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Abstract

We propose an algorithm to perform causal inference
of the state of a dynamical model when the measurements
are corrupted by outliers. While the optimal (maximum-
likelihood) solution has doubly exponential complexity due
to the combinatorial explosion of possible choices of inliers,
we exploit the structure of the problem to design a sampling-
based algorithm that has constant complexity. We derive
our algorithm from the equations of the optimal filter, which
makes our approximation explicit. Our work is motivated
by real-time tracking and the estimation of structure from
motion (SFM). We test our algorithm for on-line outlier re-
jection both for tracking and for SFM. We show that our ap-
proach can tolerate a large proportion of outliers, whereas
previous causal robust statistical inference methods failed
with less than half as many. Our work can be thought of
as the extension of random sample consensus algorithms to
dynamic data, or as the implementation of pseudo-Bayesian
filtering algorithms in a sampling framework.

1. Introduction

Structure from motion (SFM) is a mature area of com-
puter vision where significant success has been attained dur-
ing the last decade: We now have commercial products that
can estimate 3-D camera pose and point-wise structure of
a scene from a collection of images in a fully automatic
fashion. Robust statistical inference plays a crucial role in
the practical implementation of most SFM systems, since
the correspondence mechanisms are often based on low-
level assumptions that are prone to errors. In particular,
RANSAC [8], along with its many variants, has become the
method of choice, owing to its ability to operate in the pres-
ence of a large proportion of “outliers1.” By contrast, vision
has so far failed to materialize as a reliable sensory modality

1We will define the notion of outlier properly in Section 2; for now an
intuitive acception suffices.

in real-time control applications, where data have to be pro-
cessed in a causal fashion2 as part of a closed-loop system.
We attribute part of this failure to the lack of availability
of suitable robust inference techniques that can be applied
in causal data processing (there are a few exceptions, upon
which we will comment later.) Note that batch-processing
based SFM algorithms, together with the associated tech-
niques for handling outliers, cannot be directly applied on
these problems as they introduce destabilizing delays in the
feedback loop [4]. On the other hand, existing robust filter-
ing techniques, which we review in Section 1.1, either can-
not tolerate a large proportion of outliers, or are not suitable
for real-time implementation.

Therefore, we turn our attention to causal robust statisti-
cal inference. This problem arises when there is some hid-
den variable of interest that evolves over time, and the ob-
servations are either related to the hidden states by a simple
statistical model, or they are “outliers.” The goal is to infer
the hidden variables despite outliers, and to do so causally,
i.e. only using data up to the current time. For example,
the hidden variable could be ego-motion, and the measure-
ments point correspondences from a low-level mechanism.
This is important for the real-time estimation and segmen-
tation of structure and motion in vision-based control and
robotics, for instance in tracking, manipulation, navigation,
and surveillance. The goal is not just to do it fast, but to do
it causally to avoid delays in the loop.

1.1. Related work

Robust statistical inference in a dynamic context is a par-
ticular type of non-linear filtering problem. Given a proba-
bilistic description of the uncertainty, as well as of the out-
lier generation mechanism, one can write the equations that
govern the evolution of the conditional density of the hidden
states (variables of interest as well as inlier/outlier distribu-
tion at time t) given all measurements available up to time
t. The optimal filter evolves an estimate of such a density

2Only data up to the current time can be exploited to perform an esti-
mate of the current state.
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starting from some initial condition and is easily derived
formally (e.g. [10] p. 174). From such a density, one can
then construct some point estimate, for instance the max-
imum likelihood, the maximum a-posteriori, or the least
mean square or the median estimate.

