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Abstract. We study the set of domain deformations induced on im-
ages of three-dimensional scenes by changes of the vantage point. We
parametrize such deformations and derive empirical statistics on the pa-
rameters, that show a kurtotic behavior similar to that of natural image
and range statistics. Such a behavior would suggest that most defor-
mations are locally smooth, and therefore could be captured by simple
parametric maps, such as affine ones. However, we show that deforma-
tions induced by singularities and occluding boundaries, although rare,
are highly salient, thus warranting the development of dedicated de-
scriptors. We therefore illustrate the development of viewpoint invariant
descriptors for singularities, as well as for occluding boundaries. We test
their performance on scenes where the current state of the art based on
affine-invariant region descriptors fail to establish correspondence, high-
lighting the features and shortcomings of our approach.

1 Introduction

This work is concerned with the design of viewpoint-invariant discriminative lo-
cal features, i.e. local image statistics whose dependency on viewpoint can be
made arbitrarily small while maintaining non-trivial dependency on other prop-
erties of the scene, such as its shape and reflectance. This problem has been
largely solved under the assumption that the scene is locally planar, Lamber-
tian, viewed under ambient illumination and moderate changes in viewpoint.
Under these conditions, local deformations can be approximated by a similarity
or affine transformation, and the resulting local invariant features (see [1–8] and
references therein) have proven to be a powerful tool in the recognition of indi-
vidual objects as well as object categories [9–15, 4, 1, 16, 17]. But what happens
when such conditions are not satisfied?

Changes of illumination can have minor or drastic effects depending on the
reflectance of the scene [18] and we will not address them here; we will continue
to assume that the scene is Lambertian and viewed in ambient light, leaving
illumination out of the scope of this work. Drastic changes in viewpoint could be
handled by concatenations of small changes if intermediate views are available



[11, 14]. However, we will not make that assumption and allow large viewpoint
changes which can induce visibility artifacts such as occlusions. The local pla-
narity assumption is violated in two cases: At singularities (e.g. ridges or corners),
and at occluding boundaries. Here the assumption of affine deformation is vio-
lated in a neighborhood of any size, and similarity/affine invariants often (but
not always) fail.1 But how important are singularities and occlusions? How much
weight do they carry in the recognition process? We will show that singularities
and occluding boundaries are few compared to interior regular points, but they
carry significant weight in that they often correspond to photometrically salient
regions (as also shown indirectly by [18], Sect. 5).

Now, assuming that we agree that singular regions and occlusions are im-
portant, can we characterize the deformations they induce on the image un-
der changes in viewpoint? Can we exploit this knowledge to design viewpoint-
invariant features for such intrinsically non-planar portions of the scene?

As we will show, in order to design a viewpoint invariant feature for singular-
ities and occlusions we need to attach a curvilinear (or multi-linear) local frame
to the image. This is still an open area of research, which we cannot address in
the limited scope of this paper. We will therefore tap onto existing techniques
that allow the extraction of some discrete representation (a graph) from local
analysis of the image, such as [19, 10, 12] and their variants. We will discuss their
role and their limitations in generating viewpoint invariants.

1.1 State of the art

The literature on feature extraction is too extensive to review in the limited
scope of a conference paper. The reader is encouraged to consult [20] and ref-
erences therein. At one end of the spectrum of work on on feature-based recog-
nition are simple parametric deformations, e.g. affine transformations yielding a
procrustean density on feature constellations (see [21] and references therein).
At the opposite end are “bags of features” that retain only feature labels re-
gardless of their mutual position (see [22–24] and references therein). Viewpoint
changes induce transformations more general than affine, but far less general
than an arbitrary scrambling of feature positions. Our work concentrates on the
case in between, following the steps of [25, 4, 26–28].2 More specifically, [29, 30]
have proposed region descriptors for salient regions detected at or near occluding
boundaries. While feature selection is traditionally addressed as a representation
issue, different from the final goal of recognition, the two processes are beginning
to come together [31–33]. Since viewpoint variations (under the assumptions dis-
cussed) only induce changes in the domain of the image, this work generically
relates to deformable templates [34] and deformable models [35]. Our attempt

1 Part of the art of designing a descriptor is to give it slack to absorb violations of the
underlying assumptions.

2 Even work that allows arbitrary reordering of features relies on individual features
being matched across views, and therefore the affine model restricts this approach
beyond its ideal generality.



to characterize the “natural deformation statistics” follows the lead of [36, 37]
and others that have characterized natural image and range statistics.3 Specific
relationships with other work will be pointed out throughout the manuscript.

