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Learning Local Feature Descriptors
Using Convex Optimisation
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Abstract—The objective of this work is to learn descriptors suitable for the sparse feature detectors used in viewpoint invariant

matching. We make a number of novel contributions towards this goal. First, it is shown that learning the pooling regions for

the descriptor can be formulated as a convex optimisation problem selecting the regions using sparsity. Second, it is shown that

descriptor dimensionality reduction can also be formulated as a convex optimisation problem, using Mahalanobis matrix nuclear norm

regularisation. Both formulations are based on discriminative large margin learning constraints. As the third contribution, we evaluate

the performance of the compressed descriptors, obtained from the learnt real-valued descriptors by binarisation. Finally, we propose an

extension of our learning formulations to a weakly supervised case, which allows us to learn the descriptors from unannotated image

collections. It is demonstrated that the new learning methods improve over the state of the art in descriptor learning on the annotated

local patches dataset of Brown et al. [3] and unannotated photo collections of Philbin et al. [22].

Index Terms—Descriptor learning, feature descriptor, binary descriptor, dimensionality reduction, sparsity, nuclear norm, trace norm,

feature matching, image retrieval

✦

1 INTRODUCTION

F EATURE descriptors are an important component of
many computer vision algorithms. In large scale

matching, such as the Photo Tourism project [27], and
large scale image retrieval [21], the discriminative power
of descriptors and their robustness to image distortions
are a key factor in the performance. During the last two
decades a plethora of descriptors have been developed,
with SIFT [15] certainly being the most widely used.
Most of these methods are hand-crafted, though recently
machine learning techniques have been applied to learn-
ing descriptors for wide-baseline matching [2], [3], [31],
[32] and image retrieval [22]. However, although these
methods succeed in improving over the performance of
SIFT, they use non-convex learning formulations and this
can result in sub-optimal models being learnt.

In this paper we propose a novel framework that, by
leveraging on recent powerful methods for large scale
learning of sparse models, can learn descriptors more
effectively than previous techniques. The contribution of
the paper is four-fold.

First, we reformulate the learning of the configuration
of the spatial pooling regions of a descriptor as the
problem of selecting a few regions among a large set
of candidate ones (Sect. 4). The significant advantage
compared to previous approaches is that selection can
be performed by optimising a sparsity-inducing L1 reg-
ulariser, yielding a convex problem and ultimately a
globally-optimal solution.

Second, we propose to reduce dimensionality as well
as improve discrimination of the descriptors by learning
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a low-rank metric through penalising the nuclear norm
of the Mahalanobis matrix (Sect. 5). The nuclear norm
is the equivalent of an L1 regulariser for subspaces. The
advantage on standard techniques such as PCA is the
fact that the low-rank subspace is learnt discriminatively
to optimise the matching quality, while yielding a convex
problem and a globally optimal solution. The learning
of the pooling regions and of the discriminative projec-
tions are formulated as large-scale max-margin learning
problems with sparsity enforcing regularisation terms. In
order to optimise such objectives efficiently, we employ
an effective stochastic learning technique [36] (Sect. 7).

Third, we show that our learnt low-dimensional real-
valued descriptors are amenable to binarisation technique
based on the Parseval tight frame expansion [10] (linear
projection of a specific form) to a higher-dimensional
space, followed by thresholding (Sect. 8). By changing
the space dimensionality, we can explore the trade-off
between the binary code length and discriminative abil-
ity. The resulting binary descriptors have a low memory
footprint, are very fast to match, and achieve state-of-
the-art performance.

Finally, we extend our descriptor learning framework
to the case of extremely weak supervision (Sect. 9), where
learning is performed from unannotated image collec-
tions. In that case, we rely on automatically estimated
homographies, similarly to [22]. We differ in that the
problem of ambiguous feature matches (e.g. due to
repetitive structure and occlusions) is tackled in a more
principled way using the latent variables formalism.

The result is that we have a principled, flexible, and
convex framework for descriptor learning which pro-
duces both real-valued and binary descriptors with state-
of-the-art performance. As we demonstrate in the ex-
periments of Sect. 10, the proposed method outperforms
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state-of-the-art real-valued descriptors [1], [3], [22], [32]
and binary descriptors [2], [31] on two challenging
datasets. Furthermore, the descriptor learning is efficient
and is able to complete within a few hours on a single
core for very large scale problems.

In Sect. 10 we also demonstrate that the choice of
affine-covariant region detection method and its param-
eters strongly affects the image retrieval performance.
Namely, we achieve a substantial improvement over the
baseline [1], [21] by simply changing the parameters of
the Hessian-Affine feature region detector [18] as well as
replacing it with affine-adapted DoG detector [15].

This paper extends our earlier work [25] as follows.
First, we incorporate descriptor compression into our
descriptor computation pipeline, which can be carried
out using product quantisation or binarisation. For the
latter, we employ the method based on the Parseval tight
frame expansion [10] (Sect. 8) and show that the resulting
binary descriptors achieve state-of-the-art performance.
Second, we substantially expand the description of the
method for learning directly from weakly supervised
image collections (Sect. 9). Third, we employ a signif-
icantly stronger image retrieval baseline, obtained by
using affine-adapted DoG regions with a large descriptor
measurement region size, and demonstrate that the pro-
posed learning framework still leads to a considerable
performance increase (Sect. 10.2). Fourth, we estimate
the patch normalisation factor in a more robust manner
(Sect. 4), which improves the performance.

2 RELATED WORK

The proposed descriptor learning framework consists of
two independent algorithms, one for learning descriptor
pooling regions, and the other for discriminative dimen-
sionality reduction. Most conventional feature descrip-
tors are hand-crafted and use a fixed configuration of
pooling regions, e.g. SIFT [15] and its derivatives [1],
[28] use rectangular regions organised in a grid, while
DAISY [29] employs a set of multi-size circular regions
grouped into rings. In [3] the Powell optimisation tech-
nique is employed to find the parameters of a DAISY-
like descriptor. The corresponding objective is not con-
vex, making the optimisation prone to local extrema.
Recently, pooling region selection using boosting was
proposed in [31], [32]. Since the optimisation is greedy,
there is no guarantee to reach the global optimum.

Discriminative dimensionality reduction can also be
related to metric learning, on which a vast literature
exists. Of particular relevance here are the large margin
formulations designed for nearest-neighbour classifica-
tion, such as [35], the reason being that feature matching
is usually performed by nearest-neighbour search in
the descriptor space. While our ranking constraints are
similar to those of [35], the authors themselves do not
consider simultaneous dimensionality reduction. One
approach to reducing dimension is to optimise directly
over a projection matrix of the required size [8], [30], but

this leads to non-convex objectives. A similar formula-
tion with application to learning descriptors for image
retrieval was used in [22]. In [32] dimensionality reduc-
tion is performed using the projections corresponding to
the largest eigenvalues of the learnt Mahalanobis matrix.
This method is ad hoc as the dimensionality reduction
is not taken into account in the learning objective. In our
case, we enforce a low rank of the Mahalanobis matrix by
penalising its nuclear norm, which is a convex surrogate
of the matrix rank. In [23], the nuclear norm was used
for the max-margin matrix factorisation, but their imple-
mentation resorted to smooth surrogates to simplify the
optimisation. We tackle the optimisation problem in a
principled way and perform large-scale optimisation of
the non-smooth objective using the recently developed
Regularised Dual Averaging (RDA) method [20], [36],
which we employ for both L1-regularised learning of
pooling regions and nuclear norm regularised learning
of discriminative dimensionality reduction.