In practice, the conditional density can only be integrated
numerically except for a handful of cases that do not include
ours. In general there are a variety of numerical schemes
available, including a plethora of particle evolution schemes
[7, 14]. However, ultimately we are not interested in the en-
tire conditional density, but in a point estimate. Since the
conditional density can only be approximated, a point es-
timate computed from it is an approximation too. At that
point, we might as well settle for a more efficient scheme
that yields an (approximate) point estimate at the outset.
There is another more philosophical reason to prefer a point
estimator: Often if a problem is well formulated the design-
ers have reasons to believe that what they are looking for is
a unique entity (e.g. there is one ego-motion, not a distri-
bution of them), and the multi-modality of the conditional
density is only due to the output statistics (e.g. outliers).
Therefore, estimating the entire conditional density would
be an overkill. We make the assumption that the posterior
density of the hidden variables would be unimodal if it were
not for outliers. We therefore design a point estimator that
only attempts to model the evolution of the dominant mode,
rather than spreading computational resources by evolving
particles at the tails of the distribution.

This work relates to a large body of literature in robust
statistics that exploit heuristics related to sample consensus.
A prototype algorithm of this class is RANSAC [8], and the
many variants that have been proposed to improve its effi-
ciency [5, 6, 19], and robustness [16, 21, 20]. Our work
can be interpreted as a way to make RANSAC work in a
causal fashion. Our goal is to extend random sample con-
sensus techniques to a dynamic context, so we can use them
to handle outliers in real-time applications. We use tracking
and SFM as examples, but by no means is our work limited
to these applications. We show experiments where up to
85% of the measurements are outliers, where previous ro-
bust filters fail, and where a large number of particles would
be necessary in order to successfully capture the dominant
mode. Although a batch processing of the data would nec-
essarily give better estimates, it would require waiting for
all data (or at least for a “large enough” temporal window)
to be collected, thereby introducing destabilizing delays in
a vision-based control scenario. Our scheme compares fa-
vorably with batch RANSAC, in the sense of being in the
ballpark in terms of accuracy and robustness, despite only
processing data in a causal fashion.

Among other schemes for causal robust inference in the
context of computer vision, [18, 17] employ sequential im-
portance sampling techniques [15], which makes real-time

operation challenging. Nister [16] provides ways to expe-
dite non-causal sampling schemes so they can be imple-
mented fast enough to be used in real time. However, [16]
is limited to processing a window of measurements, with no
long-term memory, and introduces an intrinsic delay due to
the necessity to collect a buffer of frames in order to run its
version of RANSAC.

2. Problem statement
We are interested in some quantity xt ∈ RM (the “state”)

that evolves in time but that we cannot measure directly. In
the simplest case the time dependency can be described by
an ordinary difference equation (ODE), up to some “model
uncertainty” vt that we assume to be well captured by a sim-
ple statistical model, say a Gaussian process. In the simplest
case the ODE is linear, xt+1 = Axt + vt, A ∈ GL(M),
and without loss of generality we can assume the uncer-
tainty to be white and zero-mean3 {vt}t∈Z ∼ N (0, Rv).
Although we cannot measure xt, we are given measure-
ments {yt ∈ RN}t∈Z that come from one of two possi-
ble sources: At some time t ∈ Z, either yt is an instanta-
neous function of xt, up to some measurement error that
can be described by a simple statistical model, or yt is
“completely unrelated” to xt. In the former case, the sim-
plest instance is a linear model, yt = Cxt + nt where
C ∈ RN×M and {nt}t∈Z ∼ N (0, Rn). In the latter
case “completely unrelated” means that there is no statis-
tical dependency between yt and xt that is simple enough
for us to care to model it explicitly. Instead, in this case we
call yt an outlier and we wish to bar it from contributing
to the inference of xt. We do not know a-priori whether
yt is a valid measurement (inlier) or an outlier, so we can
model the choice with a stochastic indicator process χt:
yt = diag(χt) (Cxt + nt) + (I − diag(χt))νt where diag
indicates the diagonal of a matrix, and νt is a stochastic pro-
cess statistically independent of the other variables.

