
Boosting Invariance and Efficiency in Supervised Learning

Andrea Vedaldi
Computer Science Dept.

UCLA, USA
vedaldi@ucla.edu

http://vision.ucla.edu/˜vedaldi

Paolo Favaro
Dept. of Electr. Eng. and Physics

Heriot-Watt University, UK
p.favaro@hw.ac.uk

http://www.eps.hw.ac.uk/˜pf21

Enrico Grisan
Dept. of Biomedical Eng.
University of Padua, Italy
enrico.grisan@unipd.it

Abstract

In this paper we present a novel boosting algorithm for
supervised learning that incorporates invariance to data
transformations and has high generalization capabilities.
While one can incorporate invariance by adding virtual
samples to the data (e.g., by jittering), we adopt a much
more efficient strategy and work along the lines of vici-
nal risk minimization and tangent distance methods. As
in vicinal risk minimization, we incorporate invariance to
data by applying anisotropic smoothing along the direc-
tions of invariance. Moreover, as in tangent distance meth-
ods, we provide a simple local approximation to such direc-
tions, thus obtaining an efficient computational scheme. We
also show that it is possible to automatically design optimal
weak classifiers by using gradient descent. To increase ef-
ficiency at run time, such optimal weak classifiers are pro-
jected on a Haar basis. This results in designing strong
classifiers that are more computationally efficient than in
the case of exhaustive search. For illustration and valida-
tion purposes, we demonstrate the novel algorithm both on
synthetic and on real data sets that are publicly available.

1. Introduction

In most computer vision applications we are interested
in classifying objects despite changes in their scale, orien-
tation, and location, and in their photometry, due to varying
illumination and noise [6, 9, 10, 11, 17, 18]. For example,
in a surveillance system one may be interested in detecting
faces regardless of whether they face the camera, are close
or far from it, or lie in the shade. One way to address such
classification problem is to incorporate invariance to these
changes at run-time. For instance, one can apply an object
classifier to any possible transformation of the input images,
and then design a strategy to select an answer among all re-
sponses. However, transformations may be continuous in
nature, such as in the above examples, so that testing all of

them is impossible. As the number of independent transfor-
mations grows, even discretization may be not sufficient to
reduce the required tests to a workable number. An alterna-
tive is to incorporate invariance during training. One can
enlarge the training set by adding the so-called virtual sam-
ples, i.e., samples obtained by morphing the original data
set for a finite set of transformations [7, 13]. This approach
is more effective at run-time than the previous one, but ren-
ders the training phase extremely slow and memory ineffi-
cient. A third alternative is to incorporate invariance in the
classification error function used for training: Given a sam-
ple, one can compute analytically the error of a classifier
against a distribution of a set of transformations. This is,
for example, the approach used in Vicinal Risk Minimiza-
tion (VRM) [2, 13].

In this paper we also incorporate invariance in the clas-
sification error function, because this has the advantage of
being efficient both at run-time and during training. We at-
tach probability distributions to transformations that are lo-
cal rather than global, as the extrapolation of samples for
large transformations may not be reliable. This allows us to
introduce tangent vector methods [13, 16] in our algorithm.
To further limit the amount of computations, we introduce
two additional elements: gradient descent and Haar wavelet
projection. Our gradient descent procedure allows to find
good features automatically and efficiently so that exhaus-
tive search over large databases can be avoided. Gradient
methods have been also suggested in a scale-space scheme
in VRM, but not in a boosting framework [2]. Haar wavelet
projection allows to dramatically reduce the amount of com-
putations at test time by mapping each feature to a finite set
of Haar wavelets and therefore enabling the use of integral
images [12, 20]. We develop this method in the boosting
framework, which, to the best of our knowledge, has never
been done before. Notice, however, that invariance to trans-
formations has been incorporated before, for instance, in
support vector machines [15].

In the next section we revisit the basics of the binary clas-
sification problem; then, in sec. 3 we introduce the tangent

1



space approach and, finally, in sec. 4 we present the Parzen-
AdaBoost approach.

2. Binary Classification
For the sake of simplicity, in this paper we discuss only

the binary classification problem. Extensions to multiple
classes can be easily obtained, for instance, by using Ad-
aBoost.MH [14]. In binary classification we are given a
collection of N i.i.d.1 observations x1, . . . ,xN ∈ X and
labels y1, . . . , yN ∈ {−1,+1}. The goal is to design a
function H : X #→ {−1,+1}, a classifier, that predicts the
label y of a generic observation x. As we deal with images,
X ⊆ Rd, where d is the number of pixels of the image. We
denote the unknown joint probability distribution density of
(x, y) with p(x, y) and the expectation of a random variable
w with respect to p with Ep[w].

