be com-
puted from the patch directly, independently of the particular PR configuration
selected by learning.

In particular, we define T (x) as a weighted combination of the mean and
standard deviation of gradient magnitude g(x) over the patch:

T (x) = (mean(g(x)) + ν std(g(x))) /p (1)

where ν > 0 is a parameter which defines how aggressive the cropping (2) is.
Given T (x), the response of each PR is normalised and cropped to 1 for each
PR independently as follows:

φi(x) = min
{
φ̃i(x)/T (x), 1

}
∀i. (2)

Based on the experiments on a small hold-out set, ν was set to 1 in all ex-
periments. The threshold (1) should be compared to standard definitions such

as [2,6] for which T (x) ∼ ‖φ̃(x)‖2 depends on the L2 norm of the overall descrip-
tor, involving all the PRs. If ν = 0, it is easy to check that the two definitions ap-
proximately match if the L1 norm is used in place of L2 and the non-overlapping
PRs cover the whole patch.

3 Learning pooling regions

In this section we present a framework for learning pooling region configurations.
First, a large pool of putative PRs is created, and then sparse learning techniques
are used to select an optimal configuration of a few PRs from this pool.

The candidates PRs are generated by sampling a large number of PRs of
different size and location within the feature patch. In this paper we consider
only reflection-symmetric PR configurations, with each PR being an isotropic
Gaussian smoothing kernel. Due to the symmetry, PRs are organised into rings
with 8, 4, or 1 PRs (the latter corresponding to a PR centred on the patch). As

shown in Fig. 1, a large set of candidate rings {Ωi}Ni=1 is obtained by varying
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the PR geometry. The number of candidate rings N is essentially the number of
triplets (ρ, α, σ) (e.g. N = 4200 for 41× 41 pixel patches as in Sect. 6.2).

Selecting pooling regions. This paragraph shows how to select a few PR rings
from the N available candidates such that the resulting descriptor separates
positive (correctly matched) and negative (incorrectly matched) feature pairs.
More formally, let φ be the descriptor defined by PRs pool subset encoded by
the w vector:

φi,j,c(x) =
√
wiΦi,j,c(x) (3)

where Φi,j,c(x) is the “full” descriptor induced by all PRs from the pool {Ωi},
i indexes over PR rings Ωi, j is a PR index within the ring Ωi, and c is the
feature channel number. The elements of w are non-negative, with non-zero
elements acting as weights for the PR rings selected from the pool (and zero
weights corresponding to PR rings that are not selected). Due to the symmetry
of PR configuration, a single weight wi is used for all PRs in a ring Ωi.

We put the following margin-based constraints on the distance between fea-
ture pairs in the descriptor space [15]:

d(x,y) + 1 < d(u,v) ∀(x,y) ∈ P, (u,v) ∈ N (4)

where P and N are the training sets of positive and negative feature pairs,
and d(x,y) is the distance between descriptors of features x and y. To measure
the distance, the squared L2 distance is used (at this point we do not consider
descriptor dimensionality reduction):

d(x,y) =‖φ(x)− φ(y)‖22 =
∑
i,j,c

(
√
wiΦi,j,c(x)−

√
wiΦi,j,c(y))

2
= (5)

∑
i

wi
∑
j,c

(Φi,j,c(x)− Φi,j,c(y))
2

=
∑
i

wiψi(x,y) = wTψ(x,y),

where ψ(x,y) is an N -dimensional vector storing in the i-th element sums of
squared differences of descriptor components corresponding to the ring Ωi:

ψi(x,y) =
∑
j,c

(Φi,j,c(x)− Φi,j,c(y))
2 ∀i = 1 . . . N (6)