Since we allow for uncertainty in the evolution of xt and
in the measurement process, we have to specify what we
mean by inference, which we will do shortly. To that end,
we summarize the model that generates the data as follows4

xt+1 = Axt + vt vt ∼ N (0, Rv)
χt+1 = g(χt, µt) nt ∼ N (0, Rn)
yt = diag(χt) (Cxt + nt) + (I − diag(χt))νt

(1)

where the evolution of χt+1 is written formally as a function
g : {0, 1}N × RN −→ {0, 1}N of some unknown “input”

3Lest we can consider the mean to be part of the state and we can pre-
whiten the filter by simple (linear) projection operators [10]

4The generative model can be specified in terms of evolution of the joint
density of {xt, yt}, or in terms of the evolution of the generic realization
xt, yt. We choose the latter because of its simplicity, although the two are
entirely equivalent.



µt that guarantees that χt remains an indicator function.
Given measurements (“output” of this model), i.e. realiza-
tions of the process {yt}t∈Z, we want to infer the state xt,
by employing only inlier measurements. We are thus in the
realm of robust statistical inference, and in particular, since
the inference concerns the state of a dynamical model, this
problem is known as robust filtering [9]. We indicate with
yt

τ
.= (yτ , . . . , yt) a realization of the process {yt} from

time τ to t, and we omit the subscript when τ = 0. We
denote by yt(i) the i-th component of the vector yt.

In the absence of more detailed information on the out-
lier process νt, we will assume that these variables are uni-
formly distributed and independent, i.e. p(νt(i)) = 1/η
where η is a nominal spreading value. This simple model
has already been proven successful in applications similar
to ours [21]. Moreover, we will assume that the processes
χt(i) and χt(j) are independent for i 6= j. By using these
assumptions, we can get the density of yt(i) conditioned on
xt and χt−1 as

p(yt(i)|xt, χt−1) = p(yt(i)|xt, χt(i))P (χt(i) = 1|χt−1(i))
+ P (χt(i) = 0|χt−1(i))/η (2)

where p(yt(i)|xt, χt(i)) can be derived from the density of
the measurement noise nt(i) and P (χt−1(i)|χt(i)) is the
transition probability encoded by g(·, µt).

2.1. Optimal filter and its infeasibility

Ideally, given the observation yt, we would like to obtain
the posterior density p(xt, χt|yt). This problem has a well
known solution in term of a recursive filter: The evolution of
the conditional density is immediate to derive using Bayes’
rule and Chapman-Kolmogorov’s equations ((6.61) [10]):

p(xt+1, χt+1|yt+1) ∝ p(yt+1|xt+1, χt+1)·
·
∫

p(xt+1, χt+1|xt, χt)dP (xt, χt|yt),
p(x0, χ0|y0) ∼ p0,

(3)

where p0 ∼ p(x0, χ0|∅) is an initial estimate. The integrand
p(xt+1, χt+1|xt, χt) can be factored as:

p(xt+1, χt+1|xt, χt) = p(xt+1|xt)p(χt+1|χt) (4)

under the assumptions made in the previous section, and the
transition probability p(χt+1|χt)

.= πij can be further spec-
ified as part of the model (1). Unfortunately, computing the
integral above in the most general case is out of the question
because p(xt, χt|yt) depends on the entire history χt of χt,
via yt, and is therefore a mixture of Gaussians with an ex-
ponential number of modes in both time t and the number of
observation N . This is where we need to introduce approx-
imations, and several options are available, from “sum-of-
Gaussian” filters [1] to “interactive multiple models” [3], to
various forms of generalized pseudo-Bayesian filters (e.g.

GPB1, [3] p. 451). Each of these filters is based on a differ-
ent heuristic, and it is impossible to prove general properties
or approximation bounds except for special cases. These fil-
ters arose in radar signal processing, where switches occur
rarely between a small number of models (targets), and are
not well suited to our application where the set of possible
subsets of inliers is large.

