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Abstract

We present a technique to adapt the domain of local fea-
tures through the matching process to augment their dis-
criminative power. We start with local affine features se-
lected and normalized independently in training and test
images, and jointly expand their domain as part of the cor-
respondence process, akin to a (non-rigid) registration task
that yields a (multi-view) segmentation of the object of in-
terest from clutter, including the detection of occlusions. We
show how our growth process can be used to validate pu-
tative affine matches, to match a given “template” (an im-
age of an object without clutter) to a cluttered and partially
occluded image, and to match two images that contain the
same unknown object in different clutter under different oc-
clusions (unsupervised object detection).

1. Introduction
Viewpoint invariant features have proven to be a useful

tool in the recognition of objects and categories from im-
ages. In order to make them invariant, or insensitive, to
nuisance factors of the image formation process, one has to
trade off discriminative power [30]. For instance, achieving
insensitivity to occlusions calls for local image statistics (lo-
cal features), while increasing their discriminative power is
typically achieved by combining several local features into
more or less structured collections (graphical models, con-
stellations, or “bags”).

We propose a technique to adapt local features in a way
that is tailored to the correspondence process, in order to
augment their discriminative power. We start with local
affine features selected and normalized independently in
training and test images, and expand their domain as part
of the correspondence process. Correspondence amounts
to a (non-rigid) registration task, and the dilation process
yields a multi-view segmentation of the object of interest
from clutter, including the detection of occlusions.

This process can be interpreted as the simultaneous reg-
istration and segmentation of deformable objects in mul-

tiple views starting from an “affine seed.” It can also be
thought of as an implicit 3-D reconstruction of the scene,
which enables the recognition of non-planar objects and the
discrimination of objects based on their shape [30].

We formalize the feature growth process as an optimiza-
tion problem, and introduce efficient algorithms to solve
it under three different deformation models. Our growth
process can be thought of as a region-based segmentation
scheme, but indeed it is quite different since it is unilateral,
i.e. it requires a characterization of the foreground, but not
of the background statistics.

Among the applications of our technique are general ob-
ject recognition tasks, both supervised, i.e. given an unclut-
tered, unoccluded image (“template”) of a (3-D, possibly
deformable) object of interest, find it in a cluttered image,
and unsupervised, i.e. given two or more images all contain-
ing the same object under different clutter and occlusions,
detect and localize the common object. Note that we con-
centrate on the recognition of specific objects, rather than
object categories, as we do not allow intrinsic variability of
the object other than the geometric deformations captured
by the model. Our goal is to improve the discriminative
power of local representations, so that finer discrimination
can be performed: We do not just want to tell a face from
a bottle; we want to tell one particular bottle from another,
say with a scratch on it.

1.1. Related work and our contributions

Our technique builds on local affine invariant features
[23, 17]. By dilation and alignment, it increases their dis-
criminative power as part of the matching process rather
than directly as part of the representation, and extends their
validity to non-planar, non-rigid objects. In principle, noth-
ing prevents us from gathering such enlarged regions into
constellations or bags [11, 14, 10, 25] although we will con-
fine ourselves to studying one feature in isolation to better
test the improvement relative to affine descriptors.

Since we combine region growing with registration, our
work is also related to [19, 32], although these authors ad-
dress the problem of global correspondence in a short base-



line setting. [13] propagates affine matches from an (unoc-
cluded) image of an object (template) and a small set of ini-
tial seeds. None of these approaches model both viewpoint-
induced deformations and the shape of the extracted regions
explicitly.

As the selection of the interest region is not deter-
mined by the local image statistics alone, but is determined
through the matching process, one can think of our tech-
nique as a motion segmentation procedure [1, 9, 33]. Fi-
nally, since the growth process takes part during the align-
ment (correspondence) from multiple views, our work re-
lates to [8, 15, 5] and other tracking and long-baseline cor-
respondence techniques, although it differs from them com-
putationally.

In order to keep the implementation efficient, we work in
a discrete rather than variational setting, much in the spirit
of [3, 27]. To this end, we introduce models of regularized
region growth that are flexible and result in very efficient
algorithms [29]. As opposed to [34] and similarly to [24],
the segmentation is local and uses statistics only inside and
in the immediate neighborhood of the region.