The optimal classifier H is the one that minimizes the
so-called 01-loss expected risk

Errp(H) .= Ep[I(H(x) &= y)]

=
∑

y={−1,+1}

∫
p(x, y)I(H(x) &= y) dx (1)

where I(A) is the indicator function of the event A. Un-
fortunately, the optimal classifier cannot be computed as
eq. (1) requires the distribution p(x, y), which is unknown.
The common strategy is then to approximate p(x, y) by us-
ing the available set of samples {(xi, yi), i = 1, . . . , N}.
One such approximation is to replace the true distribution
p(x, y) with the empirical distribution

p̂e(x, y) =
1
N

N∑

i=1

δ(x− xi)δ(y − yi) (2)

where δ(x) and δ(y) are Dirac’s deltas. This choice leads
to the minimization of the empirical loss2

Errp̂e(H) ∝ − 1
N

N∑

i=1

yiH(xi). (3)

Alternatively to eq. (2), one can consider Parzen’s win-
dows [3]

p̂g(x, y) =
1
N

N∑

i=1

gΣ(x− xi)δ(y − yi) (4)

where gΣ(x) denotes a zero-mean Gaussian distribution
with covariance Σ. In this case, the classification error is

Errp̂g (H) ∝ Ep̂g [−yH(x)]

= − 1
N

N∑

i=1

∫
gΣ(x− xi)yiH(x)dx

(5)

1The notation i.i.d. stands for independent and identically distributed.
2In our notation A(x) ∝ B(x) if and only if there exist constants

a > 0, b such that A(x) = aB(x) + b.

An interesting observation in [2] that we exploit in our al-
gorithm is that Parzen’s windows method can be formulated
as the empirical loss of a smoothed classifier H , i.e.,

Errp̂g (H) = Errp̂e(gΣ ∗H). (6)

2.1. Discrete AdaBoost
In boosting one builds a classifier H by combining addi-

tively several so-called weak classifiers [5, 8]. The key idea
is that, as long as the weak classifiers do better than chance,
it is possible to boost their performance by combining them
linearly.

In Discrete AdaBoost M weak classifiers fm : X #→
{−1,+1} are combined to yield an auxiliary function FM

and the corresponding strong classifier HM

FM (x) =
∑M

m=1 cmfm(x), HM (x) = sign (FM (x))
(7)

with parameters c1, . . . , cM ∈ R. Rather than directly min-
imizing the empirical error (3), AdaBoost minimizes the ex-
ponential loss

Ep̂e [e
−yFM (x)] (8)

which bounds from above the empirical error (3) as
e−yFM (x) ≥ I(HM (x) &= y), ∀M . To limit the com-
putational burden the auxiliary function FM is built itera-
tively. Given Fm−1 one searches for the optimal update
cmfm such that the exponential loss (8) is minimized. Ev-
ery iteration can be written recursively by means of weights
w(x, y) = e−yFm−1(x), which automatically concentrate
the error on the difficult samples. The algorithm is sum-
marized in Algorithm 1.

3. Invariance and Tangent Spaces
As mentioned in the Introduction, in many computer

vision applications one is interested in classifying objects
in images irrespectively of translations t ∈ R2, rotations3

R ∈ SO(2), scalings s ∈ [0,+∞), and changes in inten-
sity due to contrast b ∈ [0,+∞). Let α = [t R s b] ∈ L be
a vector lumping all the transformation parameters. Then,
given a sample x, the transformed sample xα is defined as

xα
.= T (x,α) (9)

where T : X × L #→ X is the morphing function defined
via

T (x,α)(x) .= bx(sRx + t) (10)
and x ∈ R2 denotes the 2-D coordinates of x. Let p(α)
be the probability density of a transformation α. Then, one
could incorporate invariance to transformations in the em-
pirical error as follows

Errinv
p̂e

(H) ∝ − 1
N

N∑

i=1

∫
p(α)yiH(T (xi,α))dα. (11)

3SO(2) denotes the special orthogonal group of 2-D rotation matrices.



Algorithm 1 Discrete AdaBoost
1: Initialize F0(x) = 0 for all x ∈ X .
2: Initialize w(xi, yi) = 1/N for all i = 1, 2, . . . , N .
3: for m = 1 to M do
4: Find the weak classifier fm ∈ F that minimizes

Errq(f) ∝
NX

i=1

w(xi, yi)I(f(xi) #= yi)

where the distribution q is defined as

q(x, y) ∝
NX

i=1

w(x, y)δ(x− xi)δ(y − yi);

5: Let
cm ← 1

2
log

1− Errq(fm)
Errq(fm)

;

6: Update the weights

w(xi, yi) ← w(xi, yi)e
−yicmfm(xi);

7: Update the auxiliary function Fm = Fm−1 + cmfm.
8: end for

Virtual samples can be easily generated by letting p(α) =∑K
j=1 δ(α − αj) for a certain set of transformations