2.2. Naive sampling of filters

By conditioning on any choice of putative inliers χ̃t, as-
suming Gaussian priors one could easily (i.e. linearly) solve
equation (3) using a Kalman filter. In fact, given χ̃t, the
posterior density p(xt+1|yt, χ̃t) is Gaussian. This suggests
substituting p(xt, χt|yt) with p(xt|χ̂t, y

t) as an estimate of
the continuous state xt given a point estimate of the discrete
state χ̂t. A natural criterion for the choice of χ̂t is the one
that maximizes the posterior density

x̂t, χ̂
t .= arg max

xt,χt

p(xt, χ
t|yt). (5)

Note that the function p(xt, χ
t|yt) is equivalent to

p(xt|yt, χt)p(χt|yt). Once some χt is given, say
χt = χ̃t, our model (1) becomes linear, and
the maximum a-posteriori (MAP) estimator x̂t(χ̃t) =
arg maxxt p(xt, χ̃

t|yt) is computed by the Kalman filter
[10]. Unfortunately, maximizing in the whole history χt

is still a doubly exponential problem. The complexity
can be reduced drastically by assuming χt to be constant
χ0 = ... = χt, which is acceptable as long as the obser-
vations tend to preserve their inlier/outlier status. Still the
possible assignments of χt are exponential in the number of
observations. This can be addressed by sampling randomly
the solution space, leading to the procedure summarized in
Algorithm 1.

The three major shortcomings of Algorithm 1 are (i) the
constancy of χ0, ..., χt, too stringent for large intervals; (ii)
the naive assignments for χt that, although provably correct
in the limit, is too slow in practice; (iii) the complexity that
grows linearly with t. These issues will be addressed by the
KALMANSAC procedure described in the next section.

3. KALMANSAC

In this section, we present an approximate solution that
improves Algorithm 1 by (i) letting χt change over time,
(ii) using an efficient sampling scheme and (iii) limiting the
computational complexity to be constant for all times t.

We start from equation (3) and make our assumption ex-
plicit. We are going to assume that, at every instant of time,
the best estimate of the inliers χ̂t is available, as part of the
solution of x̂t, χ̂t = arg max p(xt, χt|yt). Compounding
these choices over time we get the best causal estimate χ̂t up
to time t. We re-write p(xt, χt|yt) ∝ p(xt|χt, y

t)p(χt|yt).



Algorithm 1 Naive sampling of filters.
1: Initialization: Randomly choose a set of assignments

Υ ⊂ {0, 1}N of inliers/outliers among the measure-
ments.

2: for all assignments χ? in Υ do
3: Fix χ̂t to χ̂0 = ... = χ̂t = χ?.
4: Estimate x̂t using the Kalman filter.
5: Compute the MAP score of the assignment χ? as

p(yt, x̂t, χ̂
t) which is proportional to p(x̂t, χ

t|yt).
6: end for
7: Validation: Choose x̂t and χ? that yield the maximum

score.

Now we assume that

p(χt|yt) = δ(χt − χ̂t), (6)

and equation (3) reduces to

p(xt+1, χt+1|yt+1) ∝ p(yt+1|xt+1, χt+1)p(χt+1|χ̂t)·

·
∫

p(xt+1|xt)dP (xt|χ̂t, y
t). (7)

From equation (7), it is easy to check (recursively) that
p(xt|χ̂t, y

t) remains Gaussian.
The maximization of equation (7) jointly in xt+1 and

χt+1 is still problematic because of the exponential num-
ber of possible assignments of χt+1. In the next section
we will show an efficient sampling scheme that solves this
problem.

3.1. Searching for inliers

We use equation (7) as the basis for our sampling fil-
ter. We start with an initial choice of inliers χ̂0 and with
an initial density p̂0 ∼ p(x0|∅). At a generic time t,
we assume we are given χ̂t and p̂t

.= p(xt|χ̂t, y
t). We

now need to compute the new MAP estimate χ̂t+1, x̂t+1
.=

arg max p(xt+1, χt+1|yt+1), or, more in general, χ̂t+1 and
the entire mode p̂t+1 = p(xt+1|χ̂t+1, y

t+1) since that will
come for free from the Kalman filter and we will need it at
the next step t + 1.