1.2 Notation and formalization of the problem

An image is a function I : Λ → R+; x 7→ I(x) with local domain Λ ⊂ R2

and range in the positive reals. Under the assumptions of Sect. 1, the value of
the image at a pixel x is approximately equal to the radiance ρ of the scene
at a point p on a surface S ⊂ R3, I(x) = ρ(p), p ∈ S. In fixed coordinates, p
projects onto x = π(g0p) where π : R3 → P2 is a canonical perspective projection
and g0 ∈ SE(3) is the position and orientation of the camera. We say that x
is the image of p, and p is the pre-image of x. These notions extend to sets;
for instance, the pre-image of a ball of radius σ around x0, Bσ(x0), is the set
{p ∈ S : π(g0p) ∈ Bσ(x0)}. If we consider multiple images of the same scene
under changing viewpoint, we can choose one of the camera reference frames as
the fixed frame, and parameterize the surface S relative to it. Then, with an
abuse of notation, we can write p = S(x) and we have that the generic image is
given by {

I(x̂) = ρ(S(x))
x̂ = π(gtS(x)) .= w(x), x ∈ Ω.

(1)

Can we characterize the structure and statistics of the function w : Ω ⊂ R2 →
R2? Can we use it to design viewpoint invariant features?

2 Natural warping statistics

The structure of w : Ω → R2 obviously depends on the structure of S. We
distinguish between three classes of points : x0 is an interior regular point (IR)
if there exists an σ and a neighborhood Bσ(x0) whose pre-image S(Bσ(x)) is
simply connected and smooth. x0 is an interior singular point (IS) if its pre-
image is a C1(Bσ(x0)) discontinuity, i.e. the scene is continuous around the
pre-image of x0 but not differentiable on it. An IS point can be the image of a
wedge (the locus of singularities is a one-dimensional submanifold of S, locally
approximated by a line), or an image of a corner (the locus of singularities is the
tip of a generalized cone). Finally, x0 is an occluding boundary (OB) if the pre-
image of any neighborhood Bσ(x0) is not simply connected, for any choice of σ.
In this case, the occluding boundary could correspond to a singularity (OBS), as
is the case for polyhedra, or it could correspond to regular points on S (OBR), as
is the case for the silhouette of a smooth surface . Note that viewpoint variations
can change the labeling of points. For instance, an IR point can become OB and
vice-versa. However, if a point is IR there will always exist a neighborhood and
a set of viewpoints (depending on σ) such that the point remains IR.

3 Including [38] that has appeared while this manuscript was under review.
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Fig. 1. Camera motion statistics depend heavily on the application. Ground vehicle
navigation induces strongly non-Gaussian velocity distributions, as the statistics of
Golem 2 driving in the DARPA Grand Challenge show (a) forward and lateral one-
second displacements (b) one-second orientation variation (c) scatter plot of the vehicle
relative displacement after one second (top view, restricted to fast parts of the track).
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Fig. 2. Statistical dependencies in a generative model of viewpoint warping. Camera
motion g and global shape S are rendered independent by conditioning on a local patch
Ω. Local conditioning generates a dependency on x0, σ and N , displayed as “observed”
variables. The distributions p(g0|λx0, ν, v), p(S|Ω |g0, κ1, κ2, x0) and p(w|S|Ω , g) encode
deterministic functions resulting from simple geometrical and optical considerations
(Sect. 1.2-2.1). The statistics of the other variables are determined empirically.