1.2. Notation

An image is a function It : Λ → R, t = 1, 2, ... defined
on a discrete lattice Λ = {0, ...,M} × {0, ..., N}. When-
ever the argument x of It(x) has fractional coordinates, it is
intended that bilinear interpolation is being used.

A feature (or “interest region”) is specified by a (binary
or smooth) window function H(x) : Λ → [0, 1] and a
support Ω ⊂ Λ, a subset of the image domain. Although
related to the window H(x), Ω is not necessarily its sup-
port supp H

∆= {x : H(x) 6= 0}; its precise meaning
will be specified in Sect. 2.1. A feature match (Hi, wij)
is a window Hi(x) describing the interest region on one
image Ii(x), together with a regular warping (diffeomor-
phism) wij : R2 → R2 onto the corresponding region in
another image Ij(x).

2. A model of feature growth
Our method starts with a putative feature match

(H,w) ∆= (H1, w12) initialized from an “affine seed” as
in [23, 17]. An affine seed is a pair of corresponding el-
liptical regions (Ω1,Ω2) in I1(x) and I2(x) respectively.
The regions are related by an affine warp w(x) = Ax + T,
(A, T ) ∈ GL(2)×R2 which is fixed (by wΩ1 = Ω2) up to
a rotation R(θ) ∈ SO(2). We estimate the residual rotation
by maximizing the normalized cross-correlation (NCC) of
the appearance of the two regions. The region Ω1 and the
transformation (A, T ) are then used to initialize the feature
match (H,w).

We grow the initial match by trading off dilation of the
window H(x) and quality of the alignment w, expressed by

the following cost functional:

E(H,w, µ) =
∑
x∈Λ

H(x)[(µ(I1)− I2 ◦ w)(x)]2

− α

(∑
x∈Λ

H(x)− βR(H)

)
+ γQ(w).

(1)

The first term is a sum of squared difference (SSD) repre-
senting the quality of the local alignment. Minimizing this
term has two effects: to select the warp w that best aligns
the interest regions and, of course, to shrink the region (the
global minimizer of this term is H(x) = 0 ∀ x). Minimiz-
ing the second term favors instead larger regions. There is
a simple interpretation of the control parameter α ∈ R+:∑

H(x) can be thought as the area of the region1 and α
as the mean squared residual that we are willing to absorb
within the region. The terms R(H) (Sect. 2.1) and Q(w)
(Sect. 2.2) are regularization terms for the region H and
warp w respectively. The function µ : RΛ

+ → RΛ
+ is a

pre-processing operator that can be used to compensate for
other factors affecting the range of the image, such as il-
lumination (Sect. 2.3). The goal is to find H , w and µ by
alternating minimization of E, which we discuss in the fol-
lowing sections.

2.1. Region model

The region growth is determined by a controlled evolu-
tion of the window function H(x). There are several possi-
ble choices for the model of the window ranging from sim-
ple parametric models that allow only a limited set of shapes
(ellipses, rectangles, etc.) to non-parametric models that
enable regions with arbitrary shape (up to topological and
smoothness constraints). In order to explore this spectrum
of options, we experimented with three models, explained
next. Since in this section we focus on the region only, we
rewrite the cost (1) as

E(H) =
∑
x∈Λ

H(x)(D(x)2 − α)− αβR(H) + const. (2)

where we have defined the residual D(x) ∆= µ(I1)(x) −
(I2 ◦ w)(x).

Elliptical region. The first model, fully parametric, is a
smoothed elliptical window

H(x; p) ∆= φ(y>y), y = A(p)−1(x− T (p)), x ∈ R2

where φ ∈ C∞(R+ → [0, 1]) is a non-increasing function
such that φ(0) = 1 and φ(+∞) = 0 and (A(p), T (p)) ∈
GL(2) × R2 is the affine map that brings the unit circle
onto the elliptical region. The window is parametrized by

1This is exactly the case for binary regions when β = 0.