Binary descriptors have recently attracted much at-
tention [4], [14], [28], [31], [33] due to the low memory
footprint and very fast matching times (especially when
computing the Hamming distance on the modern CPUs).
BRIEF [4] and BRISK [14] descriptors are computed by
comparing intensity values at patch locations, which
are either randomly selected [4] or hand-crafted [14]. A
different approach was used in LDAHash [28], where the
binary descriptor is computed by thresholding the SIFT
descriptor projected onto a subspace using a learnt pro-
jection matrix. Instead of SIFT, [33] used the vectorised
image patch. The binarisation algorithm [10], employed
in this paper, also performs a linear transformation
followed by thresholding. It is thus related to Locality
Sensitive Hashing (LSH) through random projections [5]
and Iterative Quantisation (ITQ) [7]. It differs in that
the binary code length is higher than the original de-
scriptor dimensionality, and the projection matrix forms
a Parseval tight frame [12]. It should be noted that
apart from binarisation, popular descriptor compression
methods, such as Vector Quantisation (VQ) [26] and
Product Quantisation (PQ) [9], can be readily applied
to our descriptors and are evaluated in Sect. 10.

3 DESCRIPTOR COMPUTATION PIPELINE

We begin with the outline of our descriptor computation
pipeline, which is reminiscent of [3]. The input is an
image patch x which is assumed to be pre-rectified with
respect to affine deformation and dominant orientation.
A compact discriminative descriptor Ψ(x) of the patch is
computed from the local gradient orientations through
the following steps:

Gradient orientation binning. First, Gaussian smooth-
ing is applied to the patch x. Then the intensity gradient
is computed at each pixel and soft-assigned to the two
closest orientation bins, weighted by the gradient magni-
tude as in [3], [15], [29]. This results in p feature channels
for the patch, where p is the number of contrast-sensitive
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orientation bins covering the [0; 2π] range (we used p = 8
as in SIFT).

Spatial pooling and normalisation. The oriented gradi-
ents computed at the previous step are spatially aggre-
gated via convolution with a set of kernels (e.g. Gaussian
or box filters, normalised to a unit mass) with different
location and spatial support (Sect. 4); we refer to them
as descriptor Pooling Regions (PR). Pooling is applied
separately to each feature channel, which results in the

descriptor vector φ̃(x) with dimensionality pq, where q is
the number of PRs. The output of each filter is divided by
the normalisation factor T (x) and thresholded to obtain
responses φ(x) invariant to intensity changes and robust
to outliers.

Discriminative dimensionality reduction. After pool-
ing, the dimensionality of the descriptor φ(x) is reduced
by projection onto a lower-dimensional subspace using
the matrix W learnt to improve descriptor matching
(Sect. 5). The resulting descriptor Ψ(x) = Wφ(x) can be
used in feature matching directly, quantised [9], [26] or
binarised (Sect. 8).

4 LEARNING POOLING REGIONS

In this section, we present a framework for learning
pooling region configurations. First, a large pool of puta-
tive PRs is created, and then sparse learning techniques
are used to select an optimal configuration of a few PRs
from this pool.

The candidate PRs are generated by sampling a large
number of PRs of different size and location within
the feature patch. In this paper, we mostly consider
reflection-symmetric PR configurations, with each PR
being a unit-mass isotropic Gaussian kernel

k(u, v; ρ, α, σ) ∼ exp

(
− (u− ρ cosα)2 + (v − ρ sinα)2

2σ2

)

(1)
where (ρ, α) are the polar coordinates of the centre of
the Gaussian relative to the centre of the patch and σ is
the Gaussian standard deviation. As shown in Fig. 1,
the candidate pooling regions ρ, α, σ are obtained by
sampling the parameters in the ranges: ρ ∈ [0; ρ0] (half-
pixel step), α ∈ [0, 2π) (step of π/16), σ ∈ [0.5; ρ0] (half-
pixel step), and then reflecting the resulting PRs (ρ0 is
the patch radius).

Rather than working with individual PRs (ρj , αj , σj),
j = 1, . . . ,M , these are grouped by symmetry into rings
Ω of regions that will be either all selected or discarded.
Assuming that the detector choses a natural orientation
for the image patch (e.g. the direction parallel or orthog-
onal to an edge), it is natural to consider rings symmetric
with respect to vertical, horizontal, and diagonal flips.
Of the 32 regions of equal ρ and σ, this results in two
groups of four regions and three groups of eight regions,
for a total of five rings (Fig. 1). ρ = 0 is a special case
that has only one pooling region. Since there is a set of
five rings for each choice of ρ and σ, the total number of

Fig. 1. Pooling region candidate rings. The blue circle

shows a ring of a single PR, the red circles – four PRs,

the green circles – eight PRs. Each ring corresponds to a

sub-vector in the descriptor Φ (shown on the right).

rings is still fairly large, but significantly smaller than the
number of individual regions. For example, in Sect. 10.2
the number of candidate rings Ω1, . . . ,ΩN for 31 × 31
patches is N = 4650.

Selecting pooling regions. This paragraph shows how
to select a few PR rings from the N available candi-
dates such that the resulting descriptor discriminates
between positive (correctly matched) and negative (incor-
rectly matched) feature pairs. More formally, let φ be the
descriptor defined by PRs pool subset encoded by the w
vector:

φi,j,c(x) =
√
wiΦi,j,c(x) (2)

where Φ(x) is the “full” descriptor, induced by all PRs
from the pool {Ωi} (i indexes over PR rings Ωi, j is a
PR index within the ring Ωi, and c is the feature channel
number). The elements of w are non-negative, with non-
zero elements acting as weights for the PR rings selected
from the pool (and zero weights corresponding to PR
rings that are not selected). Due to the symmetry of PR
configuration, a single weight wi is used for all PRs in
a ring Ωi. As we will see below, the square root of wi

is taken to ensure the linearity of the squared descriptor
distance with respect to w.

We put the following margin-based constraints on
the distance between feature pairs in the descriptor
space [35]:

d(x, y) + 1 < d(u, v) ∀(x, y) ∈ P, (u, v) ∈ N (3)

where P and N are the training sets of positive and
negative feature pairs, and d(x, y) is the distance between
descriptors of features x and y. To measure the distance,
the squared L2 distance is used (at this point we do not
consider descriptor dimensionality reduction):

d(x, y) = ‖φ(x)− φ(y)‖22 = (4)
∑

i,j,c

(
√
wiΦi,j,c(x)−

√
wiΦi,j,c(y))

2
=

∑

i

wi

∑

j,c

(Φi,j,c(x)− Φi,j,c(y))
2
=
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∑

i

wiψi(x, y) = wTψ(x, y),

where ψ(x, y) is an N -dimensional vector storing in the
i-th element sums of squared differences of descriptor
components corresponding to the ring Ωi:

ψi(x, y) =
∑

j,c

(Φi,j,c(x)− Φi,j,c(y))
2 ∀i = 1 . . . N (5)

Now we are set to define the learning objective for
PR configuration learning. Substituting (4) into (3) and
using the soft formulation of the constraints, we derive
the following non-smooth convex optimisation problem:

argmin
w≥0

∑

(x,y)∈P
(u,v)∈N

L
(
wT (ψ(x, y)− ψ(u, v))

)
+ µ1‖w‖1 (6)

where L(z) = max{z + 1, 0} is the hinge loss, and the
L1 norm ‖w‖1 is a sparsity-inducing regulariser which
encourages the elements of w to be zero, thus performing
PR selection. The parameter µ1 > 0 sets a trade-off
between the empirical ranking loss and sparsity. We
note that “sparsity” here refers to the number of PRs,
not their location within the image patch, where they
are free to overlap. The formulation (6) can be seen
as an instance of SVM-rank formulation, which max-
imises the area under the ROC curve corresponding to
thresholding the descriptor distance [11]. However, due
to the L1 regularisation and non-negativity constraints,
conventional SVM solvers are not readily applicable to
optimising the objective (6). The algorithm for its large-
scale optimisation is described in Sect. 7.

