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Figure 1: Neural Feature Fusion Fields: (a) Given a collection of 2D images and a dense self-supervised feature extractor

such as DINO, our method distills the features into a 3D representation via neural rendering. This allows to operate within

the learned scene representation through 2D inputs. (b) For example, prompted with the features of a 2D region (any of the

colored patches in (a)), our method segments the corresponding object in 3D as shown in the point cloud. (c) We can also

render the scene representation and solve image-level tasks such as object retrieval, scene editing, or amodal segmentation.

Abstract

We present Neural Feature Fusion Fields (N3F), a

method that improves dense 2D image feature extractors

when the latter are applied to the analysis of multiple im-

ages reconstructible as a 3D scene. Given an image feature

extractor, for example pre-trained using self-supervision,

N3F uses it as a teacher to learn a student network defined

in 3D space. The 3D student network is similar to a neural

radiance field that distills said features and can be trained

with the usual differentiable rendering machinery. As a

consequence, N3F is readily applicable to most neural ren-

dering formulations, including vanilla NeRF and its exten-

sions to complex dynamic scenes. We show that our method

not only enables semantic understanding in the context of

scene-specific neural fields without the use of manual la-

bels, but also consistently improves over the self-supervised

2D baselines. This is demonstrated by considering vari-

ous tasks, such as 2D object retrieval, 3D segmentation,

and scene editing, in diverse sequences, including long ego-

centric videos in the EPIC-KITCHENS benchmark. Project

page: https://www.robots.ox.ac.uk/˜vadim/n3f/

1. Introduction

With the advent of machine learning two decades ago,

computer vision has shifted its focus from 3D reconstruc-

tion to interpreting images mostly as 2D patterns. Recently,

however, methods such as NeRF [36] have shown that even

3D reconstruction can be cast effectively as a learning prob-

lem. However, such methods are often optimized per scene,

resulting in low-level representations of appearance and ge-

ometry that do not capture high-level semantics. It is thus

compelling to rethink how 3D reconstruction can be inte-

grated with semantic analysis at image level to obtain more

holistic scene representations.

In this paper, we consider a simple, general and effective

approach for achieving such an integration, which we call

Neural Feature Fusion Fields (N3F; see Figure 1). The key

idea is to map semantic features, initially learned and com-

puted in 2D image space, to equivalent features defined in

3D space. Forward mapping from 3D space to 2D images

uses the same neural rendering equations as for view syn-

thesis in prior work. From this, backpropagation can move

features from the 2D images back to the 3D model.

https://www.robots.ox.ac.uk/~vadim/n3f/


Recent methods such as Semantic NeRF [77] and Panop-

tic NeRF [12, 25] have described a similar process for se-

mantic and instance segmentation via label transfer. Our

intuition is that fusion does not need to be limited to image

labels, but can be extended to any image features. N3F fol-

lows a student-teacher setup, where features of a 2D teacher

network are distilled into a 3D student network. We show

that distilling the features alongside 3D geometry via neural

rendering significantly boosts their consistency, viewpoint

independence, and occlusion awareness. As a result, the

student ªsurpasses the teacherº in understanding a partic-

ular scene and improves tasks such as object retrieval and

segmentation from visual queries.

As a particularly compelling case of this idea, we con-

sider starting from a self-supervised feature extractor. Re-

cent work [1, 4, 34, 60] has shown that self-supervised fea-

tures can be used to identify object categories, parts, and

their correspondences in an ªopen-worldº setting, i.e. with-

out committing to a specific set of labels and without col-

lecting annotations for them. This is of particular relevance

for emerging applications such as egocentric video under-

standing, where image understanding must work in user-

specific and constantly evolving scenarios.

Specifically, we consider two scenarios of increasing

difficulty. First, we validate our contribution on simple

static scenes with only one or a few objects of interest, and

combine N3F with the vanilla NeRF model [36]. Second,

we consider the more challenging scenario of egocentric

videos which include static but also dynamic components.