Note that Equation (7) is easy to optimize separately in
one of the variables χt or xt given the other. Thus we can
use a simple alternating maximization procedure as long as
we can get a good initial estimate of either variables. This
can be done efficiently by RANSAC sampling, as we ex-
plain next and is detailed in Algorithm 2.

The best estimate x̂t is obtained when χt is set to its best
assignment χ̂t. However, there are many other assignments
that result in good estimates of xt, as long as they contain a
subset of the inliers and none of the outliers. Thus the idea

Algorithm 2 KALMANSAC.
1: Initialization: Given the best choice of inliers up to

time t, χ̂t, and the current best estimate of the state
conditional density p(xt|χ̂t, y

t), extract a subset
Υ ⊂ {0, 1}N of the minimal set of assignments of
inliers/outliers among the measurements.

2: for all χ?
t+1 in the set Υ do

3: Initialize χt+1 with χ?
t+1.

4: repeat {Alternating maximization in χt+1 and
xt+1}

5: Given χt+1 compute
arg maxxt+1 p(xt+1|χt+1, y

t+1) by reading off
the updated state x̂(χt+1) from one step of the
Kalman filter.

6: Given xt+1 = x̂t+1 compute
χ̂t+1 = arg maxχt+1 p(xt+1, χt+1|yt+1)

7: Set χt+1 = χ̂t+1

8: until maximum amount of iterations has been
reached or until the estimated state x̂t+1 and
estimated indicator χ̂t+1 do not change.

9: end for
10: Validation Select x̂t+1 and χ̂t+1 that yield the

maximum score p(yt+1, xt+1, χt+1).

is to chose the initial estimate of χt by guessing a minimal5

set of inliers (a random sample). Then the algorithm esti-
mates the continuous state x̂t and then re-estimates χ̂t by
optimizing the posterior (consensus). This interpretation of
RANSAC as an alternate maximization is not new [21].

One limitation of the KALMANSAC algorithm is that
it relies completely on the previous estimate χ̂t (because
of the assumption (6)). Since the recovered χ̂t is obtained
from an approximate solution, this might prevent the algo-
rithm from converging to the optimal solution. However,
by relaxing the assumption on p(χt|yt), we face a problem
of exponential complexity as we have seen in Section 2.1.
We address this problem by using a limited memory filter,
which trades off optimality for constant complexity, as we
discuss in the next section.

3.2. Back-tracing: limited memory filter

The algorithm presented in Section 3.1 provides an ap-
proximation of the MAP estimate of xt together with an ap-
proximation of its covariance (from the Kalman filter) fol-
lowing a myopic estimate of the set of inliers χt based only
on the current observations. Our main observation is that
the best estimate x̂t available at time t may be affected by
the approximations of our procedure, and therefore at the

5The minimal set is made of the smallest number of samples that al-
lows to uniquely recover the model parameters. In particular, minimality
is related to the smallest number of measurements that make the model
observable [12].



time step t + 1 we choose to re-estimate it by using also
the new measurements. More in general, we can do so for
τ steps back in time. This leads to a limited memory filter
([10], p. 318). The steps of the algorithm are exactly the
ones described in the previous section, except that the sam-
ples to be drawn are not for χt+1, but for χt+1

t−τ for some
τ ≥ 0, and the computational step involves a τ -step predic-
tion and update for the process xt, which are both standard
for the Kalman filter, and the Viterbi algorithm for the pro-
cess χt. As for the sampling of χt, we exploit the obser-
vation of Section 2.2 that the inlier/outlier state tends to be
preserved, and we let the samples χt+1

t−τ be constant across
the time frame and equal to χ̂t (line 1 of Algorithm 2). No-
tice that in the subsequent steps the assignment may change
within the time-frame [t− τ, t + 1].