Now we are set to define the learning objective for PR configuration learning.
Substituting (5) into (4) and using the soft formulation of the constraints, we
derive the following non-smooth convex optimisation problem:

argmin
w≥0

∑
(x,y)∈P,(u,v)∈N

max
{
wT (ψ(x,y)− ψ(u,v)) + 1, 0

}
+ µ1‖w‖1 (7)

where the L1 norm ‖w‖1 is a sparsity-inducing regulariser which encourages the
elements of w to be zero, thus performing PR selection. The parameter µ1 > 0
sets a trade-off between the empirical ranking loss and sparsity. We note that
“sparsity” here refers to the number of PRs, not their location within the image
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patch, where they are free to overlap. The formulation (7) can be seen as an in-
stance of SVM-rank [4] with L1 regularisation and non-negativity constraints. It
maximises the area under ROC curve corresponding to thresholding the descrip-
tor distance (5). The large-scale optimisation of the objective (7) is described in
Sect. 5.

During training, all PRs from the candidate rings are used to compute the
vectors ψ(x,y) for training feature pairs (x,y). While storing the full descriptor
Φ is not feasible for large training sets due to its high dimensionality (which

equals p
∑N
i=1 |Ωi|, i.e. the number of channels times the number of PRs in the

pool) the vector ψ is just N -dimensional.
Once a sparse w is learnt, at test time only PRs corresponding to the non-zero

elements of w are used to compute the descriptor. The descriptor normalisation
procedure (Sect. 2.1) uses the normaliser (1) which does not depend on the

elements of the unnormalised descriptor φ̃ (unlike conventional normalisation

by the norm of φ̃). This ensures that in both training and testing the same
normalisation is applied, even though different sets of PRs are used (the whole
PR pool during training and the few selected PRs during testing).

4 Learning discriminative dimensionality reduction

This section proposes a framework for learning discriminative dimensionality
reduction. The aim is to learn a linear projection matrix W such that (i) W
projects descriptors into a lower dimensional space; and, (ii) positive and nega-
tive descriptor pairs are separated by a margin in that space.

The first requirement can be formally written as W ∈ Rm×n,m < n where
m is the dimensionality of the projected space and n is the descriptor dimen-
sionality before projection. The second requirement can be formalised using a
set of constraints similar to (4):

dW (x,y) + 1 < dW (u,v) ∀(x,y) ∈ P, (u,v) ∈ N (8)

where dW is the squared L2 distance in the projected space:

dW (x,y) =‖Wφ(x)−Wφ(y)‖22 = (φ(x)− φ(y))
T
WTW (φ(x)− φ(y)) =

θ(x,y)TAθ(x,y), (9)

with θ(x,y) = φ(x)− φ(y), and A = WTW is the Mahalanobis matrix.
The constraints (8), (9) are not convex in W , but are convex in A. Therefore,

optimisation is performed over the convex cone of positive semi-definite matrices
[15]: A ∈ Rn×n, A � 0. The positive semidefiniteness constraint ensures that
optimising over A is equivalent to optimising over W , i.e. for the learnt matrix
A there exists a projection matrix W such that A = WTW . If rank(A) = m,
then an m× n matrix W can be obtained from the eigen-decomposition A =
V DV T , where diagonal matrix D ∈ Rn×n has m non-zero elements (positive
eigenvalues). Let Dr ∈ Rm×n be the matrix obtained by removing the zero rows
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from D. Then W can be constructed as W =
√
DrV

T . Conversely, if W ∈
Rm×n and rank(W ) = m, then rank(A) = rank(WTW ) = rank(W ) = m. Thus,
a dimensionality reduction constraint on W can be equivalently transformed
into a rank constraint on A. However, the direct optimisation of rank(A) is
not tractable due to its non-convexity. The convex relaxation of matrix rank is
described next.

Nuclear norm regularisation. The nuclear norm ‖A‖∗ of matrix A (also
referred to as the trace norm) is defined as the sum of singular values of A. For
positive semi-definite matrices the nuclear norm equals the trace. The nuclear
norm performs a similar function to the L1 norm of a vector – in the case of a
vector the L1 norm is a convex surrogate of its L0 norm, while in the case of a
matrix the nuclear norm is a convex surrogate of its rank [3].