2.1 Deformation statistics around interior points

The goal here is to determine the distribution of the homeomorphism w : Ω ⊂
R2 → R2; x 7→ π(gS(x)) defined in (1). In order to make the notation explicit we
write Ω

.= x0+Bσ, with x0 a location on the image domain and Bσ a ball of radius
σ centered at the origin, discretized into N points: Bσ = {x1, . . . , xN}. Therefore,
Ω

.= Ω(x0, σ, N). We then call wi
.= w(x0 + xi) − x0 − xi the displacement of

the pixel i = 1, . . . , N , so that we can characterize the distribution of w via the
vectors w1, . . . , wN :

p(w|x0, σ, N) .= p([w1, . . . , wN ]|x0, σ, N). (2)

Here x0, σ and N are parameters of the distribution, the first indicating the
position on the image plane, the second the scale at which the statistics are
computed, the third the sampling of the discretization. We will now attempt to
decompose the density above to elucidate its structure. The statistical depen-
dencies are highlighted in Fig. 2.



Fig. 3. A few samples from the synthetic dataset [39]. (Bottom-left) A range map
computed from the model, with details (middle) showing fine-scale details (e.g. surface
cracks) that are part of the geometry (shaded surface, right) and not just “painted”
onto smooth surfaces.

The first step, following (1), would be to marginalize with respect to the
scene S and the motion g. Done globally, this would be a tall order since g and
S are not independent: One’s motion within a scene depends on its shape. For
instance, one typically walks on the floor while avoiding obstacles that are part
of the scene S. However, since we are considering regions away from occluding
boundaries, w does not depend on the entire scene S, but only on its visible
portion.4 Therefore, we condition on the pre-image of the patch Ω and only
consider the local dependency of w on S:

p(w|x0, σ, N) =
∫

p(w|g, S|Ω)dP (g, S|Ω |x0, σ, N). (3)

The advantage is that g and the local pre-image S|Ω are to first approximation
independent, which yields

p(g, S|Ω |x0, σ, N) = p(g)p(S|Ω |x0, σ, N).

Note that local conditioning introduces the dependency of S|Ω from x0, σ and
N , so empirical studies must take it into consideration.

The first factor p(g) is the viewer motion density, which is crucially dependent
on the application. For human motion (or hand-held cameras), the statistics have
been computed in [38]. These are rather different than those for ground vehicle
navigation: Fig. 1 shows statistics of displacement and rotation of the vehicle
“Golem 2” during the DARPA Grand Challenge. Rotational and translational
degrees of freedom are strongly correlated due to non-holonomic constraints. At

4 Strictly speaking this assumption is incorrect, as a camera motion g can turn an in-
terior point into an occluding boundary. However, here we assume that most interior
points will remain so during motion.
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Fig. 4. Pose statistics. (a) Histogram of the orientation of the normal vector relative
to the optical axis. The peaks are due to horizontal and vertical surfaces. (b) The same
statistics vary significantly if restricted to the top, middle and bottom third of the
images. (c) Elevation of the normals relative to the optical axis.
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Fig. 5. Shape statistics. (a) Joint histogram of the principal curvatures κ1, κ2. (b)
Marginal histograms. (c) Histogram of the orientation of the principal direction (pro-
jected onto the image plane).

the other end of the spectrum one can imagine a tumbling robot where the motion
density is (improper and) close to uniform p(g) ∼ U(SE(3)).

The second factor can be further decomposed by locally approximating the
scene S|Ω using the Darboux frame g0, and the two principal curvatures, κ1 and
κ2, that encode local shape:

p(S|Ω |x0, σ, N) = p(κ1, κ2, g0|x0, σ, N) (4)

The Darboux frame g0 is determined by the normal ν, the principal direction
v, and the position of the point λx0 ∈ R3 where x0 is written in homogeneous
coordinates and λ ∈ R+ is the depth along the corresponding ray.