Algorithm 1 Growing binary free-form regions
1: Pre-compute dilation cost table

Lkp : {0, 1}8 → R.
2: Make heap of
{(D2(x+)−α(1−β Lkp(NΩ(x+))), x+), x+ ∈ ∂+Ω}

3: loop
4: Pop minimal element (c+, x+) from the heap. Stop

if c+ > 0.
5: Ω← Ω ∪ {x+} and H ← χΩ+ .
6: Add missing 4-neighbors of x+ to the heap.
7: Update the cost of the 4-neighbors of x+ in the heap.
8: end loop

the vector p ∈ R6 as vec A = (p1, p2, p3, p4)> and T =
(p5, p6)>, where vec denotes the stacking operator. This
model does not make explicit use of the feature support Ω;
it is however handy to define it as the nominal support of
the window Ω = {x : H(x) > τ}, for some small value of
τ (e.g. τ = 1%).

Since this model is fully constrained, the regularization
term R(H) in eq. (2) is unnecessary. The resulting mini-
mization problem can be solved by Gauss-Newton (GN) or
any other descent technique. In the experiments we com-
bined steepest descent (SD) with GN for reliable and fast
convergence.

Binary free-form region. A binary free-form region is the
characteristic function H(x) = χΩ(x) of a domain Ω ⊂ Λ
that has 4-neighbors connectivity. The regularization term
R(H) is the length of the 8-ways discrete perimeter π8(Ω)
of the set Ω. The representation allows for changes in
topology, even if these are discouraged by the regularization
(too many “holes” will increase the length of the perimeter).
The cost functional (2) assumes the form

E(H) =
∑
x∈Λ

H(x)(D(x)2 − α) + αβπ8(Ω) + const.

To maximize of E(H) we add to Ω the pixel x+ belong-
ing to the outer border ∂+Ω (dilation) or we remove the
pixel x− belonging to the inner border ∂−Ω (contraction)
that most decreases the cost function (SD). Here we discuss
only dilation moves, as contraction moves are similar. The
updated window H+ = χΩ∪{x+} has cost

E(H+) = E(H) + (D(x+)2 − α)+
αβ (π8(Ω ∪ {x+})− π8(Ω)) . (3)

The term π8(Ω∪{x+})−π8(Ω) is very efficient to compute.
In fact, it depends only on the tuple NΩ(x+) ∆= (χΩ(x) :
x is 8-neighbor of x+) and can be pre-computed and stored
in a lookup table of just 256 entries, leading to Algorithm 1.
This algorithm is similar to [29] and reminiscent of the dis-
crete level-sets of [27].

Algorithm 2 Growing smooth free-form regions
1: D2

σ ← gσ ∗D2

2: H ← gσ ∗ χΩ

3: Make heap of
{(D2

σ(x+)− α(2H(x+) + g0), x+), x+ ∈ ∂+Ω}
4: loop
5: Pop minimal element (c+, x+) from the heap. Stop

if c+ > 0.
6: Ω← Ω ∪ {x+} and H ← H + gσ ∗ δx+ .
7: Add missing 4-neighbors of x+ to the heap
8: Update the cost of neighbors within the support of

the kernel gσ in the heap.
9: end loop

Figure 1. Smooth free-from region. We tested Algorithm 2 on
the test images shown on the top. We show in the middle row
(cyan) the smooth window H(x) and in the bottom row (green)
the support Ω. The parameter σ has been chosen so that the region
can squeeze through the left corridor, but not the upper corridor,
and past the bottom line, but not the right line. The computation
requires a fraction of a second and the result is consistent even if
a large amount of noise is injected. Note the regularizing effect of
the kernel gσ: the boundary of Ω is fairly smooth despite the fact
that it is grown by discrete steps (one pixel per time).

This model has two drawbacks: the window H(x) is not
smooth and the amount of regularization that can be im-
posed on the shape of the region is limited by the discrete
nature of the steps that are used in the descent (too much
regularization can block growth). To overcome these re-
strictions we turn to the smooth free-form region model de-
scribed next.