Using the soft formulation of the constraints (8), (9) and the nuclear norm
in place of rank, we obtain the non-smooth convex objective for learning A:

argmin
A�0

∑
(x,y)∈P
(u,v)∈N

max
{
θ(x,y)TAθ(x,y)− θ(u,v)TAθ(u,v) + 1, 0

}
+ µ∗‖A‖∗

(10)

where the parameter µ∗ > 0 trades off the empirical ranking loss versus the di-
mensionality of the projected space: the larger µ∗, the smaller the dimensionality.
We note that this formulation gives no direct control over the projected space
dimensionality. Instead, the dimension can be tuned by running the optimisation
with different values of µ∗.

5 Regularised stochastic learning

In sections 3 and 4 we proposed convex optimisation problems for learning the
descriptor PRs as well as the discriminative dimensionality reduction. However,
the corresponding objectives (7) and (10) yield very large problems as the num-
ber of summands is |P| |N |, where typically the number of positive and negative
matches is in the order of 105 – 106 (Sect. 6). This makes using conventional
interior point methods infeasible.

To handle such very large training sets, we propose to uses Regularised Dual
Averaging (RDA), the recent method by [8, 16]. To the best of our knowledge,
RDA has not yet been applied in the computer vision field, where, we believe, it
could be used in a variety of applications beyond the one presented here. RDA
is a stochastic proximal gradient method effective for problems of the form

min
w

1

T

T∑
t=1

f(w, zt) +R(w) (11)

where w is the weight vector to be learnt, zt is the t-th training (sample, label)
pair, f(w, z) is a convex loss, and R(w) is a convex regularisation term. Com-
pared to proximal methods for optimisation of smooth losses with non-smooth
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regularisers (e.g. FISTA), RDA is more generic and applicable to non-smooth
losses, such as the hinge loss employed in our framework. As opposed to other
stochastic proximal methods (e.g. FOBOS), RDA uses more aggressive thresh-
olding, thus producing solutions with higher sparsity. A detailed description of
RDA can be found in [16]; here we provide a brief overview.

At iteration t RDA uses the loss subgradient gt ∈ δwf(w, zt) to perform the
update:

wt+1 = argmin
w

(
〈ḡt, w〉+R(w) +

βt
t
h(w)

)
(12)

where ḡt = 1
t

∑t
i=1 gi is the average subgradient, h(w) is a strongly convex

function such that arg minw h(w) also minimises R(w), and βt is a specially
chosen non-negative non-decreasing sequence. We point out that ḡt is computed
by averaging subgradients across iterations, not samples. If the regularisation
R(w) is not strongly convex (as in the case of L1 and nuclear norms), one can
set h(w) = 1

2‖w‖
2
2, βt = γ

√
t, γ > 0 to obtain the convergence rate of O(1/

√
t).

It is easy to derive the specific form of the RDA update step for the objec-
tives (7) and (10):

w
(i)
t+1 = max

{
−
√
t

γ

(
ḡ(i) + µ1

)
, 0

}
, At+1 = Π

(
−
√
t

γ
(ḡ + µ∗I)

)
. (13)

where ḡ is the average sub-gradient of the corresponding hinge loss, I is the
identity matrix and Π is the projection onto the cone of positive semi-definite
matrices, computed by cropping negative eigenvalues in the eigen-decomposition.

6 Experiments

6.1 Local Image Patches Dataset

In this section we evaluate the proposed descriptor learning framework on the
publicly available local image patches dataset [2].

Dataset and evaluation protocol. The dataset consists of three subsets,
Yosemite, Notre Dame, and Liberty, each of which contains more than 450,000
image patches (64 × 64 pixels) sampled around Difference of Gaussians (DoG)
feature points. The patches are rectified with respect to the scale and dominant
orientation. Each of the subsets was generated from a scene for which 3D recon-
struction was carried out using multiview stereo algorithms. The resulting depth
maps were used to generate 500,000 ground-truth feature pairs for each dataset,
with equal number of positive (correct) and negative (incorrect) matches.