Another benefit of using more steps of back-tracing is
that each observation is checked for consistency with the
inlier model across consecutive time steps, making the in-
lier/outlier classification more accurate. This only requires
setting the transition probability P (χt|χt−1) to a function
that penalizes switches from inliers to outliers and vice-
versa. In the experiments we have chosen τ = 2 as a com-
promise between accuracy and efficiency.

3.3. Extension to non-linear models

Equation (7) is valid for models far more general than
(1). The advantage of a linear model is to allow comput-
ing (7) using linear operations to evolve conditional mean
and covariance. However, the sampling schemes proposed
in Sections 3.1 and 3.2 are valid for any type of model, pro-
vided one has at least an approximate procedure to integrate
(7). These include various types of approximations, from
the extended Kalman filter (EKF, [10] p. 332) to numeri-
cal integration, even to particle filters. In the experimental
section we will illustrate the performance of our sampling
scheme with an EKF used to estimate ego-motion.

3.4. Accelerating convergence

The number of samples required to guess a minimal as-
signment of inliers can still be large for large amounts of
outliers [21], but can be reduced by employing a smarter
sampling strategy. We propose a method similar in spirit to
[19, 6], that extracts the same set of M samples that stan-
dard RANSAC would choose, but taking first the ones that
contains observations likely to be inliers. In this way, re-
gardless for the order of samples, the algorithm is no worse
than RANSAC [6].

As in [6], we sort the samples in decreasing likeliness of
being inliers by exploiting the prediction of the filter. Let
(σ1, ..., σN ) ∈ S(N) be such an ordering, being S(N)
the symmetric group of order N . Consider the function
f(j) =

∑j
i=1 χt(σj), j = 1, ..., N (see Figure 1) which
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Figure 1. Accelerating the convergence. The figure shows
the function f(j), j = 1, ..., N (see text) for various or-
derings: (dashed curve) ideal ordering with all inliers first;
(dotted curve) random order; (solid curves) order obtained
by the singleton inlier probability for the first 10 iterations
of the filter. This figure is obtained based on the track-
ing problem with 1000 features and 85% outliers (see Sec-
tion 4).

counts how many inliers are encountered by visiting the ob-
servations in the specified order. The best possible order
goes first through all inliers, then through all outliers. Thus,
we formulate the choice of the ordering as the N optimiza-
tion problems (for j = 1, ..., N )

max
σ1,...,σj

E[f(j)|yt, χ̂
t−1] = max

σ1,...,σj

j∑
i=1

St(σj), (8)

where N is the number of observations and St(i) =
P [χt(i)|yt, χ̂t−1] is the singleton inlier probability. The N
problems are solved simultaneously by simply ordering the
observations by decreasing St(i), which can be computed
as

St(i) ∝ P (χt(i)|χ̂t−1)

×
∫

p(yt|χt(i), χ̂t−1, xt)p(xt|yt−1, χ̂t−1) dxt. (9)

Although this integral is computationally expensive, it can
be approximated by setting p(xt|yt, χ̂t−1) = δ(xt−x′t), x′t
being the prediction of the filter at time t. This results in
the score S̃t(i) ∝ P (χt(i)|χ̂t−1)p(yt|χj

t , χ̂t−1, x
′
t), which

is very quick to compute and in practice yields excellent
ordering results, as one can see in Figure 1.

4. Experiments
In this section we illustrate the features of our algorithm

on two examples: a 2-D tracker, where the model used is a



second-order random walk that fits equation (1), and struc-
ture from motion, where we adopt a model borrowed from
[2, 4], which is non-linear. In the latter case, the computa-
tion of the MAP densities are approximated by an extended
Kalman filter. In order to perform systematic and controlled
tests, we employ synthetic data in the former case. For the
more complex SFM case, we show results on both syn-
thetic and real image sequences, although performance is
best tested on simulations where the parameters of the ex-
periment, which include a large variety of factors depending
on the applications, can be carefully controlled.