The first observation is that the dependency of this density on x0 is non-
trivial: On the top portion of an image we usually observe the ceiling (indoor) or
the sky outdoor, on the bottom we usually have a flat ground; these significantly
bias the pose statistics as shown in Fig. 4. There are also dependencies on the
geometry of the sensor: The shape of the pre-image of Ω for a flat sensor, or
for a cylindrical or conical mirror, depends on the location x0 on the image.
These, however, are second-order effects that can be easily compensated for.
Having observed these effects, we then resort to computing aggregate statistics



by marginalizing over x0. So, we are left with having to estimate the density

p(κ1, κ2, ν, v, λ|σ,N) = p(κ1, κ2|σ,N)p(v|ν, σ, N)p(ν|σ,N)p(λ|σ,N) (5)

which we do empirically. In order to have full control of sampling issues, we have
decided to derive these statistics from simulated (ray-traced) images. While this
choice presents potential dangers due to shortcuts often employed in ray-traced
images, extensive sets of realistic images can be found, for which “ground truth”
S is available. In our experiments we have used the datasets [39] that contains
extremely detailed and realistic models (see Fig. 3).

We have observed that σ does not affect the nature of the statistics as long as
S(Ω) can be approximated up to second order (recall that we are looking away
from occluding boundaries). The choice of N is more delicate. Since the images
are given to us at a fixed sampling rate, N and σ are naturally related. We have
chosen σ corresponding to small windows of 5 × 5 pixels, and then implicitly
chosen N by matching the scale of the mesh of S with the sampling of the image
patch. We have done so by anisotropically smoothing the mesh proportionally to
the area of the pre-image S(Ω(x0, σ, N)), while preserving occluding boundaries
and sharp discontinuities. Curvatures and principal directions are computed us-
ing discrete differential operators [40] on the regularized meshes. The resulting
marginal and joint histograms are shown in Fig. 5. As one can expect, these
statistics exhibit high kurtosis, indicating that regions of high curvature are
rare. Most non-planar structures are wedges (κ2 ≈ 0) and, interestingly, saddles
(κ2 < 0), consistent with the observations of [37].

2.2 Occlusion statistics

Empirical distributions on the frequency of occluding boundaries can be obtained
directly from range images. These have already been studied in [37], and show
a kurtotic behavior similar to that of curvature, indicating that occlusions are a
rare event.

2.3 Saliency of singularities and occlusions

Although occlusions and singularities are rare events, in the sense that they
represent a zero-measure subset of the scene and project onto a small subset of
the image (by area), they are salient in that such geometric discontinuities often
correspond to photometric discontinuities that are selected by feature detectors.
For the case of occlusions, this is obvious since at occluding boundaries an arbi-
trarily small neighborhood contains the image of different objects. For the case
of singularities, Chen et al. [18] have argued that in homogeneous materials they
yield photometrically salient profiles, that they have measured empirically. To
validate these results, we have tested a standard edge detector (Canny) on ray-
traced images and we have examined the co-location of their responses to the
curvature of the local pre-images (Fig. 6). This experiment illustrates that occlu-
sions and singularities, although rare, are photometrically salient, and therefore
there remains the need to study feature descriptors for regions that include dis-
continuities. We now move on to that problem.
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Fig. 6. Saliency of singularities. A Canny edge detector is implemented at a scale com-
parable to the scale of the patches used for the statistics (5× 5 pixels). In (a) we show
how the histogram of the principal curvature κ1 varies if restricted to those patches
that contain an edge (we discarded patches that contain an occluding boundary): On
average, “Canny patches” have higher curvature. In (b) we sorted the patches in in-
creasing curvature (log scale) and computed the fraction that contains an edge. We
repeated this computation for all patches and the patches that contain an occluding
boundary. The fraction increases significantly with the curvature and is even higher for
occluding boundaries.

3 Designing viewpoint invariant descriptors

The empirical evidence in the previous section suggests that image regions with
discontinuities or occluding boundaries are photometrically salient, which in turn
suggests that they may be distinctive and therefore useful for recognition. In
this section we illustrate how to construct viewpoint invariant features for such
regions. We first show how a general methodology has been used before for
the case of interior-regular points and singularities, and extend it to occluding
boundaries.

We will assume that we have a mechanism available to establish the origin
of a local reference frame. This is the role of a feature detector that can pool
statistics from regions of various shape and size. Detectors may localize a point
on the image, or select entire regions (in case the pooled statistics are constant),
which in turn can be used to establish a local frame. Around the origin we will
construct a local viewpoint invariant region statistic, or feature descriptor.