We adopt the same setting as NeuralDiff [59] and consider

videos from EPIC-KITCHENS [10] which contain long se-

quences of actors cooking in first-person view.

Given these diverse sets of videos, we use object retrieval

(e.g., one-shot recognition) as a proxy to evaluate the qual-

ity of the fused image features. Considering an object in-

stance in a single frame, we use it to pool the features from

N3F, and then retrieve other occurrences of the same object

in the rest of the video, despite severe viewpoint changes

or occlusions. We show that, while 2D features already

perform well for this task, N3F systematically boosts per-

formance by a large margin. This observation is consistent

for several self-supervised and supervised features. We il-

lustrate other benefits of such an integrated model by also

showing results for the tasks of 3D object segmentation,

amodal segmentation, and scene editing.

2. Related Work

We summarize relevant background work in feature ex-

traction, reconstruction and neural rendering.

Self-supervised visual features. While N3F can work

on top of any 2D dense image features, including recent

ones based on Vision Transformers (ViT) [11] and vari-

ants [2, 5, 13, 18, 30, 56, 57, 66, 74, 79], of particular inter-

est are self-supervised versions such as [4, 8, 16, 27] as they

are more generically applicable and can benefit more from

the consistency induced by N3F. Caron et al. [4] observed

that their method (DINO), trained with self-distillation,

learns better localized representations, which can be used

to segment salient objects without any labels. Subsequently

these features have been used for unsupervised object lo-

calization [34, 52, 65], semantic segmentation [15, 34, 80],

part segmentation [1, 9] and point correspondences [1].

Neural rendering. Using implicit representations of ge-

ometry in vision dates back at least to level-set meth-

ods [38]. Recently, authors have proposed to represent im-

plicit functions with deep neural networks for the repre-

sentation of geometry [40] and radiance fields [53], fitting

the latter to 2D images via differentiable rendering. Neural

Radiance Fields (NeRFs) [36] have popularized such ideas

by applying them in a powerful manner to a comparatively

simple setting: novel view synthesis from a collection of

images of a single static scene. They combine radiance

fields with internal learning [61] and various architectural

improvements such as positional encoding to obtain excel-

lent scene reconstructions. For a comprehensive overview

of recent trends in this field see [54, 69].

Among countless extensions of NeRF, of particular in-

terest for our applications are versions tackling dynamic

scenes. For example, NSFF [29] models scenes through

time-dependent flow fields, which enable novel view syn-

thesis in space and time; other methods achieve a similar

effect by introducing canonical models [6, 41, 44, 45] or

space warping [58]. Used here, NeuralDiff [59] extends the

standard NeRF reconstruction of the static part of a scene

with two dynamic components, one for transient objects

(foreground), and one for the actor in egocentric videos.

Semantic and object-centric neural rendering. Radi-

ance fields provide low-level representations of geome-

try and radiance and lack a higher-level (e.g., semantic

or object-centric) understanding of the scene. Several

works employ neural rendering to decompose multi-view

or dynamic scenes into background and foreground compo-

nents [39, 47, 51, 59, 73, 75], while others focus on mod-

eling the scenes as compositions of objects [14, 26, 37, 67,

68, 70]. Some authors propose to combine radiance fields

with image-language models (e.g., CLIP [46]) to achieve

semantically aware synthesis [21, 64].

More related to our work, however, are methods that ex-

tend radiance fields to also predict semantics [24, 63, 77,

78]. For example, Semantic-NeRF [77] has done so by us-

ing differentiable rendering to achieve multi-view semantic

fusion of 2D labels akin to [19, 33, 62]. NeSF [63] focuses

instead on inferring semantics jointly across various scenes,

using density fields as input to a 3D segmentation model.