{αj}j=1,2,...,K . However, this has the immediate effect of
multiplying the size of the data set of the samples by a fac-
tor K. Moreover, notice that virtual samples generated for
large transformations may not reliably substitute real sam-
ples due to missing data, sampling, and quantization. This
is the case, for instance, when we scale, translate, or rotate
an image. Therefore, we consider incorporating invariance
to transformations only locally at each sample. To do so, we
use the tangent vector approach [16], i.e., we approximate
the global transformation at each sample as

T (x,α) - x +
K∑

k=1

Lk(x,α0
k)(αk − α0

k) (12)

where α0 is the identity transformation, which we can as-
sume identically zero without loss of generality, and Lk :
X × L #→ X are local transformations defined as

Lk(x,α0) .=
∂T

∂αk
(x,α)

∣∣∣∣
α=0

. (13)

Note that Lk are operators that generate the whole space
of local transformations (a Lie algebra of local transfor-
mations). Such operators can be computed analytically or,
more easily, by using finite differences. Finally, to enforce
locality we assume that the prior p(α) is Gaussian with
mean α0 = 0 and diagonal covariance matrix Ψ.4 By sub-

4One way to estimate Ψ is, for example, via cross-validation. However,
in our experiments we manually fix Ψ to the maximum amount possible
and within the limits imposed by linearization.

stituting this prior in eq. (11) and by using the tangent vector
approximation we obtain

Errinv
p̂e

(H) ∝ − 1
N

N∑

i=1

yi (gΣi ∗H) (xi) . (14)

where Σi = L(xi,0)ΨL(xi,0)T and we have defined
L(xi,0) = [L1(xi, 0) L2(xi, 0) . . . LK(xi, 0)]. Notice
that the above equation can also be readily interpreted as
Parzen’s windows error where the covariance of the Gaus-
sian kernel in eq. (3) is Σ = Σi, i.e.,

Errinv
p̂e

(H) = Errp̂e(gΣ ∗H) = Errp̂g (H). (15)

Let us now consider the case of additive Gaussian noise
w ∼ p(w). This case is particularly interesting as it corre-
sponds to no a-priori knowledge where every pixel of the
image x is affected by an unknown disturbance. In this
case, the tangent vectors cover the whole space X and Σ
becomes a diagonal matrix, thus yielding isotropic smooth-
ing. In other words, when samples are affected by addi-
tive Gaussian noise that is independent at each pixel, virtual
samples lie in a sphere around the original image sample.
This has the effect of increasing the classifier margin [19].

4. Parzen-AdaBoost
So far, AdaBoost has been based on the empirical distri-

bution in eq. (2). We now look at the extension of AdaBoost
to Parzen’s windows eq. (4) because, as we have seen in
sec. 3, it allows us to incorporate invariance to a prescribed
set of transformations.

Similarly to Discrete AdaBoost, our algorithm is based
on the following inequality

1
2
Ep̂e [1− ysign(gΣ ∗ F (x))] ≤ Ep̂e [e

−ygΣ∗F (x)]. (16)

The auxiliary function F of a strong classifier H(x) =
sign F (x) is written as a summation FM =

∑M
m=1 cmfm,

so that gΣ ∗ FM =
∑M

m=1 cm (gΣ ∗ fm) and this corre-
sponds to smoothing each weak classifier. This approach
has three advantages: First, eq. (16) guarantees that by min-
imizing the right-hand side one improves the empirical er-
ror eq. (3) of the strong classifier sign(gΣ ∗ F ). Second, by
selecting weak classifiers based on eq. (16) one automati-
cally incorporates invariance.5 Third, the minimization of

5Later, we will see that the strong classifier F approximately mini-
mized Parzen’s loss (6). When F is a single weak classifier of the form
F (x) = c sign(γT

1 x+γ0) the bound Ep̂e [1− ysign(gΣ ∗ F (x))] /2 ≤
Ep̂e [e−ygΣ∗F (x)] is guaranteed for any c < 2.678. When F con-
sists of more than one weak classifier, we assume that only one weak
classifier is changing sign “close to” a sample. In this context, the no-
tion of distance from a sample is based on Σ. In this case, we have that
F (x) = c sign(γT

1 x + γ0) + θ where θ is constant (near a sample) and
collects all the decisions from the other weak classifiers. The above bound
is again guaranteed for c < 0.693.



eq. (16) results in a very efficient algorithm, as few weak
classifiers are required.6 We call this novel method Parzen-
AdaBoost.