During training, all PRs from the candidate rings
are used to compute the vectors ψ(x, y) for training
feature pairs (x, y). While storing the full descriptor Φ
is not feasible for large training sets due to its high
dimensionality (which equals n0 = p

∑N
i=1 |Ωi|, i.e. the

number of channels times the number of PRs in the pool)
the vector ψ is just N -dimensional, and can be computed
in advance before learning w.

Descriptor normalisation and cropping. Once a sparse
w is learnt, at test time only PRs corresponding to
the non-zero elements of w are used to compute the
descriptor. This brings up the issue of descriptor normal-
isation, which should be consistent between training and
testing to ensure good generalisation. The conventional

normalisation by the norm of the pooled descriptor φ̃
would result in different normalisation factors, since the
whole PR pool is used during training, but only a (learnt)
subset of PRs – in testing. Here we explain how to
compute the descriptor normaliser T (x) which does not
depend on PRs. This ensures that in both training and
testing the same normalisation is applied, even though
different sets of PRs are used.

Before normalisation, the descriptor φ̃(x) is essentially
a spatial convolution of gradient magnitudes distributed
across orientation bins. Such a descriptor is invariant
to an additive intensity change, but it does vary with

intensity scaling. To cancel out this effect, a suitable nor-
malisation factor T (x) can be computed from the patch
directly, independently of the PR configuration. Here,
we set T (x) to the ζ-quantile of gradient magnitude
distribution over the patch. Given T (x), the response of
each PR is normalised and cropped to 1 for each PR
independently as follows:

φi(x) = min
{
φ̃i(x)/T (x), 1

}
∀i. (7)

We employ the quantile statistic to estimate the threshold
value such that only a small ratio of pixels have the gra-
dient magnitude larger than it. These pixels potentially
correspond to high-contrast or overexposed image areas,
and to limit the effect of such areas on the descriptor dis-
tance, the corresponding gradient magnitude is cropped
(thresholded). The thresholding quantile value ζ = 0.8
was estimated on the validation set. An alternative way
of computing the threshold T (x) is to use the sum of
the gradient magnitude mean and variance, as done
in [25]. In this work, we use a more robust quantile
statistic, which leads to slight performance improve-
ment, compared to [25]. As a result of the normalisation
and cropping procedure, the descriptor φ(x) is invariant
to affine intensity transformation, and robust to abrupt
gradient magnitude changes.

5 LEARNING DISCRIMINATIVE DIMENSIONAL-
ITY REDUCTION

This section proposes a framework for learning discrim-
inative dimensionality reduction. The aim is to learn
a linear projection matrix W such that (i) W projects
descriptors onto a lower dimensional space; (ii) positive
and negative descriptor pairs are separated by a margin
in that space.

The first requirement can be formally written as W ∈
R

m×n,m < n where m is the dimensionality of the pro-
jected space and n is the descriptor dimensionality before
projection. The second requirement can be formalised
using a set of constraints similar to (3):

dW (x, y) + 1 < dW (u, v) ∀(x, y) ∈ P, (u, v) ∈ N (8)

where dW is the squared L2 distance in the projected
space:

dW (x, y) = ‖Wφ(x)−Wφ(y)‖22 = (9)

(φ(x)− φ(y))
T
WTW (φ(x)− φ(y)) = θ(x, y)TAθ(x, y),

with θ(x, y) = φ(x) − φ(y), and A = WTW is the
Mahalanobis matrix.

The constraints (8), (9) are not convex in W , but are
convex in A. Therefore, optimisation is performed over
the convex cone of positive semi-definite matrices [35]:
A ∈ R

n×n, A � 0. The positive semidefiniteness con-
straint ensures that optimising over A is equivalent to
optimising over W , i.e. for the learnt matrix A there
exists a projection matrix W such that A =WTW .
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The dimensionality reduction constraint on W can be
equivalently transformed into a rank constraint on A.
Indeed, if rank(A) = m, then an m× n matrix W can
be obtained from the eigen-decomposition A = V DV T ,
where diagonal matrix D ∈ R

n×n has m non-zero
elements (positive eigenvalues). Let Dr ∈ R

m×n be the
matrix obtained by removing the zero rows from D.
Then W can be constructed as W =

√
DrV

T . Conversely,
if W ∈ R

m×n and rank(W ) = m, then rank(A) =
rank(WTW ) = rank(W ) = m. However, the direct
optimisation of rank(A) is not tractable due to its non-
convexity. The convex relaxation of the matrix rank is
described next.

Nuclear norm regularisation. The nuclear norm ‖A‖∗ of
matrix A (also referred to as the trace norm) is defined
as the sum of singular values of A. For positive semi-
definite matrices the nuclear norm equals the trace. The
nuclear norm performs a similar function to the L1 norm
of a vector – the L1 norm of a vector is a convex
surrogate of its L0 norm, while the nuclear norm of a
matrix is a convex surrogate of its rank [6].

Using the soft formulation of the constraints (8), (9)
and the nuclear norm in place of rank, we obtain the
non-smooth convex objective for learning A:

argmin
A�0

∑

(x,y)∈P
(u,v)∈N

L
(
θ(x, y)TAθ(x, y)− θ(u, v)TAθ(u, v)

)
+

(10)

µ∗‖A‖∗,

where the parameter µ∗ > 0 trades off the empirical
ranking loss versus the dimensionality of the projected
space: the larger µ∗, the smaller the dimensionality. We
note that this formulation gives no direct control over the
projected space dimensionality. Instead, the dimension
can be tuned by running the optimisation with different
values of µ∗.

6 DISCUSSION

Our descriptor learning algorithm includes two stages:
learning a sparse pooling region configuration (Sect. 4)
and learning a low-rank projection for the selected PRs
(Sect. 5). It is natural to consider whether the two
learning stages can be combined into a joint optimisation
problem. Indeed, selecting a small set of PR rings and, si-
multaneously, performing their dimensionality reduction
corresponds to projecting the full descriptor Φ ∈ R

n0 (2)
with a rectangular matrix V ∈ R

m×n0 ,m ≪ n0, which
has a special structure. Namely, to select only a few
PR rings from the pool, V must have a column-wise
group sparsity pattern, such that the group of columns,
corresponding to the i-th PR ring, can only be set to zero
all together (indicating that the i-th ring is not selected
from the candidate pool).

Unfortunately, the optimisation over the projection
matrix V is large-scale (the number of parameters

mn0 ≈ 19M for m = 64 and n0 ≈ 298K) and non-
convex (Sect. 5). A convex optimisation of the corre-
sponding Mahalanobis matrix B = V TV ∈ R

n0×n0

would incur learning n2
0 ≈ 89 · 109 parameters under

non-trivial group sparsity constraints, which is compu-
tationally challenging.

Instead, we factorise the projection V as V = WVPR,
where VPR ∈ R

n×n0 is a rectangular diagonal matrix,
induced by the PR-selecting sparse vector w ∈ RN , N =
4650 (Sect. 4), and W ∈ R

m×n is further reducing the
dimensionality of the selected PRs (Sect. 5). Even though
the sequential learning of w and W is sub-optimal, it
results in two convex optimisation problems, which are
easy to solve.

7 REGULARISED STOCHASTIC LEARNING

In sections 4 and 5 we proposed convex optimisation
formulations for learning the descriptor PRs as well as
the discriminative dimensionality reduction. However,
the corresponding objectives (6) and (10) yield very large
problems as the number of summands is |P| |N |, where
typically the number of positive and negative matches
is in the order of 105 – 106 (Sect. 10). This makes using
conventional interior point methods infeasible.