However, it is only demonstrated on synthetic scenes with a



limited number of categories and shapes. Panoptic (i.e., se-

mantic and instance) labels, have also been considered: [12]

uses NeRF as a means to integrate coarse 3D and noisy 2D

labels and render refined 2D panoptic maps, while [25] pro-

poses an object-aware approach that can handle dynamic

scenes, where each 3D instance is modeled by a separate

MLP. All of these methods use semantic labels to train their

models and in particular the latter two require 3D labels. In-

stead, our approach builds on self-supervised features and

can yield a 3D-consistent semantic segmentation of static

and dynamic scenes without any labels.

The most related work is the concurrent paper by

Kobayashi et al. [23] who propose to fuse features in the

same manner as we do; they mainly differ in the example

applications, including the use of multiple modalities, such

as text, image patches and point-and-click seeds, to generate

queries for segmentation and, in particular, scene editing.

Feature distillation. The motivation behind distillation

originates from the task of compressing, or ªdistillingº, the

knowledge of large, complex model ensembles into smaller

models, while preserving their performance [3]. Hinton et

al. [20] have shown that the performance of a distilled (stu-

dent) model can even improve over the performance of the

original model or model ensemble (teacher) when follow-

ing the teacher-student paradigm. Many methods have since

then proposed to use this paradigm on features, tackling the

task of feature distillation [17, 42, 43, 48, 55, 72, 76]. While

N3F also makes use of the teacher-student paradigm, it dif-

fers in that the output of a 2D teacher network is distilled

into a student network that implements a 3D feature field,

resulting in different domains of the student (2D images)

and teacher (3D points).

3. Method

We first describe Neural Feature Fusion Fields (N3F) for

generic (Section 3.1) and advanced (Section 3.2) neural ren-

dering models, and then introduce a number of applications

(Section 3.3) which we use to demonstrate its benefits.

3.1. Neural Feature Fusion Fields

Let I ∈ R
3×H×W be an input image defined on the lat-

tice Ω = {1, . . . , H} × {1, . . . ,W} and let Φ be a feature

extractor, i.e. a function mapping the image I to a represen-

tation Φ(I). We assume the representation is in the form of

a vector field R
C×H×W , which is in itself an image with C

feature channels. Example features include dense SIFT fea-

tures [32], convolutional networks [7] and visual transform-

ers [11]. Furthermore, these features can be handcrafted,

supervised or unsupervised.

Now suppose that the image is part of a collection

{It}1≤t≤T and that the camera parameters are given, so that

the projection function πt from world coordinates X ∈ R
3

to image coordinates u = πt(X) ∈ R
2 is known. A neu-

ral radiance field is a pair of functions (σ, c) mapping 3D

points X ∈ R
3 to occupancy values σ(X) ∈ R+ and to col-

ors c(X) ∈ R
3 respectively. In practice, color also depends

on the viewing direction d ∈ R
3, but our notations omit

this dependency for brevity. The neural rendering equation

reconstructs the color Itu of pixel u as

Îtu =

∫ ∞

0

c(Xtu(r))σ(Xtu(r))e
−

∫
r

0
σ(Xtu(q)) dq dr (1)

where {Xtu(r)}r>0 are points along the ray from the cam-

era center through pixel u in image It.
The idea of neural rendering is to learn the functions σ

and c given only the images It and the camera poses πt as

input. This is done by minimizing the image reconstruc-

tion loss
∑

t ∥Ît − It∥
2 for all images in the sequence with

respect to the parameters of the models σ and c.
In N3F, we propose to generalize this model by also re-

constructing feature images Φ(It) instead of just color im-

ages It. For this, we also minimize the loss:

∑

t

∥Φ̂t − Φ(It)∥
2. (2)

In order to do so, we modify Equation (1) to generate, in ad-

dition to a color image Ît, a feature image Φ̂t ∈ R
C×H×W .

This is obtained by modifying the range of the function

c = (crgb, cΦ) to be R
3+C , where C is the number of fea-

ture channels. We call the pair (σ, cΦ) a neural feature field

to distinguish it from the neural radiance field (σ, crgb) typ-

ically used for view synthesis.