Smooth free-form region. A smooth free-form region is
obtained by smoothing a binary free-form region. The win-
dow H(x) is given by the convolution (gσ ∗ χΩ)(x), x ∈ Λ
where gσ is a Gaussian kernel of standard deviation σ. This
yields a smooth window and a very efficient regularization



(a) (b) (c) (d)

Figure 2. Effect of the region model in capturing correspondence
between regions. (a) A round region with different texture from
the background (left) is moved and deformed affinely on the right
image. Within these regions an affine seed is detected by Harris-
Affine (in green). Note that the regions do not have well-defined
(intensity) boundaries. The goal is to extend the seed to capture the
elliptical region based on two-view correspondence. This can be
thought of as a “stereoscopic texture segmentation” or as a “mo-
tion segmentation” procedure [9, 33, 1]. The effects of the choice
of region are shown in (b)-(d). In (b) the region is by construc-
tion elliptical, and its domain captures the texture boundary. In (c)
the region is free-form, but captures the elliptical shape, modulo
some sprouts outside the region where the background happens to
match in the two views; in (d) the sprouts are contained by the
smooth free-form region.

criterion, as explained next. In eq. (2) we set β = 1 and
R(H) =

∑
Λ/Ω H(x) so that

E(H) =
∑
x∈Λ

H(x)D(x)2 − α
∑
x∈Ω

H(x) + const.

Since H = gσ ∗ χΩ is small where the boundary of the
region has high curvature or where the region is thin, the
regularization favors compact and smooth regions. Like for
binary regions, minimization of E(H) is fast. Again we dis-
cuss only dilation moves. Given the window H = gσ ∗ χΩ,
Ω ⊂ Λ, we need to find the pixel x+ ∈ ∂+Ω for which the
new window H+ = gσ ∗ χΩ∪{x+} has the lowest possible
cost E(H+). We have

E(H+) =
∑
x∈Λ

D(x)2
(
gσ ∗ (χΩ + δx+)

)
(x)

− α
∑
x∈Ω

(
gσ ∗ (χΩ + δx+)

)
(x)

= E(H) + (gσ ∗D2)(x+)− α(2H(x+) + g0) (4)

where δx+ = δ(x − x+) is the Kronecker’s delta and g0
∆=

gσ(0). The map gσ ∗D2 can be conveniently pre-computed,
leading to Algorithm 2. Figure 1 shows some examples of
regions grown using Algorithm 2; Figure 2 compares the
three models as they grow the same affine match.

2.2. Warping model

The deformation induced on the image domain by
changes in viewpoint can be rather complex, depending on
the shape of the scene [30]. In particular, occlusions cause

such a transformation to be globally non-invertible, and
there is no way to distinguish a-priori an occlusion (a por-
tion of the scene disappearing under another) from a “col-
lapse” (a portion of the scene being warped onto a subset
of measure zero). Therefore, we have to impose restrictions
on the local structure of the warping w (or equivalently on
the motion and curvature of the underlying 3-D shape), for
instance that it be locally continuous and bijective and, for
reasons of computational efficiency, finitely parametrized.

We have experimented with three classes of transforma-
tions: affine, homography (corresponding to locally pla-
nar regions), and thin-plate spline. The last model is well
suited to non-planar or deforming (non-rigid) scenes, but it
is in general not globally invertible (thin-plate splines can
fold).2 We optimize the functional (1) using Gauss-Newton
as in [3]. The derivation of the GN algorithm for these mod-
els is standard.

Affine warp and homography. The affine warp and the
homography are finite dimensional and they do not need to
be regularized, so that γ = 0 in (1).

Thin-plate spline. The thin-plate spline warp is given by
[6]

w(x) =
[
T A W

]  1
x

U(‖x− y(:)‖)


where (A, T ) is an affine transformation, W ∈ R2×K is
a matrix of weights, y(:) = (y(1), ..., y(K)) denotes collec-
tively the K control points y(k) ∈ R2 and U(‖x− y(:)‖) =[
‖x− y(:)‖2 log ‖x− y(:)‖2

]
is the matrix of the radial ba-

sis functions of the spline. The matrices T, A and W
are uniquely determined by the transformed control points
Ȳ =

[
w(y(1)) ... w(y(K))

]
, yielding a relation

w(x; Ȳ ) =
[
Ȳ 0

]
φ(x; y(:)), φ(x; y(:)) ∈ RK+3 (5)

which is linear in the parameters Ȳ .
Regularization is controlled both by the number of points

K and the stiffness (bending energy)

Q(Ȳ ) =
γ

2
(e1 ⊗ e1 + e2 ⊗ e2)> vec(Ȳ SȲ >)

where ⊗ denotes the Kronecker’s product, S ∈ R2×2 is the
stiffness matrix and (e1, e2) is the standard basis of R2.