To handle such very large training sets, we propose to
use Regularised Dual Averaging (RDA), the recent method
by [20], [36]. To the best of our knowledge, RDA has not
yet been applied in the computer vision field, where,
we believe, it could be used in a variety of applications
beyond the one presented here. RDA is a stochastic
proximal gradient method effective for problems of the
form

min
w

1

T

T∑

t=1

f(w, zt) +R(w) (11)

where w is the weight vector to be learnt, zt is the t-th
training (sample, label) pair, f(w, z) is a convex loss,
and R(w) is a convex regularisation term. Compared
to proximal methods for optimisation of smooth losses
with non-smooth regularisers (e.g. FISTA), RDA is more
generic and applicable to non-smooth losses, such as the
hinge loss employed in our framework. As opposed to
other stochastic proximal methods (e.g. FOBOS), RDA
uses more aggressive thresholding, thus producing solu-
tions with higher sparsity. A detailed description of RDA
can be found in [36]; here we provide a brief overview.

At iteration t RDA uses the loss subgradient gt =
∂f(w, zt)/∂w to perform the update:

wt+1 = argmin
w

(
〈ḡt, w〉+R(w) +

βt
t
h(w)

)
(12)

where ḡt = 1
t

∑t
i=1 gi is the average subgradient, h(w)

is a strongly convex function such that argminw h(w)
also minimises R(w), and βt is a specially chosen non-
negative non-decreasing sequence. We point out that ḡt
is computed by averaging subgradients across iterations,
rather than samples (similarly to gradient descent with



ACCEPTED BY IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

the momentum term). If the regularisation R(w) is not
strongly convex (as in the case of L1 and nuclear norms),
one can set h(w) = 1

2‖w‖22, βt = γ
√
t, γ > 0 to obtain the

convergence rate of O(1/
√
t).

It is easy to derive the specific form of the RDA update
step for the objectives (6) and (10):

w
(i)
t+1 = max

{
−
√
t

γ

(
ḡ(i) + µ1

)
, 0

}
(13)

At+1 = Π

(
−
√
t

γ
(ḡ + µ∗I)

)

where ḡ is the average subgradient of the corresponding
hinge loss, I is the identity matrix and Π is the projection
onto the cone of positive semi-definite matrices, com-
puted by cropping negative eigenvalues in the eigen-
decomposition.

8 BINARISATION

In this section we describe how a low-dimensional real-
valued descriptor Ψ ∈ R

m can be binarised to a code
β ∈ {0, 1}q with the bit length q higher or equal to m. To
this end, we adopt the method of [10], which is based
on the descriptor expansion using a Parseval tight frame,
followed by thresholding (taking the sign).

In more detail, a frame is a set of q ≥ m vectors
generating the space of descriptors Ψ ∈ R

m [12]. In the
matrix form, a frame can be represented by a matrix
U ∈ R

q×m composed of the frame vectors as rows.
A Parseval tight frame has the additional property that
U⊤U = I. An expansion with such frames, UΨ ∈ R

q ,
is an overcomplete representation of Ψ ∈ R

m, which
preserves the Euclidean distance. Due to the overcom-
pleteness, binarisation of the expanded vectors leads to
a more accurate approximation of the original vectors
Ψ. Assuming that the descriptors Ψ are zero-centred, the
binarisation is performed as follows:

β = sgn(UΨ), (14)

where sgn is the sign function: sgn(a) = 1 iff a > 0 and 0
otherwise. Following [10], we compute the Parseval tight
frame U by keeping the first m columns of an orthogonal
matrix obtained from a QR-decomposition of a random
q × q matrix.

In spite of the binary code dimensionality q being not
smaller than the dimensionality m of the real-valued
descriptor, the memory footprint of the binary code is
smaller if q < 32m. Indeed, only 1 bit is required to
store each dimension of a binary descriptor, while 32
bits/dimension are required for the real-valued descrip-
tors in the IEEE single precision format. Additionally,
the Hamming distance between binary descriptors can
be computed very quickly using the XOR and POPCNT
(population count) instructions of the modern CPUs.
Changing q allows us to generate the binary descriptors
with any desired bitrate q ≥ m, balancing matching
accuracy vs memory footprint.

9 LEARNING FROM UNANNOTATED IMAGE

COLLECTIONS

In this section we describe a novel formulation for
obtaining feature correspondences from image datasets
using only extremely weak supervision. Together with
the learning frameworks of Sect. 4 and 5 this provides
an algorithm for automatically learning descriptors from
such datasets. In this challenging scenario, the only
information given to the algorithm is that some (but
unknown) pairs of dataset images contain a common
part, so that correspondences can be established between
them. This assumption is valid for the image collections
considered in this paper (Sect. 10.2).

One possible way of obtaining the feature correspon-
dences for descriptor learning would be to compute the
3-D reconstruction [3] of scenes present in the dataset,
but this requires a large number of images of the same
scene to perform well. A more practical approach [22]
relies on the homography estimation between pairs of
images via Nearest-Neighbour (NN) SIFT matching and
RANSAC. Then, NN inlier matches can be used as
positives, and NN outliers and non-NN as negatives
for descriptor learning. However, this leads to positives
that can already be matched by SIFT, while our goal is
to learn a better descriptor. The less biased alternative
of ignoring appearance and finding correspondences
based on geometry only is also problematic as it may
pick up occlusions and repetitive structure, which, be-
ing unmatchable based on appearance, would disrupt
learning. We address these issues by the latent variables
formulation described next.

Pre-processing. This proceeds in two stages: first, ho-
mographies are established between randomly sampled
image pairs [22] using SIFT descriptor matches and
RANSAC; second, detected region correspondences are
established between the image pairs using only the
homography (not SIFT descriptors). This ensures that the
resulting correspondences are independent of SIFT.

In more detail, we begin with automatic homogra-
phy estimation between the random image pairs. This
involves a standard pipeline [19] of: affine-covariant
(elliptical) region detection, computing SIFT descriptors
for the regions, and estimating an affine homography
using the robust RANSAC algorithm on the putative
SIFT matches. Only the pairs for which the number of
RANSAC inliers is larger than a threshold (set to 50 in
our experiments) are retained. Then, in stage two, for
each feature x of the reference image (the first image
of the image pair), we compute the sets P (x) and N(x)
of putative positive and negative matches in the target
image (the second image of the pair). This is done based
on the homographies and the descriptor measurement
region overlap criterion [19] as follows. Each descriptor
measurement region (an upscaled elliptical detected re-
gion) in the target image is projected to the reference
image plane using the estimated homography, resulting
in an elliptical region. Then, the overlap ratio between
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this region and each of the measurement regions in the
reference image is used to establish the “putative posi-
tive” and “negative” matches by thresholding the ratio
with high (0.6) and low (0.3) thresholds respectively.
Feature matches with the region overlap ratio between
the thresholds are considered ambiguous and are not
used in training (see Fig. 2 for illustration).

Fig. 2. A close-up of a pair of reference (left) and

target (right) images from the Oxford5K dataset. A feature

region in the reference image is shown with solid blue. Its

putative positive, negative, and ambiguous matches in the

target image are shown on the right with green, red, and

magenta respectively. Their projections to the reference

image are shown on the left with dashed lines of the

same colour. The corresponding overlap ratios (with the

blue reference region ellipse) are: 0.74 for positive, 0.04
for negative, and 0.33 for ambiguous matches.

Learning framework. We aim at learning a descriptor
such that the NN of each feature x is one of the positive
matches from P (x). This is equivalent to enforcing the
minimal (squared) distance from x to the features in P (x)
to be smaller than the minimal distance to the features
in N(x):

min
y∈P (x)

dη(x, y) < min
u∈N(x)

dη(x,u), (15)

where for brevity η denotes the descriptor parameters,
such as PR weights w (Sect. 4) or the metric A (Sect. 5).