In the context of neural networks, this approach can be

understood as a 2D-teacher-3D-student model. The teacher

is the feature network Φ, which is defined in image space,

and the student is the network implementing the function

cΦ, defined in 3D world space. This is illustrated in Fig-

ure 2. The final training loss for the student network is sim-

ply the sum of the image reconstruction loss and the feature

reconstruction loss weighed by a factor λ:

∑

t

∥Ît − It∥
2 + λ∥Φ̂t − Φ(It)∥

2. (3)

The key benefits of this approach are twofold. First,

knowledge from the teacher network is distilled into the

student network in a manner that correctly reflects the

3D geometry of the scene, which has a smoothing effect

and helps to regularize feature prediction. As we show

later, this results in higher quality features that are more

consistent across viewpoints. Second, distilling features

of general-purpose feature extractors pre-trained on large

external datasets Ð with or without supervision Ð brings

open-world knowledge into the 3D representation, which is

otherwise scene-specific and lacks semantic understanding.
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Figure 2: Overview of our approach. N3F follows a student-teacher setting where features computed from individual images

are distilled into a 3D student network. The student network extends NeRF-like models such that a ray from a selected view

is mapped to a color value Îtu and a corresponding feature vector Φ̂tu through volumetric rendering. The teacher network,

which is learned with self-supervision (SSL), predicts the 2D image features Φ(It)u to be distilled. The student is trained to

optimize both image and feature reconstruction objectives, whereas the teacher is not trained further (stop gradient or ‘sg’).

While the student network solely learns from 2D features, the resulting representation can operate either in 2D or in 3D.

3.2. Distillation with advanced NeRF architectures

In N3F, we are free to implement the neural field (σ, c) in

any of the many variants that have been proposed in the lit-

erature. In this paper, we showcase the approach on two dif-

ferent scenarios: simple statics scenes, as typically handled

by NeRF (presented before), and egocentric videos that are

significantly more complex, for which standard neural ren-

dering models are insufficient. Again, we stress that many

other variants would also apply.

The challenge of egocentric videos is that they contain

a mixture of static background objects, foreground objects

that are manipulated by the actor, and body parts of the

actor themselves (e.g., hands). We handle them by adopt-

ing NeuralDiff [59], a NeRF-like architecture that automat-

ically decomposes a dynamic scene into these three compo-

nents, combining a static field representing the background,

a dynamic field (with a dependency on time t in addition to

space X) representing the foreground, and another dynamic

field anchored at the camera representing the actor. We can

adapt NeuralDiff to support N3F simply by considering a

feature prediction head in addition to the color and density

heads for each of the three components (MLPs).

3.3. Applications of N3F

In addition to employing N3F on top of different neural

rendering models, we demonstrate its versatility by consid-

ering various downstream applications: 2D object retrieval,

3D object segmentation, 3D scene editing, and amodal seg-

mentation. For all these tasks and for ease of evaluation,

we assume that a 2D region is provided as a query for a

single given frame It. As a particular use case for provid-

ing queries, one can think of the user introducing an ob-

ject of interest which can be then localized, e.g., across a

video. However, we note that providing such annotations

is not strictly necessary and one could also consider direct

clustering of the distilled features to obtain segmentations

of objects without manual input, as shown in [1, 34].

2D object retrieval. Given a collection of images, and

given any object from a single reference frame, we would

like to find all the occurrences of the same object in the rest

of the collection, despite significant viewpoint changes, oc-

clusions, and various dynamic effects. In particular, given

a region Rt ⊂ Ω of the image containing a fully or par-

tially visible object at time t, or even just a patch, we pool a

feature descriptor as the mean of the region’s features:

Φ(It)
avg
Rt

=
1

|Rt|

∑

u∈Rt

Φ(It)u. (4)

To localize the object in another image It′ , t
′ ̸= t, we re-

turn as matching region R̃t′ the set of pixels whose features

are sufficiently close to the mean descriptor according to a

threshold τ :

R̃t′ =
{

u ∈ Ω : ∥η(Φ(Iq)u)− η(Φ(It)
avg
Rt

)∥ ≤ τ
}

,

where η(a) = a/∥a∥ normalizes the input vector a.