Optimization can be performed with GN,3 but this is
2An interesting approach to this problem would be to regularize the

warps based on priors on the shape [4, 26, 31]. This, however, is beyond
the scope of this paper.

3As noted in [20], the linearity of (5) makes the estimation of the gradi-
ent efficient. In order to write the equations for the GN iteration, one also
needs the gradient and the Hessian of the stiffness term, which are

∂Q(q)

∂q>
=

2X
i=1

e>i Ȳ S ⊗ e>i ,
∂2Q(q)

∂q>∂q
= S ⊗ I2

where q
∆
= vec Ȳ and I2 ∈ R2×2 is the identity matrix (see [18] for more

details on the notation).



quite costly as each control point has a global influence on
the warp. We drastically accelerate the computation by ap-
proximating the TPS by a piecewise-affine warp (PWA, [2])
by imposing on its vertices the same regularization (stiff-
ness) of the TPS. The PWA is intrinsically more efficient
because each control point has an effect limited to a few tri-
angles of the mesh. We also make use of the inverse compo-
sitional algorithm [2] in place of GN, which is much faster.

2.3. Matching criterion

Appearance matching in model (1) uses a simple sum
of squared difference criterion. The adjustment function
µ = (µ1, µ2) is an affine scaling µ(I1) = µ1I1 + µ2 that
accounts for global changes in the illumination. As such,
µ can be determined in closed form given H and w; alter-
natively, its optimization can be combined in the GN iter-
ation for w. Coarse illumination factors can be eliminated
in other ways. For instance, in some of the experiments we
normalize the images via

µ(I) =
I − gσ ∗ I√

gσ ∗ I2 − (gσ ∗ I)2
(6)

where gσ denotes an isotropic Gaussian kernel of variance
σ2I2, with I2 the 2 × 2 identity matrix. Note, however,
that this operator has to be applied to both I1 and I2 ◦ w,
which makes the optimization more complex. For further
comments on the matching criteria, see Sect. 4.

3. Experiments
Global projective registration from a seed. The first sim-
ple experiment illustrates how a single local feature can
grow to encompass the entire image. The two images
of Fig. 3 are related by an homography; their registration
yields a projective “mosaic” which can be obtained effi-
ciently by matching a single feature and then growing it to
capture the entire overlapping domain.

Growing increases discriminative power. The second ex-
periment correlates the growth rate of the features to their
initial overlap. In [22] the quality of an affine seed (Sect. 2)
is evaluated by means of the overlap error

ε
∆= 1− |Ω1 ∩ w−1Ω2|

|Ω1 ∪ w−1Ω2|
(7)

where w is the ground truth viewpoint deformation. We
used the “viewpoint change” dataset of [22] and their code
in order to extract Harris-Affine regions and compute ε.

We ran the algorithm on several affine seeds using ellip-
tical regions and homographies. As in the dataset there are
almost no occlusions, correct seeds (overlap error less than
100%) should grow indefinitely and incorrect seeds (100%
overlap error) should not grow at all. To check wether this
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Figure 4. Growing increases discriminative power. On the left we
show the average dilation ratio of the features as a function of the
initial overlap error (7). As we stopped the algorithm after 20
iterations, the graph gives also an idea of the speed of the dilation.
This statistic includes only features with a ratio ≥ 1. On the right
we show how frequently this ratio is in fact bigger than 1 (dilation),
again as a function of the initial overlap error. The experiment is
repeated for all affine seeds and for affine seeds that are SIFT [21]
neighbors. See text for further details.

is the case, in Fig. 4 we plot the average dilation ratio of the
matches (left) and the probability of each match of being
dilated (right) as a function of the initial overlap error. As
desired, the algorithm grows quickly correct matches with
up to 50% of initial overlap error and does not grow almost
any of the incorrect matches. The algorithm does not per-
form equally well for correct seeds that have initial error
exceeding 50%. This is because we focus on discriminat-
ing correct versus incorrect matches rather than trying to fix
seeds of poor quality. If this is desired, a robust initializa-
tion step can be added (for instance as described in [13]).

As our final goal is to discriminate features beyond the
power of their descriptors, we repeated this experiment for
those affine seeds that are also SIFT neighbors.4 The per-
formance of the algorithm does not deteriorate; in particu-
lar, almost all matches determined incorrectly by SIFT are
invalidated by our criterion, while correct matches are pre-
served. As a side effect, the algorithm is also more robust to
poor initial overlap, probably because seeds which are SIFT
neighbors have, if not good geometric correspondence, at
least similar appearance.