Our strategy is to find a recursive iteration along the lines
of Discrete AdaBoost to minimize Parzen’s windows loss in
eq. (5). Similarly to Discrete AdaBoost we have a strong
classifier H(x) = sign(gΣ ∗ FM (x)), where FM (x) =∑M

m=1 cmfm(x), and define Parzen’s windows exponential
loss as

Ep̂e

[
e−y gΣ∗FM (x)

]
. (17)

Then, given a classifier Fm−1 we search for the optimal
update cmfm such that eq. (16) is minimized. Thanks to
the exponential form, we can separate the update from the
current classifier so that

Ep̂e

[
e−y gΣ∗(Fm−1+cmfm)(x)

]
= Eq

[
e−y cmgΣ∗fm(x)

]

(18)
where

q(x, y) = 1
N

∑N
i=1 w(xi, yi)δ(x− xi)δ(y − yi)

w(xi, yi) = e−yi gΣi∗Fm−1(xi).
(19)

Thus, at the m-th iteration we need to minimize

N∑

i=1

w(xi, yi)e−yicmgΣ∗fm(xi) (20)

with respect to fm and cm. Finding a closed form solu-
tion for this minimization problem is not straightforward.
In this paper we follow an approach proposed by Friedman
[4] and consider the minimization of eq. (20) in function
space. First, we compute the derivative of eq. (20) along an
arbitrary weak classifier h : X #→ R. This yields

lim
ε→0

Eq

[
e−y gΣ∗εh(x)

]
− Eq

[
e0

]

ε
= −Eq [y gΣ ∗ h(x)] .

(21)
Then we search for the weak classifier fm that results in the
steepest descent, i.e., that maximizes

Eq [y gΣ ∗ fm(x)] ∝ −Errq(fm) (22)

where

Errq(fm) = Eq

[
1− y gΣ ∗ fm(x)

2

]
. (23)

Thus we are searching for the weak classifier fm that, af-
ter smoothing, has the minimum weighed risk. Once fm

has been chosen, we need to compute the optimal step cm.

6This algorithm can also be cast as a Real-Boost method where we
search for the optimal weak classifiers among the smooth and transforma-
tion invariant ones.

To this end, we consider the first and second derivative of
eq. (20) with respect to cm, i.e.,

∂
∂cm

Eq

[
e−y cmgΣ∗fm(x)

]
= Eq′ [−y gΣ ∗ fm(x)]

∂2

∂c2
m

Eq

[
e−y cmgΣ∗fm(x)

]
= Eq′ [(gΣ ∗ fm)2(x)]

(24)
where q′(x) = q(x)e−y cmgΣ∗fm(x) is the iteratively up-
dated weighed distribution. Thus, starting from

cm ← 1
2

log
1− Errq′(fm)

Errq′(fm)
=

1
2

log
1 + Eq′ [y gΣ ∗ fm(x)]
1− Eq′ [y gΣ ∗ fm(x)]

(25)
we get the Gauss-Newton update

cm ← Eq′ [y gΣ ∗ fm(x)]
Eq′ [(gΣ ∗ fm)2(x)]

. (26)

The algorithm is summarized in Algorithm 2.

Algorithm 2 Parzen-AdaBoost
1: Initialize F0(x) = 0 for all x ∈ X .
2: Initialize w(xi, yi) = 1/N for all i = 1, 2, . . . , N .
3: for m = 1 to M do
4: Search for the weak classifier fm ∈ F that minimizes

Errq(fm) given in eq. (23), where q(x, y) is given in
eq. (19). In alternative to the exhaustive search, use the
gradient descent method described in sec. 4.2.

5: Initialize q′ ← q.
6: Initialize

cm ← 1
2

log
1− Errq′(fm)

Errq′(fm)
. (27)

7: while not converged do
8: Calculate Eq′ [(gΣ ∗ fm)2(x)].
9: Calculate Eq′ [y gΣ ∗ fm(x)].

10: Set δ ← Eq′ [y gΣ ∗ fm(x)]/Eq′ [(gΣ ∗ fm)2(x)].
11: Update cm ← cm + δ.
12: Update q′(x, y) ← q′(x, y)e−δy gΣ∗fm(x).
13: end while
14: Update the auxiliary function Fm ← Fm−1 + cmfm.
15: end for

4.1. Linear Classifiers
In the simplest instance of a classifier H(x) =

sign f1(x) the auxiliary function f1 is linear, i.e.,

f1(x) = sign(γ0 + 〈γ1,x〉) (28)

where γ0 ∈ R and γ1 ∈ X . Graphically, this corresponds
to defining a hyper-plane that separates the space of the in-
put images x into two complementary hyper-volumes. The
vector γ1 defines the normal to the hyper-plane. In practice,
γ1 can be rearranged as an image and be seen as a feature.
As we will see in the later sections, we can approximate
γ1 with Haar wavelets and improve the computational effi-
ciency of the classifier. In the case of Parzen’s windows in



eq. (4) we immediately find that

(gΣ ∗H)(x) = erf

(
γ0 + 〈γ1, x〉√

2γ%1 Σγ1

)
(29)

and thus the approximate Parzen’s windows loss eq. (5) be-
comes

Errpw(H) =
1
2
− 1

2N

N∑

i=1

yierf

(
γ0 + 〈γ1, xi〉√

2γT
1 Σiγ1

)
(30)

where erf is the error function and is defined as

erf(z) =
2√
π

∫ z

0
e−t2 dt. (31)

Tangent vectors can then be readily incorporated as sug-
gested in sec. 3 by defining Σi = L(xi,0)ΨL(xi,0)T .