Performance on this task directly depends on the quality

of the matched features. Despite the 2D character of this

task, the above equations are directly applicable to N3F, by

simply replacing Φ(It) with the distilled feature map Φ̂t

obtained after rendering the 3D features back to the t-th
view, as explained above. Hereby, we denote the distilled

mean feature vector corresponding to region Rt as Φ̂avg
tRt

3D object segmentation. Since N3F predicts a 3D field

of features, these features can be used directly, i.e. prior to

rendering, to segment a queried object along with its geom-

etry in the 3D space, rather than retrieving it in a series of



2D images. Formally, given features Φ̂avg
tRt

extracted from

a single 2D annotation Rt of the object in image It, we

retrieve the 3D region {X ∈ R
3 : ∥cΦ(X) − Φ̂avg

tRt
∥ ≤

τΦ ∧ σ(X) ≥ τσ}, where τΦ and τσ denote thresholds for

the features of interest and densities respectively. We note

that this application is seamlessly enabled by N3F, while

not possible to address with the 2D teacher network.

Scene editing. Instead of extracting a 3D object, we can

also suppress it, i.e. remove it from the scene. To achieve

this, we can simply set the occupancy σ(X) to zero for all

3D points belonging to an object, i.e. all points X such that

∥cΦ(X) − Φ̂avg
tRt

∥ ≤ τΦ. Once again, in our experiments,

the object to be removed is identified using a query region

in one of the views (object patch or region).

Amodal segmentation. We can adjust the querying and

retrieval process of our method to handle occlusions in two

different ways. The first corresponds to the 2D object re-

trieval task; in this case, due to the rendering process, fea-

tures (just like colors) are ªblockedº from reaching the cam-

era if they are occluded, for example by the actor in ego-

centric videos or by other objects. However, our approach

makes it possible to also see through occluders, by disabling

the occupancies σ for regions of the 3D space that contain

features dissimilar to the query descriptor (Equation (4)).

In practice, this amounts to rendering the 3D features after

obtaining a segmentation of the object in 3D, as described

above. In this manner, it is possible to obtain a mask of the

full extent of the object, as if occluders are removed, which

is often referred to as amodal segmentation [28].

4. Experiments

In this section, we evaluate the features produced by N3F

for the tasks introduced in Section 3.3 for static and dy-

namic scenes. Section 4.1 gives the experimental details

and Section 4.2 reports the results for the different tasks.

Section 4.3 discusses limitations of our approach.

4.1. Experimental setup

Datasets. We consider scenes from the LLFF dataset [35]

and a subset of the EPIC-KITCHENS dataset [10]. The

former contains images of static scenes while the latter

contains egocentric videos of people cooking in different

kitchens, and interacting with a large number of different

objects, such as food or kitchen utensils. For the former, we

implement N3F on top of the vanilla NeRF [36] architec-

ture, and for the latter on top of the more complex NeuralD-

iff [59] architecture, as described next.

NeRF. For the experiments on the LLFF dataset [35], we

use the NeRF PyTorch implementation [71] with the default

hyperparameters. We adapt the architecture with an addi-

tional feature prediction head, consisting of a single linear

layer with tanh as activation function. We use the pre-

trained models supplied with the implementation and con-

tinue training for 5k iterations, freezing all but the feature

prediction head for the first 1k iterations. The weight for

the feature distillation loss λ = 0.001. The features are ren-

dered similarly to pixel colors as described in Section 3.1.