To evaluate the performance of feature descriptors, we follow the evaluation
protocol of [2] and generate ROC curves based on the distance between feature
pairs in the descriptor space. We report false positive rate at 95% recall (FPR95)
for the same combinations of training and test sets as in [2]. Note that training
and test sets were generated from images of different scenes. Following [2], for
training we used 500,000 feature matches of one set, and tested on 100,000
matches of the other (the subsets were made available by the authors).
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Table 1. False positive rate (%) (at 95% recall) for learnt pooling regions.

Train set Test set Learnt PR, 576-D Learnt PR, low-dim. Brown et al. [2]

Yosemite Notre Dame 9.71 (576-D) 11.32 (384-D) 14.43 (400-D)
Yosemite Liberty 18.47 (576-D) 19.78 (384-D) 20.48 (400-D)

Notre Dame Yosemite 10.65 (576-D) 10.43 (512-D) 15.91 (544-D)
Notre Dame Liberty 17.81 (576-D) 18.53 (384-D) 21.85 (400-D)

Results. We compare our learnt descriptors with those of [2] in two scenarios: (i)
learning pooling regions (Sect. 3) and (ii) learning discriminative dimensionality
reduction on top of learnt PRs (Sect. 4). In both cases the proposed framework
significantly outperforms the state of the art [2], reducing the error rate by up to
40%. It is worth noting that the non-linear feature transform we used (Sect. 2)
corresponds to the T1b block in [2]. According to their experiments, it is outper-
formed by more advanced (and computationally complex) steerable filters, which
they employed to obtain their best results. This means that we achieve better
performance with simpler feature transform, but more sophisticated learning
framework.

To learn the descriptors, we randomly split the set of 500,000 feature matches
into 400,000 training and 100,000 validation. Training is performed on the train-
ing set for different values of µ1, µ∗ and γ, which results in a set of models with
different dimensionality-accuracy tradeoff. Given the desired dimensionality of
the descriptor, we pick the model with the best performance on the validation
set among the ones whose dimensionality is not higher than the requested one.
For a fixed training set, the same descriptor (selected on the validation part of
the training set) is used for both test sets.

Learning pooling regions. Table 1 compares the error rates reported in [2] (5-th
column) with those of the descriptors learnt using our method. The 4-th column
corresponds to the descriptors with dimensionality not higher than the one used
in [2]; in the 3rd column dimensionality was limited by 576 (arbitrary threshold
corresponding to ≤ 9 PR rings selected). In Fig. 2 (left) we plot the error rate
of the learnt descriptors as a function of their dimensionality.

The PR configuration of a 576-D descriptor learnt on the Yosemite set is de-
picted in Fig. 3 (left). Pooling regions are shown as circles with the radius equal
to their Gaussian σ (the actual size of the Gaussian kernel is 3σ). The pooling
regions’ weights are colour-coded. Note that σ increases with the distance from
the patch center, which is also specific to certain hand-crafted descriptors, e.g.
DAISY [13]. In our case, no prior has been put on the pooling region location
and size: they were sampled uniformly, and the optimal configuration was au-
tomatically discovered by learning. Also, the PR weights near the patch center
are mostly small, which can be explained by the fact that the central part of the
feature region usually contains less discriminative information than the outer
part [7].
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Fig. 2. Dimensionality vs error rate, training on Yosemite, testing on Notre Dame.
Left : learnt pooling regions. Right : learnt projections for 576-D descriptor on the left.
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Fig. 3. Left: learnt pooling regions’ configuration in a 64 × 64 feature region. Right:
learnt Mahalanobis matrix A corresponding to projection from 576-D to 59-D space
(darker pixels correspond to larger values).