4.2. Optimizing Linear Weak Classifiers
The first step in Parzen-AdaBoost is to search for a weak

classifier fm that minimizes eq. (23). Typically, one defines
a very large set of weak classifiers and then performs an ex-
haustive search to determine the optimal one. In addition
to being rather time-consuming, this procedure yields cum-
bersome and computationally inefficient strong classifiers
when the set of weak classifiers is not chosen purposefully.
In this section we suggest a method to automatically design
weak classifiers via a gradient descent procedure.

We restrict the weak classifiers to be linear so that, as
shown in sec. 4.1,

fm(x) = sign (γ0 + 〈γ1,x〉) (32)

where γ0 ∈ R and γ1 ∈ X . The initialization of the pa-
rameters (γ0, γ1) is done by selecting a random vector γ1

and then by a simple line search on the other parameter
γ0. In our algorithm, however, we implement a more ef-
ficient method for the initialization of γ0 based on sorting
the responses 〈γ1,xi〉, that we do not report here for lack of
space. Once the parameters have been initialized, we com-
pute the gradient of

Φ(γ0, γ1)
.=

N∑

i=1

w(xi, yi)erf

(
γ0 + 〈γ1,xi〉√

2γ%1 Σiγ1

)
. (33)

with respect to (γ0, γ1). This results in

∂Φ
∂γ0

=
∑N

i=1 w(xi, yi) ˙erf
(

γ0+〈γ1,x〉√
2γ#1 Σiγ1

)
1√

2γ#1 Σiγ1

∂Φ
∂γ#1

=
∑N

i=1 w(xi, yi) ˙erf
(

γ0+〈γ1,x〉√
2γ#1 Σiγ1

)
1√

2γ#1 Σiγ1

·
(
x− γ0+〈γ1,x〉

γ#1 Σiγ1
Σiγ1

)

(34)

where ˙erf(z) denotes the derivative of erf(z) with respect to
z. Let ν0

.= ∂Φ
∂γ0

and ν1
.= ∂Φ

∂γ1
be the update directions of

γ0 and γ1. Then, we can update the weak classifier via

γ0 ← γ0 + λν0

γ1 ← γ1 + λν1
(35)

given a step λ > 0. To determine the optimal update step λ,
consider

Φ(γ0 + λν0, γ1 + λν1) =
∑N

i=1 w(xi, yi)erf
(

β1,i+λβ2,i√
2β3,i+4β4,iλ+2β5,iλ2

)

(36)
where

β1,i = γ0 + 〈γ1,xi〉 β2,i = ν0 + 〈ν1,xi〉
β3,i = γ%1 Σiγ1 β4,i = ν%1 Σiγ1 β5,i = ν%1 Σiν1

These equations can be used to compute the energy func-
tion for several values of λ rather efficiently. However, to
improve efficiency even further we perform a single Gauss-
Newton step. Then, we compute the gradient and the Hes-
sian of eq. (33) with respect to λ and evaluate them in λ = 0

∂Φ
∂λ (0) = Φ̇(γ0, γ1)

β2,i

β1/2
3,i

− β1,iβ4,i

β3/2
3,i

∂2Φ
∂λ2 (0) = 2Φ̇(γ0, γ1)

(
β2,iβ4,i

β1/2
3,i

− 3β1,iβ
2
4,i

β5/2
3,i

− β1,iβ5,i

β3/2
3,i

)

(37)
where

Φ̇(γ0, γ1)
.=

N∑

i=1

w(xi, yi)erf

(
β1,i√
2β3,i

)
(38)

Finally, λ ← −∂Φ
∂λ (0)

(
∂2Φ
∂λ2 (0)

)−1
.

4.3. Projection onto Haar Wavelets
In this section we suggest a simple step to considerably

speed up the performance of the classifier at run-time. So
far we have been concerned with finding the weak classi-
fiers fm that minimize a certain exponential loss. We have
not considered, however, that the computation of the inner
product 〈γ1,x〉 is rather intensive for a generic vector γ1.
This is because each element in γ1 needs to be multiplied by
the corresponding element of the image x. Nevertheless, if
the elements of γ1 lie in a rectangular region and have a con-
stant value, the computations can be dramatically reduced
by using the well-known integral image method [12, 20].
More in general, one can use Haar wavelets to compose
several rectangular regions and obtain more advanced weak
classifiers. In our algorithm, we project the weak classifier
fm by truncating its Haar wavelet decomposition. We in-
sert this projection immediately before the update step of
the auxiliary function Fm. In the next section we will see
that only a few Haar wavelets are required to achieve the
desired classification performance.