NeuralDiff. We build on the model proposed in [59] for

the experiments on EPIC-KITCHENS. We extend the

three-stream architecture with feature prediction heads (fol-

lowed by tanh), one for each component (static, dynamic,

actor). The model is first trained for RGB reconstruction

(10 epochs with 20k iterations each and a batch size of

1024). Training for a single scene takes approximately

24 hours on an NVIDIA Tesla P40. We then finetune the

model to distill the pre-computed teacher features for 20

epochs, 500 iterations each, with the same batch size (ap-

prox. 2 hours) and again freezing all but the feature predic-

tion heads for the first 1k steps (training from scratch yields

similar results, but is slower). We down-sample images to

480 × 270 pixels and upscale the 2D features with nearest

neighbour interpolation. We set λ = 1.0 for the feature

distillation loss. The models are trained using Adam op-

timization [22], an initial learning rate of 5 × 10−4 and a

cosine annealing schedule [31].

2D teacher features. We consider four transformer-based

feature extractors: DINO [4] with patch size 8 and 16,

MoCo-v3 [8] and DeiT [56]. DINO and MoCo-v3 are self-

supervised whereas DeiT is trained with supervision (image

labels). Features on all scenes are pre-computed using the

publicly available weights (pre-trained on ImageNet [49]),

which are not further updated during the distillation process.

The features are then L2-normalized and reduced with PCA

to 64 dimensions before distillation.

Evaluation metric. Each sequence used for quantitative

evaluation in the next section has K objects annotated in

N different frames, corresponding to ground truth regions

{Rkn}1≤k≤K,1≤n≤N . These annotations are used for eval-

uation only, and never considered during training. Details

on the annotation process can be found in the supplemen-

tary material. We consider the task of 2D object retrieval

for quantitative evaluation and divide the annotated frames

into two non-overlapping sets, a query set Q and a gallery

set G (Q ∪ G = {1, . . . , N}). Each region Rkq (q ∈ Q)

is in turn used as a query, searching for the corresponding

object in each annotated frame from the gallery set. In or-

der to avoid fixing a threshold τ as in Equation (4), for each

target frame Ig (g ∈ G), pixels u are sorted by increas-

ing distance to the mean feature Φ(Iq)
avg
Rkq

(Φ̂avg
Rkq

for the

N3F-distilled features) and labeled as positive if they belong

to the ground truth region Rkg and as negative otherwise.

The sorted labels are used to compute the Average Preci-

sion (AP) APkqg . The AP values are then averaged across

videos, objects and queries to obtain a mean AP (mAP).



Method S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 Average (abs gain)

DINO [4] [ViT-B/8] 75.75 57.25 56.46 63.11 70.56 65.81 52.28 78.28 58.19 65.79 64.35

N3F (DINO) 83.64 67.19 69.21 80.23 78.17 77.57 64.32 83.85 76.24 82.17 76.26 (+11.91)

DINO [4] [ViT-B/16] 77.37 53.21 48.91 57.44 68.32 60.39 40.39 74.07 53.22 62.19 60.15

N3F (DINO) 88.61 66.99 69.90 87.02 78.66 78.97 70.57 85.17 77.59 84.93 78.84 (+18.69)

MoCo-v3 [8] [ViT-B/16] 70.73 54.02 48.02 52.89 67.18 57.34 43.54 73.45 47.85 60.12 57.51

N3F (MoCo-v3) 86.67 68.95 68.53 82.93 75.74 78.00 65.63 83.58 68.26 83.21 76.15 (+18.64)

DeiT [56] [ViT-B/16] 55.27 40.78 38.02 42.76 54.01 51.70 37.72 61.53 40.88 52.48 47.51

N3F (DeiT) 86.02 62.47 66.69 81.22 72.93 77.88 61.63 83.73 69.59 83.12 74.53 (+26.82)

Table 1: 2D object retrieval. We compare the features learned by our approach (NeuralDiff-N3F) with the 2D teacher

features on the task of retrieving 2D objects for 10 scenes of the EPIC-KITCHENS dataset. We consider features from three

self-supervised models, two flavors of DINO [4] and MoCo-v3 [8], and a supervised one, DeiT [56]. We report per scene

mean average precision (mAP) results and the overall Average.