Learning discriminative dimensionality reduction. For experiments with dimen-
sionality reduction, we utilised 576-D descriptors evaluated above, and learnt
linear projections into lower-dimensional spaces as described in Sect. 4. In Ta-
ble 2 we compare our results with the best results presented in [2] (5-th column).
The proposed algorithm exhibits lower error rates with the same descriptor di-
mensionality (4-th column) and even lower with increased (but still reasonably
low) dimensionality (3-rd column). It should be noted that we obtain projection
matrices by discriminative supervised learning, while in [2] the best results were
achieved using PCA, which outperformed LDA in their experiments. In Fig. 2
(right) we show the dependency of the error rate on the projected space dimen-
sionality. As can be seen, the learnt projections allow for significant (order of
magnitude) dimensionality reduction, while lowering the error at the same time.
In Fig. 3 (right) we visualise the learnt Mahalanobis matrix A (Sect. 4) cor-
responding to discriminative dimensionality reduction. It has a clear diagonal
structure, with each diagonal encoding dependencies between pooling regions
within the same ring and across the rings. Optimal weights for neighbouring
orientation bins in PRs are also learnt.
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Table 2. False positive rate (%) (at 95% recall) for learnt projections.

Train set Test set Learnt proj., ≤64-D Learnt proj., low-dim. Brown et al. [2]

Yosemite Notre Dame 7.11 (59-D) 9.67 (29-D) 11.98 (29-D)
Yosemite Liberty 16.27 (59-D) 17.44 (29-D) 18.27 (29-D)

Notre Dame Yosemite 10.36 (61-D) 12.54 (36-D) 13.55 (36-D)
Notre Dame Liberty 13.63 (61-D) 14.51 (36-D) 16.85 (36-D)

6.2 Oxford Buildings and Paris Buildings Datasets

In this section the proposed learning framework is evaluated on challenging Ox-
ford Buildings (Oxford5K) and Paris Buildings (Paris6K) datasets and compared
against the SIFT baseline as well as state of the art methods [1, 10].

Dataset and evaluation protocol. The Oxford Buildings dataset consists
of 5062 images capturing various Oxford landmarks. It was originally collected
for the evaluation of large-scale image retrieval methods [9]. The only available
annotation is the set of queries and ground-truth image labels, which define
relevant images for each of the queries. The Paris Buildings dataset includes
6412 images of Paris landmarks and is also annotated with queries and labels.
Both datasets exhibit a high variation in viewpoint and illumination.

The performance measure is specific to image retrieval tasks and is computed
in the following way. For each of the queries, the ranked retrieval results (ob-
tained using the framework of [9]) are compared to the ground-truth landmark
labels, which gives a precision-recall curve. Area under the curve is a perfor-
mance measure for a particular query; averaged across all queries, it gives an
integral measure for the whole dataset, called mean Average Precision (mAP).
We implemented three flavours of the visual search engine [9]: tf-idf uses the
tf-idf index computed on quantised descriptors (500K visual words); tf-idf+sp.
additionally re-ranks the top 200 images using RANSAC-based spatial verifi-
cation. The third engine (raw) is based on nearest-neighbour matching of raw
(non-quantised) descriptors and spatial verification.

Following [9], feature detection was performed using the Hessian-Affine de-
tector [7]. The same feature regions were used for both SIFT and the proposed
descriptor. To ensure that the proposed descriptor is computed over the same
rectified patches as SIFT, we applied the conventional affine region rectification
procedure [7], which resulted in 41× 41 pixel feature patches.