4.1. Tracking

In this first set of experiments we choose to test the
KALMANSAC on a simple 2-D object tracker. We con-
sider tracking a group of 2-D points yi ∈ R2, i = 1, . . . , N
that evolve in time according to similarity transformations:

yi
t = stRt(yi

0 + Tt) i = 1, 2, . . . , N (10)

where st ∈ R is the isotropic scaling, Rt ∈ SO(2) is the
2-D rotation and Tt ∈ R2 is the translation. Rather than
representing the state as the vector containing s, R and T ,
we use an equivalent alternative representation that yields a
linear system of equations. We define two variables at ∈ R2

and bt ∈ R2, such that

at = stRtTt and bt = stRt [ 1
0 ] + at. (11)

Then, it is immediate to obtain the expressions of st, Rt

and Tt as a function of at and bt. By substituting these
expressions into equation (10) we obtain that

yi
t = (I −Q(yi

0))at + Q(yi
0)bt i = 1, 2, . . . , N (12)

where Q(yi
0) = [yi

0 (yi
0)
⊥]. Now, let Pt = [aT

t bT
t ]T ∈ R4.

We then choose a second-order random walk as a model for
the dynamics, i.e.

Pt+1 = Pt + Vt and Vt+1 = Vt + nt (13)

where nt ∼ N (0, R). As a consequence, the dynamical
system corresponding to equation (1) is defined as follows:

A = [ I I
0 I ] ∈ R8×8

C = [CT
1 , . . . , CT

N ]T

where Ci
.=

[
I−Q(yi(0)) Q(yi(0))

0 0

]
∈ R4×8

(14)
and the state xt

.= [PT
t V T

t ]T ∈ R8 with initial conditions
x0 = [0 0 1 0 0 0 0 0]T .

To evaluate the performance of KALMANSAC on this
dynamical system, we compare it with a classic Kalman fil-
ter (KF), and with the Robust KF [13]. The robust KF is a
modification of the Kalman filter that uses a robust model
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Figure 2. 2-D tracking experiment. Left: performance
comparison between the classic Kalman Filter (KF) (dot-
ted), the robust KF (dot-dashed) and the KALMANSAC
(solid). As one can see the KALMANSAC can produce
very accurate estimates of the state up to 85% outliers,
while the robust KF fails at 50% outliers and the classic
KF as soon as outliers appear in the measurements. Right:
a zoomed-in version of the plot highlights the difference in
performance between the robust KF and KALMANSAC.

of the observations [9] to obtain an M-estimate of the state
rather than the usual MAP-estimate. Contrary to our algo-
rithm, the robust KF is capable of detecting outliers only
based on the current estimate of the measurement predic-
tion error, and, because of the weighting scheme used, is
not completely resilient to outliers. Moreover, it does not
provide an explicit estimation of the process χt.

We choose N = 100 and generate 100 sequences of
measurements each contaminated with 0%, 5%, . . . , 85% of
outliers. On this data we run the classic KF, the robust KF
and KALMANSAC. We compute the mean and the standard
deviation of the state estimation error over the 100 trials and
plot them in Figure 2. Because of the enhanced sampling
scheme (Section 3.4), only 20 to 100 samples (depending
on the outlier concentration) need to be drawn at each time
step. Notice that the classic KF starts to return inconsistent
results as soon as some outliers appear in the measurements.
The robust KF can instead tolerate up to 50% outliers, but
then rapidly degenerates. KALMANSAC proves to be very
resistant to outliers, maintaining consistent estimates up to
85% outliers.