Query Target

2D Retrieval

DINO Ours

3D Retrieval

Ours

Figure 3: Retrieving (segmenting) objects in 2D and 3D. Given a feature descriptor obtained by pooling features from a

given region (Query) in a reference frame, we retrieve similar regions in another frame (Target) of a video sequence. This

can be achieved with either features from a teacher network (DINO) or features learned by our model (NeuralDiff-N3F). We

show that N3F features are less affected by viewpoint dependent changes such as reflectance, as can be seen for the grater,

which has a non-Lambertian surface. Additionally, our model can compute the densities and colors of 3D features for a given

2D query, which allows us to extract the full 3D extent of objects (seen as point clouds on the right).

4.2. Results

We present our results for the different tasks mentioned

in Section 3.3, namely 2D and 3D object retrieval and seg-

mentation, amodal segmentation, and scene editing.

2D object retrieval. In Table 1 we present quantita-

tive evaluation results for scenes of the EPIC-KITCHENS

dataset. We report the mAP value over different queries for

each scene, and the average performance over all scenes.

We compare the distilled features learned by NeuralDiff-

N3F to those of the corresponding 2D teacher networks. We

observe that the 2D features alone perform already well on

this task, with self-supervised features (DINO, MoCo-v3)

surpassing supervised ones (DeiT). This is likely due to the

fact that models trained with self-supervision have better

generalization properties [50]. When comparing the 2D fea-

tures with the distilled features, we observe significant im-

provements across all feature extractors and all scenes. The

smallest increase occurs when distilling the already strong

DINO features, resulting in an absolute difference of 11.9

mAP. The potential for improvement is larger when distill-

ing DeiT features and we observe a larger performance gap,

with our model reaching an mAP of 74.5 vs. 47.5.

We also present qualitative results on both EPIC-

KITCHENS (Figure 3) and LLFF (Figure 7), comparing

the features learned by NeuralDiff-N3F and NeRF-N3F re-



Before Editing After Editing

Figure 4: Scene editing. Our approach allows us to edit

a scene in 3D given 2D queries. Given a 2D segment and

its corresponding feature vector, we extract a 3D region of

matching features, suppress its occupancies and render the

view without the object, i.e. removing the banana (first row),

lid (second row), pot (third row) and package (fourth row).

spectively with those directly obtained from a 2D teacher

(DINO). In Figure 3, we show objects queried in a given

frame by selecting an object mask, followed by the result-

ing distance map in feature space for a different frame of

the same scene. Overall, we observe that N3F increases

the clarity and correctness of the maps, resulting in sharper

boundaries and higher confidence for the target objects. For

example, in Figure 3 (second row), DINO struggles to rec-

ognize the grater in the target frame, possibly due to metal-

lic reflections present in the query and a strong change in

appearance. We observe similar results for NeRF-N3F in

Figure 7, where our approach retrieves the whole object

from a small user-provided patch, extracting a more detailed

as well as complete segmentation of the objects compared

to vanilla DINO. In both scenarios, our approach improves

over the 2D teacher by encouraging multi-view-consistency,

a property then captured by the distilled 3D features.

3D object segmentation. Besides retrieving objects in 2D

space, our approach also allows to extract the geometry

(e.g., as a point cloud) of a queried region, as detailed in

Section 3.3. We can thus obtain segmentations of various
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Figure 5: Amodal segmentation. We compare NeuralDiff-

N3F-distilled features to 2D DINO features for the task of

amodal segmentation, i.e. segmenting objects through oc-

clusions. Given a query in a reference frame, N3F allows

us to retrieve the whole object in a target frame despite oc-

cluders, by comparing features in 3D and suppressing the

occupancies of dissimilar regions prior to rendering.

objects in 3D, without requiring any 3D labels to train our

models. This is illustrated in Figure 3 (3D Retrieval). While

details are limited due to the precision of the model and par-

tiality of the observations, the recovered shape is broadly

correct. We also note that this task lies outside the capabil-

ities of the original teacher network and is only enabled by

the fusion of 2D features into the 3D field.