From the image formation model (1) it is immediate to see that the equiv-
alence class of image deformations, i.e. the set φ(I,Ω) .= [I(w(x)), x ∈ Ω ∀ w]
is a viewpoint invariant. Indeed, it is the maximal viewpoint invariant, in the
sense that any other invariant is a function of it. Unfortunately, comparing such
invariants could be difficult because it entails a search over w. Since φ(I,Ω) is
an equivalence class, any element can represent it. Therefore, one can seek a
mechanism to associate a canonical warping ŵ to the local image structure, as



(a) Image (b) Sketch (c) Frames

Fig. 7. Local image structure as extracted in the pre-processing step. The image in the
middle shows the structures extracted by the sketch. On the right we show some of the
star-like subgraphs that we manually select as candidate feature frames. The subgraphs
are centered on junctions and have linear branches. Whenever no natural termination
of a branch is found, a nominal value (established by looking at the maximum of a
Laplacian operator centered at the junction) is used.

well as a canonical domain Ω̂, and use [I(ŵ(x)), x ∈ Ω̂], or any function of it,
as the invariant descriptor.5

3.1 Interior regular and singular points

The program sketched above has been carried out successfully by many re-
searchers for the case of affine warps: w(x) = Ax + b. Note that the linear terms
in the local approximation can be written out, spelling explicitly the rotational
and translational components of g, as w(x) = (R+TνT )x, and the homography
(R + TνT ) can be approximated with an affine transformation [A b]. Therefore,
the transformation induced by any IR point can be annihilated by an appropriate
affine transformation: The scene is a plane, S = R2, the translational term b is
fixed by a feature detector (e.g. Harris [42], so without loss of generality we can
assume b = 0), and the second moment matrix, or other local intensity statistic
[43], can be used to determine A. The transformation that inverts A can be
interpreted as a warping of a canonical circular neighborhood [I(ŵ(x)), x ∈ S1],
or ŵ can be though of as the transformation of a detected elliptical region Ω̂
into a circle S2 = ŵ−1(Ω̂), as in [2].

The same ideas can be easily extended to non-planar scenes [41]. In this case,
the reference frame we seek to normalize using intensity statistics is not affine,
but curvilinear and possibly known only up to symmetries, when the image
presents regular textures or homogeneous regions [41]. The deformation induced
by changes in viewpoint can be represented by a piecewise affine transformation,
with as many components as connected elements of the singularity. For instance,

5 Invariance is achieved through a local homeomorphic deformation of the image do-
main into a canonical configuration tailored to the local image structure. While fixing
a homeomorphism of the image domain forces viewpoint invariance, the converse is
not necessarily true; i.e. image domain deformations induced by changes of viewpoint
do not cover the set of all possible homeomorphisms [41], unless the scene is planar.
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Fig. 8. Background resilience. Feature A: To achieve insensitivity to the background,
we generate two unilateral SIFT descriptors, one for each side of the local frame. (a)
and (b) show three patches on which the three descriptors are computed (scale is 1/6
of the radius). These features have been added to the pool of features detected by SIFT
to see whether they enable correct discrimination. Of these, two do not match correctly
(red lines) because they cover the background, while the other (green line) does as it
covers only the foreground. Feature B: Both the bilateral and unilateral descriptors
match because the background does not change substantially.

an edge has 2 affine components, a 3-D corner has 3, etc. with the tip of a cone
with smooth section as a limiting case. Naturally these affine transformations
are not independent because they have to satisfy compatibility constraints (see
[41] for details).