(a) (b) (c)
Figure 1. Smoothing and tangent vectors. Within each of the three groups (a), (b), and (c) we show the classification result of Discrete Ad-
aBoost (left), AdaBoost with isotropic smoothing (middle), and AdaBoost with tangent vectors (right). Group (a) shows the classification
result with 1 weak classifier, group (b) shows the classification results with 100 weak classifiers, and group (c) shows the classification
results with 300 weak classifiers. The top row illustrates the decision region: White corresponds to the region where points are classified
as crosses and black to the region where points are classified as circles. The bottom row shows the response of the auxiliary function F ,
i.e., before thresholding with sign. Notice that group (a) shows clearly the effect of introducing isotropic smoothing (middle image) and
that of introducing an anisotropic smoothing (right image). Notice also how the standard AdaBoost method suffers from overfitting, while
isotropic smoothing and, in particular, tangent vector methods do not.

5. Experiments
The proposed algorithm has been thoroughly tested on

both synthetic and real data sets. In both cases we illustrate
the effects of incorporating isotropic smoothing, gradient
descent, tangent vectors, and Haar wavelet projection.

5.1. Synthetic Data Experiments
In Figure 1 we show a first experiment on two-

dimensional (2-D) data to emphasize the efficacy of
smoothing and the tangent vector method with few sam-
ples. The synthetic data is invariant to 2-D rotations. We
divide the plots into 3 groups (a), (b), and (c) where: (a)
corresponds to a strong classifier with only 1 weak classi-
fier, (b) to 100 weak classifiers, and (c) to 300 weak classi-
fiers. For each group the left image shows the classification
result of Discrete AdaBoost, the middle image shows the
result of AdaBoost with isotropic smoothing only, and the
right image shows the result of AdaBoost with tangent vec-
tors. The top row displays the decision region where white
corresponds to points that are classified as crosses and black
corresponds to points that are classified as circles. The bot-
tom row shows the response of the auxiliary function F .
One can immediately see that while Discrete AdaBoost suf-
fers from overfitting, the other two methods can cope well
with few samples. In particular, as this data is invariant to
rotations, AdaBoost with tangent vectors obtains the best
results.

In the second experiment, the synthetic data set consists
of 24 × 24 pixels images of 4 shapes: a circle, a triangle,
a star, and a square. To each shape we apply all the trans-
formations listed in sec. 3 and, in addition, skewness. Some
samples from each data set are shown in Figure 2.

We lump triangles and squares into class 1 and stars and
circles into class 2. Then, we train a strong classifier by

Figure 2. Some samples from the synthetic data set of the second
experiment. Circles, triangles, stars, and squares are translated, ro-
tated, scaled, skewed, undergo changes in contrast and brightness,
and have additive Gaussian noise.

changing the isotropic smoothing parameter, by enabling or
not the gradient descent on weak classifiers, by incorporat-
ing or not the tangent vectors, and by changing the number
of samples in the training set. The results of several combi-
nations of these features are shown in Figures 3 and 4.

Notice that in Figure 3 the performance at run-time im-
proves when tangent vectors are used and even more when
gradient descent is enabled. All experiments share the same
data set and the same initial set of weak classifiers. Fur-
thermore, notice how the proposed algorithm can cope well
with few data samples in the training set as the performance
with 25 elements yields a 10% test error. As the test error
converges almost immediately when the proposed method
is used, only a few weak classifiers are needed to achieve



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.001

 

 

s:0.00 t:0 g:0 N:25

s:0.00 t:1 g:0 N:25

s:0.00 t:1 g:1 N:25

s:0.00 t:0 g:0 N:40

s:0.00 t:1 g:0 N:40

s:0.00 t:1 g:1 N:40

s:0.00 t:0 g:0 N:100

s:0.00 t:1 g:0 N:100

s:0.00 t:1 g:1 N:100

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.15

 

 

s:0.15 t:0 g:0 N:25

s:0.15 t:1 g:0 N:25

s:0.15 t:1 g:1 N:25

s:0.15 t:0 g:0 N:40

s:0.15 t:1 g:0 N:40

s:0.15 t:1 g:1 N:40

s:0.15 t:0 g:0 N:100

s:0.15 t:1 g:0 N:100

s:0.15 t:1 g:1 N:100

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.3

 

 

s:0.30 t:0 g:0 N:25

s:0.30 t:1 g:0 N:25

s:0.30 t:1 g:1 N:25

s:0.30 t:0 g:0 N:40

s:0.30 t:1 g:0 N:40

s:0.30 t:1 g:1 N:40

s:0.30 t:0 g:0 N:100

s:0.30 t:1 g:0 N:100

s:0.30 t:1 g:1 N:100

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.4

 

 

s:0.40 t:0 g:0 N:25

s:0.40 t:1 g:0 N:25

s:0.40 t:1 g:1 N:25

s:0.40 t:0 g:0 N:40

s:0.40 t:1 g:0 N:40

s:0.40 t:1 g:1 N:40

s:0.40 t:0 g:0 N:100

s:0.40 t:1 g:0 N:100

s:0.40 t:1 g:1 N:100

Figure 3. Classification results on synthetic data. The ordinate axis
shows the test error of the proposed AdaBoost method for several
configurations of number of samples in the training data set (N),
usage of gradient descent (g), usage of the tangent vectors (t), and
level of isotropic smoothing (s).