Scene editing. Figure 4 shows examples of images ren-

dered with NeuralDiff-N3F before (left) and after (right)

editing. Given a 2D query region, we find its location in

3D by matching features and suppress its occupancies (set-

ting them to zero), thus removing selected objects. Note that

images are correctly ‘inpainted’ under the object because of

the holistic scene knowledge implicitly contained in the ra-

diance field. This is especially true in the case of the EPIC-

KITCHENS data, and dynamic scenes in general, as objects

appear at different locations for different time steps. Thus,

removing objects results in valid backgrounds, because the

background was observed at some point. In comparison,

scene editing in NeRF-N3F (Figure 6) results in partially

hallucinated background, since part of it is occluded for all

viewing directions provided during training.

Amodal segmentation. Figure 5 shows qualitative results

for the task of amodal segmentation, i.e. segmenting the

full extent of an object, including both visible and occluded

parts. For reference, the figure also shows ªground truthº

segmentations for these objects, but note that these are man-



Query Patch GT RGB

View A

+=

View B
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Figure 6: Scene editing. Given a query patch from one (unseen) view, NeRF-N3F renders an image from another (unseen)

view while separating foreground from background by matching the fused 3D features to the query patch features. These

results also highlight the close relationship to the concurrent work of Kobayashi et al. [23].

Query Patch DINO OursGT RGB

Figure 7: 2D object retrieval. We calculate feature dis-

tance maps with DINO and with our model (NeRF-N3F)

for unseen views from three LLFF scenes. Our model pre-

dicts features for these views through its 3D representation.

ually extrapolated in case of occlusions (since the object is

not visible). Owing to its 3D awareness, our model is able

to accurately segment, e.g., the cutting board (first column),

even though it is barely visible behind the actor’s arm. In

comparison, the teacher network (DINO) cannot segment

occluded parts, since it is limited to 2D representations.

4.3. Limitations and ethical considerations

N3F inherits some of the limitations of the source fea-

tures. For instance, self-supervised features such as DINO

tend to group semantically related objects. In the EPIC-

KITCHENS dataset, we have observed this behavior for ob-

jects such as fruits and vegetables or the handles of utensils

(pans, kettles, etc.), which are often close in feature space.

This might be undesirable in scenarios where a specific ob-

ject instance should be tracked across a video sequence.

Another limitation is the quality of the 3D reconstruc-

tion. Reconstruction can fail catastrophically in some

videos. In general, details of small or thin objects can be dif-

ficult to reconstruct, making it impossible to segment some

3D objects even if they are separated correctly by the 2D

features. An example is the cutting board in Figure 3 be-

cause of its thinness and proximity to the underlying table.

Besides general caveats on the reliability of unsupervised

machine learning, there do not appear to be significant ethi-

cal concerns specific to this project. EPIC-KITCHENS con-

tains personal data (hands), but was collected with consent,

and it is used in a manner compatible with their terms.

5. Conclusions

We have presented N3F, an approach to boost the 3D

consistency of 2D image features within sets of images that

can be reconstructed in 3D via neural rendering. We have

shown that N3F works with various neural rendering mod-

els and scenarios, including static objects and harder ego-

centric videos of dynamic scenes. Our experiments illus-

trate the benefit of our approach for the tasks of object re-

trieval, segmentation and editing. Future work includes in-

tegrating N3F in the self-supervised process that learns the

2D features in the first place (e.g., DINO) and fusing multi-

ple videos to establish cross-instance correspondences (e.g.,

by matching similar utensils in different kitchens).

Acknowledgments. We are grateful for support by NAVER

LABS, ERC 2020-CoG-101001212 UNION, and EPSRC Visu-

alAI EP/T028572/1. We thank the anonymous reviewers for their

feedback that helped to improve our paper.



References

[1] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel.

Deep vit features as dense visual descriptors. arXiv preprint

arXiv:2112.05814, 2021. 2, 4
[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit:

BERT pre-training of image transformers. In Proc. ICLR,

2022. 2
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