

1. OVERVIEW

Motivation

Deep convolutional networks achieve excellent performance in large-scale image classification tasks [Krizhevsky et al., 2012].

Do traditional architectures benefit from the increased depth?

Objectives

- Extend a state-of-the-art shallow image classification pipeline to a deep architecture.
- Evaluate the benefit of the increased depth.

2. FISHER VECTOR ENCODING

The state-of-the-art shallow image classification pipeline [Perronnin et al., 2010] comprises the following steps.

Low-level feature extraction

Visual features (SIFT and colour) are densely extracted at several scales in the image, resulting in a set of feature vectors $x_p \in \mathbb{R}^D$.

Fisher Vector (FV) encoding

Local features x_p are PCA-decorrelated and pooled into a Fisher vector Φ by soft-assignment to a GMM $\alpha_k(x_p) \propto \mathcal{N}(x_p|\mu_k,\sigma_k),$

followed by computing the first and second order statistics over the pooling window:

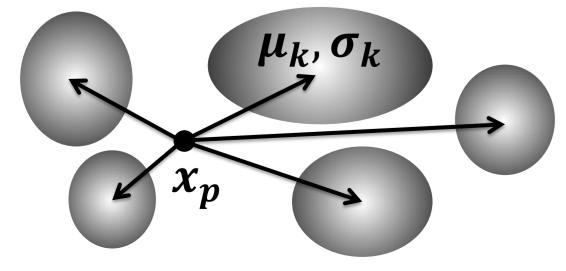
$$\Phi_{k}^{(1)} = \frac{1}{N\sqrt{\pi_{k}}} \sum_{p=1}^{N} \alpha_{k}(x_{p}) \left(\frac{x_{p} - \mu_{k}}{\sigma_{k}}\right),$$

$$\Phi_{k}^{(2)} = \frac{1}{N\sqrt{2\pi_{k}}} \sum_{p=1}^{N} \alpha_{k}(x_{p}) \left(\frac{(x_{p} - \mu_{k})^{2}}{\sigma_{k}^{2}} - 1\right).$$

This can be seen as an approximation of the Fisher kernel [Jaakkola and Haussler, 98] using the diagonalcovariance GMM as a generative model.

FV has a high dimensionality: 2KD, where K is a number of Gaussians in the GMM.