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

number of weak classifiers

te
s
t 
e
rr

o
r

numbersamples = 20

 

 

s:0.30 t:1 g:1 N:20 H:5

s:0.30 t:1 g:1 N:20 H:15

s:0.30 t:1 g:1 N:20 H:25

s:0.30 t:1 g:1 N:20 H:35

s:0.30 t:1 g:1 N:20 H:45

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

number of weak classifiers

te
s
t 
e
rr

o
r

numbersamples = 40

 

 

s:0.30 t:1 g:1 N:40 H:5

s:0.30 t:1 g:1 N:40 H:15

s:0.30 t:1 g:1 N:40 H:25

s:0.30 t:1 g:1 N:40 H:35

s:0.30 t:1 g:1 N:40 H:45

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

number of weak classifiers

te
s
t 
e
rr

o
r

numbersamples = 100

 

 

s:0.30 t:1 g:1 N:100 H:5

s:0.30 t:1 g:1 N:100 H:15

s:0.30 t:1 g:1 N:100 H:25

s:0.30 t:1 g:1 N:100 H:35

s:0.30 t:1 g:1 N:100 H:45

Figure 4. Classification results on synthetic data. The ordinate axis
shows the test error of the proposed AdaBoost method with Haar
wavelet projection. The plot shows how the performance changes
as we increase the number of Haar wavelets of each weak classifier
(H).

a very low test error (i.e., 8 weak classifiers for ∼ 2% test
error).

In Figures 4 we show the performance of Parzen-
AdaBoost when each linear weak classifier is projected onto
a Haar wavelet basis and a fixed number of components is
retained. Notice that the algorithm achieves 10% test error
already with 20 samples, and that on average 25 compo-
nents are sufficient to capture the variability of the weak
classifiers.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.001

 

 

s:0.00 t:0 g:0 N:25

s:0.00 t:1 g:0 N:25

s:0.00 t:1 g:1 N:25

s:0.00 t:0 g:0 N:200

s:0.00 t:1 g:0 N:200

s:0.00 t:1 g:1 N:200

s:0.00 t:0 g:0 N:2000

s:0.00 t:1 g:0 N:2000

s:0.00 t:1 g:1 N:2000

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.15

 

 

s:0.15 t:0 g:0 N:25

s:0.15 t:1 g:0 N:25

s:0.15 t:1 g:1 N:25

s:0.15 t:0 g:0 N:200

s:0.15 t:1 g:0 N:200

s:0.15 t:1 g:1 N:200

s:0.15 t:0 g:0 N:2000

s:0.15 t:1 g:0 N:2000

s:0.15 t:1 g:1 N:2000

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.3

 

 

s:0.30 t:0 g:0 N:25

s:0.30 t:1 g:0 N:25

s:0.30 t:1 g:1 N:25

s:0.30 t:0 g:0 N:200

s:0.30 t:1 g:0 N:200

s:0.30 t:1 g:1 N:200

s:0.30 t:0 g:0 N:2000

s:0.30 t:1 g:0 N:2000

s:0.30 t:1 g:1 N:2000

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.5

 

 

s:0.50 t:0 g:0 N:25

s:0.50 t:1 g:0 N:25

s:0.50 t:1 g:1 N:25

s:0.50 t:0 g:0 N:200

s:0.50 t:1 g:0 N:200

s:0.50 t:1 g:1 N:200

s:0.50 t:0 g:0 N:2000

s:0.50 t:1 g:0 N:2000

s:0.50 t:1 g:1 N:2000

Figure 5. Faces data set. Performance evaluation for varying
isotropic smoothing (s), gradient descent (g), tangent vectors (t),
and number of samples in the training set (N).

5.2. Real Data Experiments

As real data set we use the Viola-Jones faces data set
which is publicly available [1]. In Figure 5 we show the
same tests performed in the previous section. Notice that the
results resemble very closely the results obtained in the case
of synthetic data. The only exception is for the case of 25
samples when both gradient descent and tangent vectors are
used. In this case the method does still better than Discrete
AdaBoost, but worse than using only tangent vectors. As
this does not happen for larger training sets, we conjecture
that gradient descent may overfit data on extremely small
training sets.