In certain cases, the reference image feature x can not
be matched to a geometrically corresponding feature
in the target image purely based on appearance. For
instance, the target feature can be occluded, or the
repetitive structure in the target image can make reliable
matching impossible. Using such unmatchable features
x in the constraints (15) introduces an unnecessary noise
in the training set and disrupts learning. Therefore, we
introduce a binary latent variable b(x) which equals 0
iff the match can not be established. This leads to the
optimisation problem:

arg min
η,b,y

P

∑

x

b(x)L
(
dη

(
x, yP (x)

)
− min

u∈N(x)
dη(x,u)

)
+R(η)

(16)

s.t. yP (x) = arg min
y∈P (x)

dη(x, y); b(x) ∈ {0, 1};
∑

x

b(x) = K

where yP (x) is the nearest-neighbour of the feature x
among the putative positive matches P (x), R(η) is the
regulariser (e.g. sparsity-enforcing L1 norm or nuclear
norm), and K is a hyper-parameter, which sets the
number of samples to use in training and prevents all
b(x) from being set to zero.

The objective (16) is related to large margin nearest
neighbour [35] and self-paced learning [13], and its
local minimum can be found by alternation. Namely,
with b(x) and yP (x) fixed for all x, the optimisation
problem (16) becomes convex (due to the convexity
of −min), and is solved for η using RDA (Sect. 7).
Then, given η, yP (x) can be updated; finally, given η
and yP (x), we can update b(x) by setting it to 1 for
x corresponding to the smallest K values of the loss
L
(
dη

(
x, yP (x)

)
−minu∈N(x) dη(x,u)

)
. Each of these three

steps reduces the value of the objective (16), which gives
the convergence guarantee. The optimisation is repeated
for different values of K, and the resulting model is
selected on the validation set as the one which maximises
the feature matching recall, i.e. the ratio of features x for
which (15) holds.

10 EXPERIMENTS

In this section, we evaluate the proposed descriptor
learning framework on two challenging, publicly avail-
able datasets with different performance evaluation mea-
sures. In both cases, our learnt descriptors achieve state-
of-the-art results.

In Sect. 10.1, we rigorously assess the components
of the framework (Sect. 4, 5, 8) on the local image
patches dataset [3], where feature patches are available
together with the ground-truth annotation into matches
and non-matches. The descriptor performance in this
case is measured based on a fixed operating point on
the descriptor matching ROC curve.

In Sect. 10.2, we proceed with evaluating our de-
scriptors in a more challenging scenario, where ground-
truth match annotation is not available, so an extremely
weakly supervised formulation (Sect. 9) is applied. The
learnt descriptors are plugged into a conventional image
retrieval engine [21], and the performance is measured
using retrieval-specific evaluation protocol on Oxford5K
and Paris6K image collections.

10.1 Local Image Patches Dataset

10.1.1 Dataset and evaluation protocol

The dataset [3] consists of three subsets, Yosemite,
Notre Dame, and Liberty, each of which contains more
than 450,000 image patches (64 × 64 pixels) sampled
around Difference of Gaussians (DoG) feature points.
The patches are rectified with respect to the scale and
dominant orientation. Each of the subsets was generated
from a scene for which 3D reconstruction was carried out
using multiview stereo algorithms. The resulting depth
maps were used to generate 500,000 ground-truth feature
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pairs for each dataset, with equal number of positive
(correct) and negative (incorrect) matches.

To evaluate the performance of feature descriptors, we
follow the evaluation protocol of [3] and generate ROC
curves by thresholding the distance between feature
pairs in the descriptor space. We report the false positive
rate at 95% recall (FPR95) on each of the six combinations
of training and test sets, as well as the mean across
all combinations. Considering that in [2], [3] only four
combinations were used (with training on Yosemite or
Notre Dame, but not Liberty), we also report the mean
for those, denoted as “mean 1–4”. Following [3], for
training we used 500,000 feature matches of one subset,
and tested on 100,000 matches of the others. Note that
training and test sets were generated from images of
different scenes, so the evaluation protocol assesses the
generalisation of the learnt descriptors.

10.1.2 Descriptor learning results

We compare our learnt descriptors with the state-of-the-
art unsupervised [1] and supervised descriptors [2], [3],
[31], [32] in three scenarios. First, we evaluate the per-
formance of the learnt pooling regions (PR, Sect. 4) and
compare it with the pooling regions of [3]. Second, our
complete descriptor pipeline based on projected pooling
regions (PR-proj, Sect. 4–5) is compared against other
real-valued descriptors [1], [3], [32]. Finally, we assess the
compression of our descriptors, for which we consider
the binarisation method (PR-proj-bin, Sect. 8), as well
as a conventional product quantisation technique [9]
(PR-proj-pq). We compare the compressed descriptors
with state-of-the-art binary descriptors [2], [31], which
were shown to outperform unsupervised methods, such
as BRIEF [4] and BRISK [14] as well as earlier learnt
descriptors of [28], [33].

In the comparison, apart from the FPR95 performance
measure, for each of the descriptors we indicate its
memory footprint and type. For real-valued descriptors,
we specify their dimensionality as 〈dim〉f, e.g. 64f for
64-D descriptors. Assuming that the single-precision
float type is used, each real-valued descriptor requires
(32× dim) bits of storage. For compressed descriptors,
their bit length and type are given as 〈bits〉〈type〉, where
〈type〉 is “b” for binary, and “pq” for product-quantised
descriptors.

To learn the descriptors, we randomly split the set of
500,000 feature matches into 400,000 training and 100,000
validation. Training is performed on the training set for
different values of µ1, µ∗ and γ, which results in a set of
models with different dimensionality-accuracy tradeoff.
Given the desired dimensionality of the descriptor, we
pick the model with the best performance on the vali-
dation set among the ones whose dimensionality is not
higher than the desired one.

Learning pooling regions. Table 1 compares the error
rates reported in [3] (5-th column) with those of the PR
descriptors learnt using our method. The 4-th column

TABLE 1

False positive rate (%) (at 95% recall) for learnt pooling

regions. Yos: Yosemite, ND: Notre Dame, Lib: Liberty.

Train Test PR PR Brown et al.
set set ≤ 640-D ≤ 384-D [3]
Yos ND 9.49 (544f) 9.88 (352f) 14.43 (400f)
Yos Lib 17.23 (544f) 17.86 (352f) 20.48 (400f)
ND Yos 11.11 (576f) 10.91 (352f) 15.91 (544f)
ND Lib 16.56 (576f) 17.02 (352f) 21.85 (400f)
Lib Yos 11.89 (608f) 12.99 (384f) N/A
Lib ND 9.88 (608f) 10.51 (384f) N/A

mean 12.69 13.20 N/A
mean (1–4) 13.60 13.92 18.17
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Fig. 3. Dimensionality vs error rate, training on Liberty,

testing on Notre Dame. Top: learnt pooling regions. Bot-

tom: learnt projections for 608-D PR descriptor on the top.

corresponds to the descriptors with the dimensionality
limited by 384, so that it is not higher than the one
used in [3]; in the 3rd column, the dimensionality was
limited by 640 (a threshold corresponding to ≤ 80 PRs
selected). In Fig. 3 (top) we plot the error rate of the
learnt descriptors as a function of their dimensionality.

The PR configuration of a 576-D descriptor learnt on
the Notre Dame set is depicted in Fig. 4 (left). Pooling
regions are shown as circles with the radius equal to
their Gaussian σ (the actual size of the Gaussian kernel
is 3σ). The pooling regions’ weights are colour-coded.
Note that σ increases with the distance from the patch
centre, which is also specific to certain hand-crafted
descriptors, e.g. DAISY [29]. In our case, no prior has
been put on the pooling region location and size: the
PR parameters space was sampled uniformly, and the
optimal configuration was automatically discovered by
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TABLE 2

False positive rate (%) (at 95% recall) for real-valued descriptors. Yos: Yosemite, ND: Notre Dame, Lib: Liberty.