GMM assignment



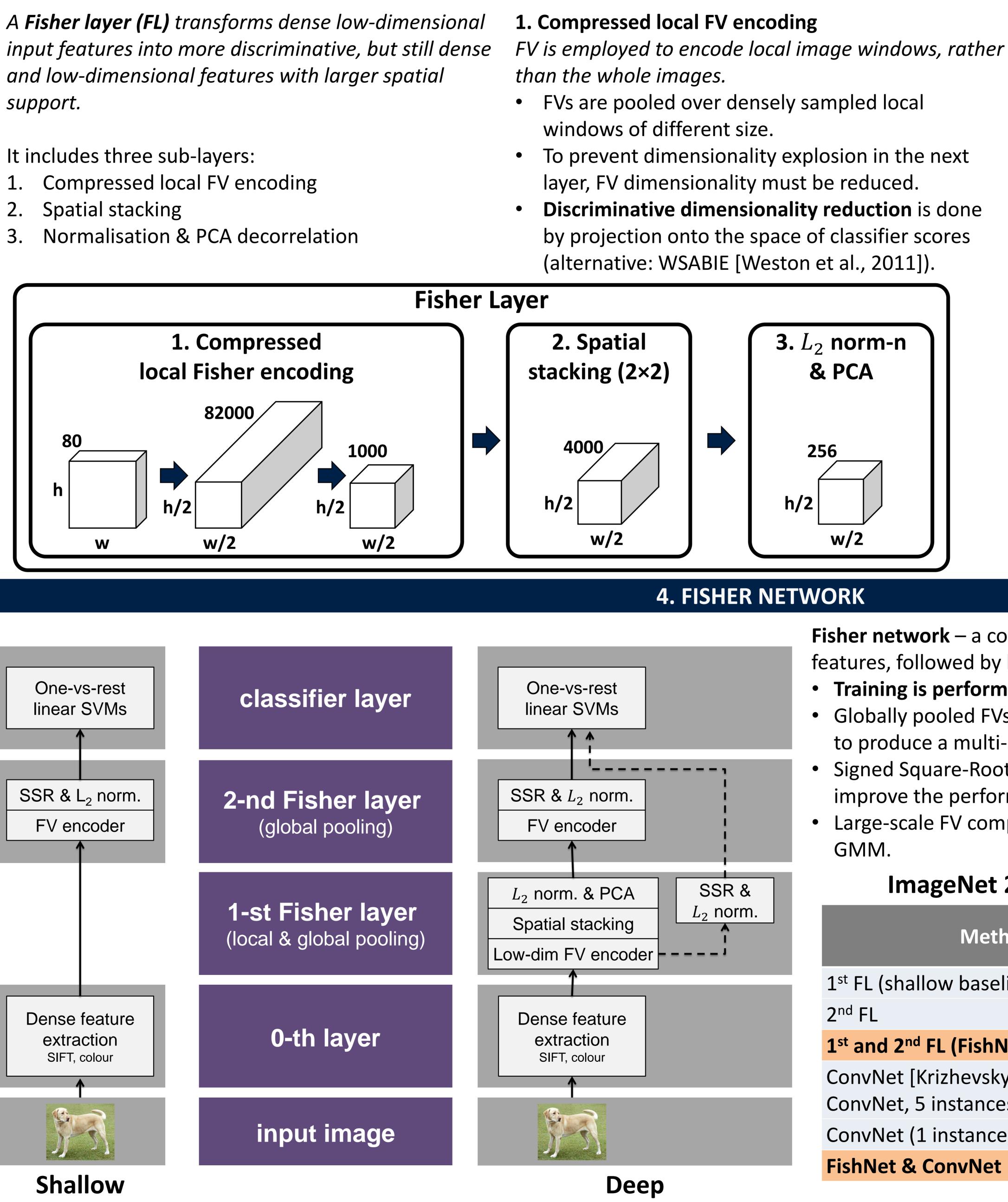
Linear SVM classification

Image classification is performed using one-vs-rest linear SVMs on top of FV image descriptors.

Fisher Vector

Deep Fisher Networks for Large-Scale Image Classification

Karen Simonyan, Andrea Vedaldi, Andrew Zisserman {karen, vedaldi, az}@robots.ox.ac.uk Visual Geometry Group, University of Oxford, UK



3. FISHER LAYER

3. Normalisation & PCA decorrelation Feature post-processing

- reduction.

Fisher network – a composition of several (≥ 2) Fisher layers on top of dense features, followed by linear SVMs.

- Training is performed greedily (layer-by-layer).
- Globally pooled FVs are branched out of each Fisher layer and concatenated to produce a multi-scale image descriptor.
- Signed Square-Rooting (SSR) is applied after global pooling to further improve the performance.

ImageNet 2010 & 2012 classification accuracy (%)

Method

1st FL (shallow baseline)

1st and 2nd FL (FishNet)

ConvNet [Krizhevsky et al., 2012] ConvNet, 5 instances

ConvNet (1 instance, our impleme

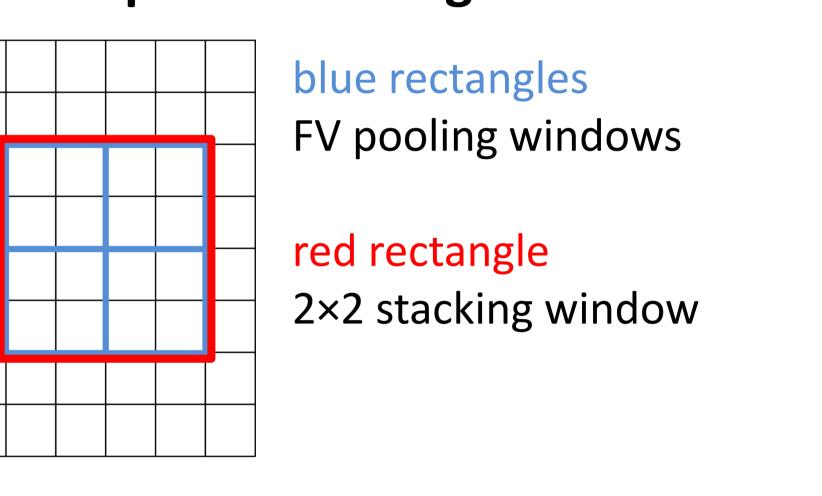
FishNet & ConvNet

Fisher Network

2. Spatial stacking

Weak geometric information is encoded at each *location by stacking spatially adjacent features.* • Spatially adjacent low-dim FV, pooled with the same window size, are stacked in a 2×2 window.

• L_2 normalisation to improve generalisation. • Decorrelation is required for the next Fisher layer. • PCA can be used for additional dimensionality



Spatial stacking

Large-scale FV computation is speeded-up by the hard assignment to the

	2010		2012	
	top-1	top-5	top-1	top-5
	55.4	76.4	50.6	72.7
	56.2	77.7		
	59.5	79.2	55.3	76.6
	62.5	83.0	59.4	81.8
			61.9	83.6
ent.)	62.9	83.2	60.3	82.3
	66.8	85.6	63.8	84.7