4.2. Structure from motion

In this section, we carry out experiments on a non-linear
system that is suited to solve structure from motion under
the assumption that both translational and rotational accel-
erations are Brownian motions. As mentioned above, we
adopt a model borrowed from [2, 4].
Synthetic data. The synthetic scene is composed of 200
points. The camera rotates around the points, with center of
rotation on the center of mass of the structure. We re-scale
both translation and structure by fixing the depth coordinate
of one of the points to 1. In this experiment, we want to
show how the different implementations respond on aver-
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Figure 3. Comparison with synthetic data. Mean and
standard deviation error of motion estimation versus in-
creasing proportions of outliers. Left: The robust EKF
(blue solid line) diverges immediately as soon as measure-
ments contain 5% of outliers. KALMANSAC (black solid
line) returns consistent motion estimates with a very low
error even up to 75% outliers. Right: We plot the fre-
quency of failure of both the robust EKF (blue solid line)
and KALMANSAC (black solid line). Notice that the ro-
bust EKF is confused almost immediately by outliers as op-
posed to the KALMANSAC that starts to be confused half
of the times when outliers are more than 80%.

age to different amounts of outliers. We simulate outliers
as 3-D points whose projections follow a second-order ran-
dom walk (diffusion). We choose 0%, 5%, ..., 85% outliers
and for each of the filters we run 100 experiments and store
the estimated motion. Then, we compute the mean and the
standard deviation for each outlier level and for both the ro-
bust EKF (an extension of [13] to nonlinear systems) and
KALMANSAC and plot the results in Figure 3. As one can
see, the robust EKF consistently fails to produce any sen-
sible estimate of motion as soon as some outliers are intro-
duced in the measurements (Figure 3 left). KALMANSAC
can produce a sensible estimate of motion up to 75% of out-
liers (left plot in Figure 3). In the right plot in Figure 3, we
show how frequently both filters diverge. We do so because
in the case of structure from motion the recovery of mo-
tion parameters may be unsuccessful even when there are
no outliers. Indeed, the same measurements (up to noise)
may be generated by different configurations of points and
motion so that the recovery of motion parameters is an am-
biguous process. In Figure 3, right, one can see that while
the robust EKF fails almost always as soon as we have 5%
outliers, KALMANSAC starts to fail half of the times when
we have more than 80% outliers.

Real data. In this set of experiments we test the robust
EKF and KALMANSAC, on a real sequence (Figure 5)
where three independent objects that are moving within a
rigid scene. Features are tracked using [11]. These three
objects plus additional T-junctions and specular reflections
generate more than 60% of outliers in our measurements.
Similarly to the case of synthetic data, in Figure 4 we com-
pare the performance of the two filters by comparing the
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Figure 4. Comparison with real data. We estimated the
camera motion playing the sequence back and forth once.
The left column shows the translation error and the right
column shows the rotation error (expressed in exponential
coordinates). Top row: Pseudo-ground truth of the cam-
era motion obtained by manually eliminating the outliers
from data. Middle row: camera motion estimated by the
robust filter. Bottom row: camera motion estimated by the
KALMANSAC algorithm.

estimated motion to motion that has been estimated with a
classic EKF by manually discarding the outliers (pseudo-
ground truth). As one can see the overall performance re-
flects the experiments on synthetic data: While the robust
EKF fails to recover the motion parameters, KALMANSAC
returns an estimate very similar to that based on the pseudo-
ground truth.

5. Summary and conclusions

We have presented an algorithm for causal robust sta-
tistical inference of the state of a dynamical model. Since
the optimal solution is computationally prohibitive, we have
proposed a random sampling approach that propagates the
best current estimate of the set of inliers χ̂t, together with
the state conditional density p(xt|χ̂t, yt). We have derived
this algorithm from the optimal filter, clearly highlighting
the assumptions that underly our approximation. We have
validated our scheme experimentally, on both synthetic and
real data. We show that our proposed algorithm can operate
successfully in the presence of a large proportion of outliers
where existing robust filtering schemes fail.



Figure 5. Experiments with real data. Top row: five frames extracted from a real sequence (180 frames in total). The
independently moving objects are: The car, the top checkerboard box and the blue box in the top-left corner. The camera is
moving sideways while these objects are also moving independently. Bottom row: Corresponding images with tracked fea-
tures superimposed. The features are marked with either red or green squares. The green squares are the features considered
as inliers while the red squares are considered outliers by the KALMANSAC.
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