Train Test PR-proj PR-proj PR-proj Brown et al. Trzcinski et al. rootSIFT rootSIFT-proj
set set ≤80-D ≤64-D ≤32-D [3] [32] [1] ≤80-D
Yos ND 6.82 (76f) 7.11 (58f) 9.99 (32f) 11.98 (29f) 13.73 (64f) 22.06 (128f) 14.60 (77f)
Yos Lib 14.58 (76f) 14.82 (58f) 16.7 (32f) 18.27 (29f) 21.03 (64f) 29.65 (128f) 22.20 (77f)
ND Yos 10.08 (73f) 10.54 (63f) 13.4 (32f) 13.55 (36f) 15.86 (64f) 26.71 (128f) 19.00 (70f)
ND Lib 12.42 (73f) 12.88 (63f) 14.26 (32f) 16.85 (36f) 18.05 (64f) 29.65 (128f) 20.11 (70f)
Lib Yos 11.18 (77f) 11.63 (58f) 14.32 (32f) N/A 19.63 (64f) 26.71 (128f) 19.96 (76f)
Lib ND 7.22 (77f) 7.52 (58f) 9.07 (32f) N/A 14.15 (64f) 22.06 (128f) 13.99 (76f)

mean 10.38 10.75 12.96 N/A 17.08 26.14 18.31
mean (1–4) 10.98 11.34 13.59 15.16 17.17 27.02 18.98

TABLE 3

False positive rate (%) (at 95% recall) for compressed descriptors. Yos: Yosemite, ND: Notre Dame, Lib: Liberty.

Train Test PR-proj-bin PR-proj-bin PR-proj-bin PR-proj-pq PR-proj-pq Trzcinski et al. Boix et al.
set set 48f→64b 64f→128b 80f→1024b 64f→64pq 80f→1024pq [31] [2]
Yos ND 14.37 (64b) 10.0 (128b) 7.09 (1024b) 12.91 (64pq) 6.82 (1024pq) 14.54 (64b) 8.52 (1360b)
Yos Lib 23.48 (64b) 18.64 (128b) 15.15 (1024b) 20.15 (64pq) 14.59 (1024pq) 21.67 (64b) 15.52 (1360b)
ND Yos 18.46 (64b) 13.41 (128b) 8.5 (1024b) 19.32 (64pq) 10.07 (1024pq) 18.97 (64b) 8.81 (1360b)
ND Lib 20.35 (64b) 16.39 (128b) 12.16 (1024b) 17.97 (64pq) 12.42 (1024pq) 20.49 (64b) 15.6 (1360b)
Lib Yos 24.02 (64b) 19.07 (128b) 14.84 (1024b) 22.11 (64pq) 11.22 (1024pq) 22.88 (64b) N/A
Lib ND 15.2 (64b) 11.55 (128b) 8.25 (1024b) 14.82 (64pq) 7.22 (1024pq) 16.90 (64b) N/A

mean 19.31 14.84 11.0 17.88 10.39 19.24 N/A
mean (1–4) 19.17 14.61 10.73 17.59 10.98 18.92 12.11

learning (under the symmetry constraints). Even though
the PR weights near the patch centre are mostly small,
the contribution of the pixels in the patch centre is higher
than that of the pixels further from it, as shown in Fig. 4
(right). This is explained by the fact that each Gaussian
PR filter is normalised to a unit mass, so the relative
contribution of pixels is higher for the filters of smaller
radius (like the ones selected in the centre). Interestingly,
the pattern of pixel contribution, corresponding to the
learnt descriptor, resembles the Gaussian weighting em-
ployed in hand-crafted methods, such as SIFT.

In Fig. 4 (middle) we show the PR configuration learnt
without the symmetry constraint, i.e. individual PRs
are not organised into rings. Similarly to the symmetric
configurations, the radius of PRs located further from
the patch centre is larger than the radius of PRs near the
centre. Also, there is a noticeable circular pattern of PR
locations, especially on the left and right of the patch,
which justifies our PR symmetry constraint. We note
that this constraint, providing additional regularisation,
dramatically reduces the number of parameters to learn:
when PRs are grouped into the rings of 8, a single weight
is learnt for all PRs in a ring. In other words, a single
element of the w vector (Sect. 4) corresponds to 8 PRs.
In the case of asymmetric configurations, each PR has
its own weight, so for the same number of candidate
PRs, the w vector becomes 8 times longer, which signif-
icantly increases the computational burden. In fact, the
increased number of parameters makes learning more
prone to over-fitting: we observed a slight increase of the
error rate by relative 3% after dropping the symmetry
constraint.

Learning discriminative dimensionality reduction. For
dimensionality reduction experiments, we utilised learnt

PR descriptors with dimensionality limited by 640 (third
column in Table 1) and learnt linear projections onto
lower-dimensional spaces as described in Sect. 5. In Ta-
ble 2 we compare our results with the best results
presented in [3] (6-th column), [32] (7-th column), as
well as the unsupervised rootSIFT descriptor of [1] and
its supervised projection (rootSIFT-proj), learnt using
the formulation of Sect. 5 (columns 8–9). Of these four
methods, the best results are achieved by [3]. To facilitate
a fair comparison, we learn three types of descriptors
with different dimensionality: ≤80-D, ≤64-D, ≤32-D
(columns 3–5).

As can be seen, even with low-dimensional 32-D
descriptors we outperform all other methods in terms
of the average error rate over different training/test set
combinations: 13.59% vs 15.16% for [3]. It should be
noted that we obtain projection matrices by discrimi-
native supervised learning, while in [3] the best results
were achieved using PCA, which outperformed LDA
in their experiments. In our case, both PCA and LDA
were performing considerably worse than the learnt
projection. Our descriptors with higher (but still reason-
ably low) dimensionality achieve even lower error rates,
setting the state of the art for the dataset: 10.75% for
≤64-D, and 10.38% for ≤80-D.

In Fig. 3 (bottom) we show the dependency of the error
rate on the projected space dimensionality. As can be
seen, the learnt projections allow for significant (order
of magnitude) dimensionality reduction, while lowering
the error at the same time. In Fig. 5 (left) we visualise
the learnt Mahalanobis matrix A (Sect. 5) correspond-
ing to discriminative dimensionality reduction. It has
a clear block structure, with each block corresponding
to a group of pooling regions. This indicates that the
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Fig. 4. Left: learnt symmetric pooling regions configuration in a 64 × 64 feature patch. Middle: learnt asymmetric

pooling regions configuration. Right: relative contribution of patch pixels (computed by the weighted averaging of PR

Gaussian filters using the learnt weights, shown on the left).
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Fig. 5. Left: Mahalanobis matrix A (learnt on Notredame),

corresponding to projection from 576-D to 73-D space

(brighter pixels correspond to larger values). Right: Pool-

ing region configuration learnt on Oxford5K.

dependencies between pooling regions within the same
ring and across the rings are learnt together with the
optimal weights for the neighbouring orientation bins
within each PR.

Descriptor compression. The PR-proj descriptors evalu-
ated above are inherently real-valued. To obtain a com-
pact and fast-to-match representation, the descriptors
can be compressed using either binarisation or product
quantisation. We call the resulting descriptors PR-proj-
bin and PR-proj-pq respectively, and compare them with
the state-of-the-art binary descriptors of [2], [31]. The bi-
nary descriptor of [31] is low-dimensional (64-D), while
[2] proposes a more accurate, but significantly longer,
1360-D, representation.