Learning from image collections using latent variables. In this section we
outline a novel formulation for learning feature descriptors from image datasets
with extremely weak supervision, which can be seen as an application of the
more generic learning frameworks of Sect. 3 and 4. In particular, the only in-
formation given to the algorithm is that some (but unknown) pairs of dataset
images contain a common part, so that correspondences can be established be-
tween them. The assumption is valid for the datasets in question. Computing
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the correspondences by 3-D reconstruction [2] is not feasible on large scale. A
more practical approach of [10] relies on the homography estimation by Nearest-
Neighbour (NN) SIFT matching and RANSAC. Then, NN inlier matches can
be used as positives, and NN outliers and non-NN as negatives. Unfortunately,
this leads to positives that can already be matched by SIFT, while our goal is to
learn a better descriptor. The less biased alternative of ignoring appearance and
finding correspondences based on geometry only is also problematic as it may
pick up occlusions and repetitive structure, which, being unmatchable based
on appearance, would disrupt learning. We address these issues by the latent
variables formalism described next.

Consider image pairs randomly sampled from the dataset, for which the ho-
mographies are automatically estimated as in [10]. For each feature x of one
image, we compute the sets P (x) and N(x) of putative positive and negative
matches in another image based on the homographies and the region overlap
criterion [7]. We aim at learning a descriptor such that the NN of x is a positive
match from P (x). To account for the cases where x can not be matched based
on its appearance, we introduce a binary latent variable b(x) which equals 0 iff
the match can not be established. This leads to the optimisation problem:

arg min
η,b

∑
x

b(x) max

{
min

y∈P (x)
dη(x,y)− min

u∈N(x)
dη(x,u) + 1, 0

}
+R(η) (14)

s.t. b(x) ∈ {0, 1},
∑
x

b(x) = K

where η denotes descriptor parameters (w or A), R(η) is the regulariser, and K
is the number of samples to use in training, which prevents all b(x) from being
set to zero. The objective (14) is related to self-paced learning [5], and its local
minimum can be found by alternation. The optimisation is repeated for different
values of K, and the resulting model is selected on the validation set.

Results. In our first experiment, we learn the descriptors on the Oxford5K
dataset, and then assess the image retrieval performance on it. We note that
ground-truth matches are not used in training; instead, the training data is
extracted automatically as described above. This corresponds to the use case of
learning a descriptor for a particular image collection to allow for more accurate
retrieval and/or lower memory footprint (if the raw descriptors are used). It
should be noted, however, that in the case of more practical tf-idf retrieval the
only benefit of lower dimensionality is faster visual words computation, as raw
descriptors are not stored in the index.

The mAP values computed using different “descriptor - search engine” com-
binations are given in Table 3 and compared against the best results reported
in [10], both linear and non-linear. We include the results of SIFT (as a baseline),
learnt projections on top of SIFT, and learnt pooling regions with and without
projection. As can be seen, even linear projections on top of SIFT result in sig-
nificant (≈ 6%) improvement over SIFT, with smaller dimensionality. Learning
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Table 3. mAP on Oxford5K and Paris6K for learnt descriptors, SIFT, and RootSIFT.
The performance of our SIFT baseline is better than that reported in [10], making a di-
rect comparison impossible. Therefore, we also show the mAP improvement relative to
the corresponding baseline for our methods and [10]. The learnt projections shown are
the ones with the best performance on the validation set among ≤ 128-D projections.

Descriptor
mAP mAP improvement (%)

raw tf-idf tf-idf+sp. raw tf-idf tf-idf+sp.

Oxford5K

SIFT 0.784 0.636 0.667 - - -
RootSIFT 0.798 0.659 0.703 1.8 3.6 5.4
SIFT + Learnt proj., 120-D 0.802 0.673 0.706 2.3 5.8 5.8
Learnt PR, 256-D 0.819 0.664 0.702 4.5 4.4 5.2
Learnt PR + proj., 115-D 0.841 0.709 0.749 7.3 11.5 12.3

Philbin et al. [10], linear N/A 0.636 0.665 N/A 3.8 2.8
Philbin et al. [10], non-linear N/A 0.662 0.707 N/A 8 9.3

Paris6K

SIFT 0.691 0.656 0.668 - - -
RootSIFT 0.706 0.701 0.710 2.2 6.9 6.3
Learnt PR + proj., 115-D 0.732 0.711 0.722 5.9 8.4 8.1

Philbin et al. [10], non-linear N/A 0.678 0.689 N/A 3.5 3

optimal pooling regions leads to further increase of performance (≈ 12%), sur-
passing that of non-linear SIFT embeddings [10]. This proves the importance of
learning the complete descriptor pipeline. We also assess the generalisation of
the learnt descriptor to different image collections by testing it on the Paris6K
dataset (Table 3). Again, we outperform the non-linear projections of [10]; in
our case, the drop of mAP improvement when moving to a different image set
is smaller than that of [10], which means that our models generalise better.