3.2 Occluding boundaries and unilateral descriptors

It is easy to show that the deformation induced by the motion of an arbitrary
shape does not preserve any geometric or topological property of the silhouette
[44, 45]. Indeed, given two curves, one can construct objects that, under suitable
viewpoints, have the curves as silhouettes. This is not true when the object has
symmetries, or when it has a particular structure, for instance a polyhedron. In
the former case one can derive case-by-case invariants, which is beyond our scope
here. In the latter case, occluding boundaries correspond to singularities, and
we can build a unilateral descriptor following the lines of the previous section.
We proceed with a detector in the exact same way as we did in Sect. 3.1, since
a-priori we do not know whether edges in the image are due to albedo or shape.
Then for each local neighborhood we construct not one, but several descriptors
based on masking different sectors of the local graph, followed by rectification.
Whether a given region is a singularity or an occluding boundary will only be
clear at matching: If matching all N regions independently produces similarly
small residuals, the singularity hypothesis is accepted, and the entire region is
normalized and matched. If at least one of the N matches yields a low residual,
the occlusion hypothesis is accepted, and matching is based on one sector only
Figs. 8-9 illustrates few representative examples.

Once the local structure in a neighborhood of the image is extracted by a
low-level feature detector, one could build a discrete representation (local graph)
and compare regions by comparing their graphs. Unfortunately, such graphs



(a) (b)

Fig. 9. Occlusion resilience. We generate several descriptors for each selected corner
structure of Fig. 7, then add them to the pool detected by SIFT/Harris-Affine. (top)
Due to visibility effects, SIFT (green) and Harris-Affine (orange) fail to match all
four corners (red lines). (bottom) The unilateral descriptors that cover the foreground
portion of the object are matched correctly, while the others fail. Eventually each
feature is associated to its best matching descriptor (green lines). Columns (a) and (b)
show the three and four descriptors extracted in the two images for the feature denoted
as A (in green the matching descriptors).

(b)(a)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Comparing discrete structures through a generative process. Pictures (a) and
(c) show two images of the same structure re-projected by means of the normalized
graph: They look similar as expected. Pictures (b) and (d) show the patches obtained
when the weak structure (the central edge) is removed from the graph. Despite the
graph topology changing drastically (a 3-junction becomes a corner), the re-projected
patches look quite similar. Unfortunately this does not work in all cases, as depicted in
pictures (e-h). Here normalization is inconsistent because the detector only considers
edge-like structures.

are highly unstable with respect to changes of viewpoint, as failure to detect
local structures results in changes of topology of the corresponding graph. Since
we compare intensity statistics in a normalized frame, one could argue that if



a local structure is not stable enough with respect to changes of viewpoint,
that structure should not matter for matching. We illustrate this in Fig. 10
(left) where the instability in inferring local image structure is anihilated by the
synthesis of the normalized patch. Indeed, since the canonical configuration is
arbitrary, one can choose it to compensate for failures of the low-level feature
detector.

This, however, does not always work, since missed detection changes the can-
onization procedure, as we illustrate in Fig. 10 (right). This is the weakest point
of our method, which can be improved with mid-level processing and grouping
procedures that are beyond the scope of this paper.

4 Discussion

We have derived a statistical characterization of the deformations of the im-
age domain induced by changes of viewpoint. This shows that, while occlusions
and surface singularities are rare, they are photometrically salient, which moti-
vates their use for recognition. This prompts us to develop dedicated viewpoint
invariant descriptors.

For singularities, we rely on existing methods to extract local image struc-
ture, and construct an invariant descriptor by normalizing such structure and
generating a canonical radiance from it. Although the technique is general, it
relies on pre-processing steps that, with the current state of the art, are prob-
lematic. Alternatively, one could use region-based segmentation approaches as a
means to extract local structure ahead of computing invariant statistics. For the
case of occlusions, we have developed unilateral descriptors based on masking
portions of the detected regions. We have shown a few representative examples of
the behavior of such descriptors for cases where existing affine invariants fail to
establish correspondence. Note that we do not advocate the descriptors in Sect.
3.1-3.2 as an alternative to existing descriptors. They are designed to cover con-
ditions that current descriptors are not designed for, hence be complementary.
Note also that the best affine descriptors can tolerate a great deal of violation
of the assumptions they are designed for, therefore many of the cases where our
approach would be best suited is already covered by, say, SIFT or Harris-affine.

Considerable work remains to be done to design robust and stable low and
mid-level detection schemes, but we hope that this study illustrates a general
methodology that can be used to design viewpoint invariant descriptors for non-
planar portions of the scene.
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