As pointed out in Sect. 8, binarisation based on frame
expansion can produce binary descriptors with any de-
sired dimensionality, as long as it is not smaller than the
dimensionality of the underlying real-valued descriptor.
The dependency of the mean error rate on the dimen-
sionality is shown in Fig. 6 for PR-proj-bin descriptors
computed from different PR-proj descriptors. Given a
desired binary descriptor dimensionality (bit length), e.g.
64-D, it can be computed from PR-proj descriptors of
different dimensionality (32-D, 48-D, 64-D in our exper-
iments). Higher-dimensional PR-proj descriptors have
better performance (Table 2), but higher quantisation

error (Sect. 8) when compressed to a binary representa-
tion. For instance, compressing 48-D PR-proj descriptors
to 64 bit leads to better performance than compressing
64-D PR-proj (which has higher quantisation error) or
32-D PR-proj (which has worse initial performance). In
general, it can be observed (Fig. 6) that using higher-
dimensional (80-D) PR-proj for binarisation consistently
leads to best or second-best performance.
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Fig. 6. Mean error rate vs dimensionality for binary

PR-proj-bin descriptors computed from real-valued 32-D,

48-D, 64-D, and 80-D PR-proj descriptors. The error rates

of the PR-proj descriptors are shown with dashed hori-

zontal lines of the same colour as used for the respective

binary descriptors.

In columns 3–5 of Table 3 we report the performance
of our PR-proj-bin binary descriptors. The 64-bit de-
scriptor has on average 0.07% higher error rate than
the descriptor of [31], but it should be noted that they
employed a dedicated framework for binary descriptor
learning, while in our case we obtained the descriptor
from our real-valued descriptors using a simple, but
effective procedure of Sect. 8. Also, in [31] it is mentioned
that learning higher-dimensional binary descriptors us-
ing their framework did not result in performance im-
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Fig. 7. Descriptor matching ROC curves for six combinations of training and test sets of the Patches dataset [3].

For each of the plots, the sets are indicated in the title as “training→test”. For each of the compared descriptors, its

dimensionality, type, and false positive rate at 95% recall are given in parentheses (see also Table 2 and Table 3).

provement. In our case, we can explore the “bit length –
error rate” trade-off by generating a multitude of binary
descriptors with different length and performance. Our
1024-bit descriptor (column 5) significantly outperforms
both [31] and [2] (by 8.24% and 1.38% respectively), even
though the latter use a higher-dimensional descriptor.
We also note that the performance of 1024-bit PR-proj-
bin descriptor is close to that of 80-D (2560 bit) PR-proj
descriptor, which was used to generate it. Finally, our
128-bit PR-proj-bin descriptor provides a middle ground,
with its 4.47% lower error rate than 64-bit descriptor, but
still compact representation. Using LSH [5] to compress
the same PR-proj descriptor to 128-bit leads to 3.07%
higher error rate than frame expansion, which mirrors
the findings of [10].

We also evaluate descriptor compression using (sym-
metric) product quantisation [9]. The error rates for the
compressed 64-bit and 1024-bit PR-proj-pq descriptors
are shown in columns 6–7 of Table 3. Compression using
PQ is more effective than binarisation: 64-bit PR-proj-
pq has 1.43% lower error than 64-bit PR-proj-bin, while
1024-bit PR-proj-pq outperforms binarisation by 0.61%
and, in fact, matches the error rates of the uncompressed
80-D PR-proj descriptor (column 3 of Table 2).

While PQ compression is more effective in accuracy,
in terms of the matching speed binary descriptors are
the fastest: average Hamming distance computation time
between a pair of 64 bit descriptors was measured to
be 1.3ns (1ns=10−9s) on an Intel Xeon L5640 CPU. PQ-
compressed descriptors with the same 64 bit footprint
(speeded-up using lookup tables) require 38.2ns per

descriptor pair. For reference, SSE-optimised L2 distance
computation between 64-D single-precision vectors re-
quires 53.5ns.

Summary. Both our pooling region and dimensional-
ity reduction learning methods significantly outperform
those of [3]. It is worth noting that the non-linear fea-
ture transform we used (Sect. 3) corresponds to the
T1b block in [3]. According to their experiments, it is
outperformed by more advanced (and computationally
complex) steerable filters, which they employed to obtain
their best results. This means that we achieve better
performance with a simpler feature transform, but more
sophisticated learning framework. We also achieve better
results than [32], where a related feature transform was
employed, but PRs and dimensionality reduction were
learnt using greedy optimisation based on boosting.

Our binary descriptors, obtained from learnt low-
dimensional real-valued descriptors, achieve lower error
rates than the recently proposed methods [2], [31], [33],
where learning was tailored to binary representation.

The ROC curves for our real-valued and compressed
descriptors are shown in Fig. 7 for all combinations of
training and test sets.

10.2 Oxford Buildings and Paris Buildings Datasets

In this section the proposed learning framework is
evaluated on challenging Oxford Buildings (Oxford5K)
and Paris Buildings (Paris6K) datasets and compared
against the rootSIFT baseline [1], as well as the descriptor
learning method of [22].
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10.2.1 Dataset and evaluation protocol

The Oxford Buildings dataset consists of 5062 images
capturing various Oxford landmarks. It was originally
collected for the evaluation of large-scale image retrieval
methods [21]. The only available annotation is the set of
queries and ground-truth image labels, which define rel-
evant images for each of the queries. The Paris Buildings
dataset includes 6412 images of Paris landmarks and is
also annotated with queries and labels. Both datasets
exhibit a high variation in viewpoint and illumination.

The performance measure is specific to the image
retrieval task and is computed in the following way.
For each of the queries, the ranked retrieval results
(obtained using the framework of [21]) are assessed
using the ground-truth landmark labels. The area under
the resulting precision-recall curve (average precision) is
the performance measure for the query. The performance
measure for the whole dataset is obtained by computing
the mean Average Precision (mAP) across all queries.

In the comparison, we employed three types of the
visual search engine [21]: tf-idf uses the tf-idf index
computed on quantised descriptors (500K visual words);
tf-idf-sp additionally re-ranks the top 200 images using
RANSAC-based spatial verification. The third engine
is based on nearest-neighbour matching of raw (non-
quantised) descriptors and RANSAC-based spatial ver-
ification. We use tf-idf and tf-idf-sp in the majority of
experiments, since using raw descriptors for large-scale
retrieval is not practical. Considering that tf-idf retrieval
engines are based on vector-quantised descriptors, the
descriptor dimensionality is not crucial in this scenario,
so we learn the descriptors with dimensionality similar
to that of SIFT (128-D).

10.2.2 Feature detector and measurement region size

Here we assess the effect that feature detection and
measurement region size have on image retrieval perfor-
mance. For completeness, we begin with a brief descrip-
tion of the conventional feature extraction pipeline [19]
employed in our retrieval framework. In each image,
feature detection is performed using an affine-covariant
detector, which produces a set of elliptically-shaped
feature regions, invariant to the affine transformation
of an image. As pointed out in [16], [19], it is bene-
ficial to capture a certain amount of context around a
detected feature. Therefore, each detected feature region
is isotropically enlarged by a constant scaling factor to
obtain the descriptor measurement region. The latter is
then transformed to a square patch, which can be op-
tionally rotated w.r.t. the dominant orientation to ensure
in-plane rotation invariance. Finally, a feature descriptor
is computed on the patch.

In [21], [22], [25] feature extraction was performed
using the Hessian-Affine (HesAff) detector [19],

√
3 mea-

surement region scaling factor, and rotation-invariant
patches. We make two important observations. First,
not enforcing patch rotation invariance leads to 5.1%

improvement in mAP, which can be explained by the
instability of the dominant orientation estimation proce-
dure, as well as the nature of the data: landmark photos
are usually taken in the upright position, so in-plane
rotation invariance is not required and can reduce the
discriminative power of the descriptors. Second, signif-
icantly higher performance can be achieved by using
a higher measurement region scaling factor, as shown
in Fig. 8 (red curve).