We also include the results of our implementation of the recently proposed
RootSIFT descriptor [1], which is a Hellinger kernel map of SIFT. While the
results of our descriptor are better, the advantage of RootSIFT over SIFT un-
derlines the importance of the non-linear mapping in the descriptor computation
pipeline. We plan to address this in the future work.

7 Conclusion

In this paper we proposed a generic framework for learning two major compo-
nents of feature descriptor computation: spatial pooling and discriminative di-
mensionality reduction. Rigorous evaluation showed that the proposed algorithm
outperforms the state of the art on challenging datasets. This was achieved via
the use of convex learning formulations coupled with large-scale regularised opti-
misation techniques. Each of the two presented learning frameworks can be used
independently and applied to other computer vision tasks. The source code will
be released at http://www.robots.ox.ac.uk/~vgg/research/learn_desc/
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1. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve
object retrieval. In: IEEE Int. Conf. on Comp. Vis. and Pat. Rec. IEEE Press, New
York (2012)

2. Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors.
IEEE Trans. on Patt. Anal. and Mach. Intell. 33(1), 43–57 (2011)

3. Fazel, M., Hindi, H., Boyd, S.P.: A rank minimization heuristic with application to
minimum order system approximation. In: IEEE Amer. Control Conf. pp. 4734–
4739. IEEE Press, New York (2001)

4. Joachims, T.: Optimizing search engines using clickthrough data. In: ACM
SIGKDD Int. Conf. on Knowl. Disc. and Data Mining. pp. 133–142. ACM Press,
New York (2002)

5. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models.
In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.)
Adv. Neur. Inf. Proc. Sys. 23, pp. 1189–1197. Curran Associates, Inc., Red Hook
(2010)

6. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comp.
Vis. 60(2), 91–110 (2004)

7. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffal-
itzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J.
Comp. Vis. 65(1/2), 43–72 (2005)

8. Nesterov, Y.: Primal-dual subgradient methods for convex problems. J. Math.
Prog. 120(1), 221–259 (2009)

9. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: IEEE Int. Conf. on Comp. Vis.
and Pat. Rec. IEEE Press, New York (2007)

10. Philbin, J., Isard, M., Sivic, J., Zisserman, A.: Descriptor learning for efficient
retrieval. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV (3). LNCS, vol.
6313, pp. 677–691. Springer, Heidelberg (2010)

11. Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collab-
orative prediction. In: De Raedt, L., Wrobel, S. (eds.) Int. Conf. Mach. Learn. pp.
713–719. ACM Press, New York (2005)

12. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in
3D. ACM Trans. on Graph. 25(3), 835–846 (2006)

13. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: IEEE
Int. Conf. on Comp. Vis. and Pat. Rec. IEEE Press, New York (2008)

14. Torresani, L., Lee, K.: Large margin component analysis. In: Schölkopf, B., Platt,
J., Hoffman, T. (eds.) Adv. Neur. Inf. Proc. Sys. 19, pp. 1385–1392. MIT Press,
Cambridge (2007)

15. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin
nearest neighbor classification. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Adv.
Neur. Inf. Proc. Sys. 18, pp. 1473–1480. MIT Press, Cambridge (2006)

16. Xiao, L.: Dual averaging methods for regularized stochastic learning and online
optimization. J. Mach. Learn. Res. 11, 2543–2596 (2010)