Finding a known object in clutter. This experiment tests
the capability of our method to find – in clutter – an object
for which an uncluttered image is given as a training set (or
“template”). It is similar in spirit to the experiments of [13,
12] and many other object recognition systems [21]. Since
we use a deformable object (the Garfield book in Fig. 5),
we use the thin-plate spline warp and the smooth free-form
region model. The figure shows the detection/segmentation
results, together with the alignment to the template and the
estimated deformation. Note that the latter two quantities
are meaningful only locally to the segmented area (so it is
not a problem if the template does not align well outside

4More precisely: for each region Ω1 of image I1(x) we selected the
three closest regions Ω2 of image I2(x) in terms of SIFT distance.



(a) Initial affine match (b) Grown window (c) Overlap (d) Residual

Figure 3. Growing a mosaic from one feature. A single feature detected and matched on two images related by an homography grows to
capture the entire overlapping domain, yielding a projective mosaic. Here the region model is elliptical and the warp is an homography. (a)
Initial affine matches (very small, so we inlay a magnified version) (b) interest region Ω (green ellipse) and window H(x) (green shading)
(c) overlap between the two images (perfect overlap results in unsaturated color) (d) residual.

Initial affine region Grown region Overlap Estimated warp

Figure 5. Object detection in clutter. The left column shows various training/test image pairs. Each pair shows the initial affine match that
is grown by the algorithm. Since the object is non-rigid, we used the thin-plate spline model for the warp and the smooth free-form model
for the region. In a few cases a portion of the visible area is not included in the region: This is due to the non-uniform illumination (difficult
to see with the naked eye but quantitatively significant) which is not compensated by the global model (1). It would not be difficult to
extend µ to account for more general contrast functions [7] (Sect. 2.3 and 4).

that area.)

Detecting a common object in cluttered scenes. While
the previous experiment can be thought of as “supervised”
detection, since a template of the object is given, here we
address “unsupervised” detection, that is the problem of de-
tecting the common portion of two images, without a pre-
segmented sample of the region of interest. The data are
four images that share a single object (a bottle). In Fig. 6 we
show that the algorithm is generally capable of segmenting
the common object from clutter (see the caption for more

details).

4. Discussion
We have proposed a method that increases the informa-

tion content of local features by maximizing their support.
We have shown that the growth rate can be used to validate
putative affine matches; the criterion is especially useful to
verify matches that have been hypothesized on the basis of
the distance between local descriptors. We have seen that
the dilated support delineates segments of both known and
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Figure 6. Unsupervised detection in clutter. We show a series of four images (1-4) portraying the same object (a bottle) in different clutter.
The algorithm is tested on each image pair (in both directions) in order to detect the common object. The best SIFT matches of Harris-
Affine features on the bottle are expanded and the best result for each pair is kept. Along the diagonal, as we test identical pairs, there is
no deformation and the region extends to encompass the whole image domain. In the pairs (4, 3) and (3, 4) the complex reflectance and
the particular image deformation (which has high stiffness) requires preprocessing according to eq. (6) in order to enable matching. In the
pairs (2, 4) and (4, 2) part of the background is almost identical (once color is removed). Therefore, the SSD criterion cannot discriminate
between the bottle and the background. One can overcome this ambiguity by using a more constrained region model (elliptical) at the cost
of reducing the segmented area. A more principled solution is indicated in Sect. 4.

unseen objects from images with clutter. The latter task
is significantly more complex since no uncluttered, unoc-
cluded view of the object of interest is ever available.

Unsupervised detection in clutter is complicated by the
fact that certain portions of the background might match
accidentally, which is especially easy if the background is
uniform. This problem can be properly addressed by ensur-
ing that the region grows where matching is non-accidental,
that is in areas of the two images that have an appearance
which is at the same similar and contains “enough struc-
ture” [17, 28]. While this constraint can be imposed as a
regularization term on the region, a better solution is to sub-
stitute the SSD matching criterion with one that incorpo-
rates directly this requirement (see for example [16]). Thus
the issue is more computational than theoretical, as these
measures are significantly more expensive to optimize than
SSD.
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