One of alternatives to the Hessian operator for feature
detection is the Difference of Gaussians (DoG) func-
tion [15]. Initially, DoG detector was designed to be
(in)variant to the similarity transform, but affine invari-
ance can also be achieved by applying the affine adap-
tation procedure [17], [24] to the detected DoG regions.
We call the resulting detector DoGAff, and evaluate
the publicly available implementation in VLFeat pack-
age [34]. For DoGAff, not enforcing the patch orientation
invariance also leads to 5% mAP improvement. The de-
pendency of the retrieval performance on measurement
region scaling factor is shown in Fig. 8 (blue curve).
As can be seen, using DoGAff leads to considerably
higher retrieval performance than HesAff. It should be
noted, however, that the improvement comes at the cost
of a larger number of detected regions: on average,
HesAff detects 3.5K regions per image on Oxford5K,
while DoGAff detects 5.5K regions.

In the sequel, we employ DoGAff feature detector
(with 12.5 scaling factor and without enforcing the in-
plane rotation invariance) for two reasons: it achieves
better performance and the source code is publicly
available.1 The same detected regions are used for all
compared descriptors.

10.2.3 Descriptor learning results

In the descriptor learning experiments, we used the
Oxford5K dataset for training and both Oxford5K and
Paris6K for evaluation. We note that ground-truth
matches are not available for Oxford5K; instead, the
training data is extracted automatically (Sect. 9). The
evaluation on Oxford5K corresponds to the use case of
learning a descriptor for a particular image collection
based on extremely weak supervision. At the same
time, the evaluation on Paris6K allows us to assess the
generalisation of the learnt descriptor to different image
collections. Similarly to the experiments in Sect. 10.1, we
learn a 576-D PR descriptor (shown in Fig. 5, right) and
its discriminative projection onto 127-D subspace.

The mAP values computed using different “descriptor
– search engine” combinations are given in Table 4.
First, we note that the performance of rootSIFT can be
noticeably improved by adding a discriminative linear

1. We used the following MATLAB command for feature extraction
using VLFeat 0.9.13:
[Regions, Descriptors] = vl_covdet(Image, ’Method’, ’DoG’, ...

’EstimateAffineShape’, true, ’EstimateOrientation’, false, ...

’DoubleImage’, true, ’PatchRelativeExtent’, 12.5, ...

’PatchResolution’, 15);
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Fig. 8. The dependency of retrieval mAP on the feature

detector and measurement region scaling factor (using

rootSIFT descriptor and tf-idf-sp retrieval engine).

projection on top of it, learnt using the proposed frame-
work. As a result, the projected rootSIFT (rootSIFT-proj)
outperforms rootSIFT on both Oxford5K (+2.5%/3.0%
mAP using tf-idf/tf-idf-sp respectively) and Paris6K
(+2.2%/2.1% mAP). Considering that rootSIFT has al-
ready moderate dimensionality (128-D), there is no need
to perform dimensionality reduction in this case, so we
used Frobenius-norm regularisation of the Mahalanobis
matrix A in (10), (16).

The proposed PR-proj descriptor (with both pool-
ing regions and low-rank projection learnt) performs
similarly to rootSIFT-proj on Oxford5K: +3.0%/2.5%
compared to the rootSIFT baseline, and +0.5%/−0.5%
compared to rootSIFT-proj. On Paris6K, PR-proj out-
performs both rootSIFT (+3.0%/3.1%) and rootSIFT-proj
(+0.8%/1%). When performing retrieval using raw de-
scriptors without quantisation, PR-proj performs better
than rootSIFT-proj on both Oxford5K (92.6% vs 91.9%)
and Paris6K (86.9% vs 86.2%).

In summary, both learnt descriptors, rootSIFT-proj and
PR-proj, lead to better retrieval performance compared to
the rootSIFT baseline. The mAP improvements brought
by the learnt descriptors are consistent for both datasets
and retrieval engines, which indicates that our learnt
models generalise well.

Comparison with Philbin et al. [22]. We note that
our baseline retrieval system (DoGAff–rootSIFT–tf-idf-
sp) performs significantly better (+21.1%) than the one
used in [22]: 85.8% vs 64.7%. This is explained by the
following reasons: (1) different choice of the feature
detector (Sect. 10.2.2); (2) more discriminative rootSIFT
descriptor [1] used as the baseline; (3) differences in the
retrieval engine implementation. Therefore, to facilitate
a fair comparison with the best-performing linear and
non-linear learnt descriptors of [22], in Table 5 we report
the results [25] obtained using our descriptor learnt on

TABLE 4

mAP on Oxford5K and Paris6K for learnt descriptors and

rootSIFT [1] using DoGAff feature detector (Sect. 10.2.2).

Descriptor
mAP

tf-idf tf-idf-sp
Oxford5K

rootSIFT baseline 0.795 0.858
rootSIFT-proj 0.820 0.888
PR-proj 0.825 0.883

Paris6K
rootSIFT baseline 0.780 0.796
rootSIFT-proj 0.802 0.817
PR-proj 0.810 0.827

TABLE 5

mAP on Oxford5K and Paris6K for learnt descriptors

(ours and those of [22]) and SIFT. Feature detection was

carried out using the HesAff detector to ensure a fair

comparison with [22].

Descriptor
mAP mAP improv. (%)

tf-idf tf-idf-sp tf-idf tf-idf-sp
Oxford5K

SIFT baseline 0.636 0.667 - -
SIFT-proj 0.673 0.706 5.8 5.8
PR-proj 0.709 0.749 11.5 12.3
Philbin et al., SIFT baseline 0.613 0.647 - -
Philbin et al., SIFT-proj 0.636 0.665 3.8 2.8
Philbin et al., non-linear 0.662 0.707 8 9.3

Paris6K
SIFT baseline 0.656 0.668 - -
PR-proj 0.711 0.722 8.4 8.1
Philbin et al., SIFT baseline 0.655 0.669 - -
Philbin et al., non-linear 0.678 0.689 3.5 3

top of the same feature detector as used in [21], [22].
Namely, we used HesAff with

√
3 measurement region

scaling factor and rotation-invariant descriptor patches.
With these settings, our baseline result gets worse, but
much closer to [22]: 66.7% using HesAff–SIFT–tf-idf-sp.
To cancel out the effect of the remaining difference in
the baseline results, in the last two columns of Table 5
we also show the mAP improvement relative to the
corresponding baseline for our method and [22].

As can be seen, a linear projection on top of SIFT (SIFT-
proj) learnt using our framework results in a bigger im-
provement over SIFT than that of [22]. Learning optimal
pooling regions leads to further increase of performance,
surpassing that of non-linear SIFT embeddings [22]. In
our case, the drop of mAP improvement when moving
to a different image set (Paris6K) is smaller than that
of [22], which means that our models generalise better.

The experiments with two different feature detection
methods, presented in this section, indicate that the pro-
posed learning framework brings consistent improve-
ment irrespective of the underlying feature detector.

11 CONCLUSION

In this paper we introduced a generic framework for
learning two major components of feature descriptor
computation: spatial pooling and discriminative dimen-
sionality reduction. Also, we proposed an extension of
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the learning formulation to the case of weak supervi-
sion, and demonstrated that the learnt descriptors are
amenable to binarisation. Rigorous evaluation showed
that the proposed algorithm outperforms state-of-the-
art real-valued and binary descriptors on challenging
datasets. This was achieved via the use of convex learn-
ing formulations coupled with large-scale regularised
optimisation techniques.

ACKNOWLEDGEMENTS

This work was supported by Microsoft Research PhD
Scholarship Programme and ERC grant VisRec no.
228180. A. Vedaldi was partially supported by the Vi-
olette and Samuel Glasstone Fellowship.

REFERENCES
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