As in the previous section, we test the performance of the
proposed algorithm when the weak classifiers are projected
onto a Haar wavelet basis. Figure 6 shows the results for
5, 15, 25, 35, 45, and 55 components in the truncated Haar
wavelet series. Notice that the performance does not change
visibly when more than 25 components are kept. In Figure 7
we show the result of training the method on 8, 000 sam-
ples (almost half of the database) and show a final compar-
ison between the main features: optimization of the weak
classifiers via gradient descent and usage of tangent vec-
tors. Again the performance shows a consistent behavior.
Not only AdaBoost based on tangent vectors and gradient
descent achieves the best performance in these experiments
by and large, but also it does so more quickly. Having quick
convergence to the final test error means that fewer weak
classifiers can be used, with considerable reduction of the
computations at run-time.



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

number of weak classifiers

te
s
t 
e
rr

o
r

numbersamples = 20

 

 

s:0.30 t:1 g:1 N:20 H:5

s:0.30 t:1 g:1 N:20 H:15

s:0.30 t:1 g:1 N:20 H:25

s:0.30 t:1 g:1 N:20 H:35

s:0.30 t:1 g:1 N:20 H:45

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

number of weak classifiers

te
s
t 
e
rr

o
r

numbersamples = 200

 

 

s:0.30 t:1 g:1 N:200 H:5

s:0.30 t:1 g:1 N:200 H:15

s:0.30 t:1 g:1 N:200 H:25

s:0.30 t:1 g:1 N:200 H:35

s:0.30 t:1 g:1 N:200 H:45

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

number of weak classifiers

te
s
t 
e
rr

o
r

numbersamples = 2000

 

 

s:0.30 t:1 g:1 N:2000 H:5

s:0.30 t:1 g:1 N:2000 H:15

s:0.30 t:1 g:1 N:2000 H:25

s:0.30 t:1 g:1 N:2000 H:35

s:0.30 t:1 g:1 N:2000 H:45

Figure 6. Faces data set. As in the synthetic data set, the ordinate
axis shows how the performance changes as we vary the number
of Haar wavelet components of each weak classifier (H).

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of weak classifiers

te
s
t 
e
rr

o
r

sigma = 0.4

 

 

s:0.40 t:0 g:0 N:8000

s:0.40 t:1 g:0 N:8000

s:0.40 t:1 g:1 N:8000

Figure 7. Faces data set. In this experiment we perform training
on about half of the data set. The results are once again consis-
tent with the performance in the previous cases, showing that the
method scales well with the size of the training set.

6. Acknowledgments
The authors have been supported by AFOSR FA9550-

06-1-0138 and ONR 67F-1080868.

7. Conclusions
We have presented a novel boosting method that incorpo-

rates several features. We start by extending the traditional
AdaBoost framework to Parzen’s windows and then show
how this can be used to incorporate invariance to geometric
and photometric transformations of the data set. Further-
more, our formulation allows the introduction of gradient
descent to find optimal weak classifiers and of Haar wavelet
projection to improve the computational efficiency at run-
time. We demonstrate that our method has strong general-
ization properties on both synthetic and real data.

References
[1] http://www.cs.ubc.ca/˜pcarbo/viola-traindata.tar.gz. Viola-

Jones face database.
[2] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik. Vicinal

risk minimization. In NIPS, pages 416–422, 2000.
[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classifica-

tion. John Wiley and Sons, Inc., 2nd edition, 2001.
[4] J. H. Friedman. Greedy function approximation: a gradient

boosting machine. The Annals of Statistics, 2001.
[5] J. H. Friedman, T. Hastie, and R. Tibshirani. Special in-

vited paper. additive logistic regression: A statistical view of
boosting. The Annals of Statistics, 28(2):337–374, 2000.

[6] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.
From few to many: Illumination cone models for face recog-
nition under variable lighting and pose. IEEE Trans. Pattern
Anal. Mach. Intell., 23(6):643–660, 2001.

[7] F. Girosi and N. T. Chan. Prior knowledge and the creation
of “virtual” examples for rbf networks. In Neural Networks
for Signal Processing, pages 201–21, 1995.

[8] T. Hastie, R. Tibishirani, and J. Friedman. The Elements of
Statistical Learning. Springer, 2001.

[9] D. G. Lowe. Object recognition from local scale-invariant
features. In International Conference on Computer Vision,
volume 2, pages 1150–1157, 1999.

[10] H. Murase and S. K. Nayar. Visual learning and recogni-
tion of 3-d objects from appearance. Int. J. Comput. Vision,
14(1):5–24, 1995.

[11] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In Computer Vision and Pattern Recognition,
pages 2161–2168, 2006.

[12] C. P. Papageorgiou, M. Oren, and T. Poggio. A general
framework for object detection. In International Conference
on Computer Vision, pages 555–562, 1998.

[13] A. Pozdnoukhov and S. Bengio. Invariances in kernel
methods: From samples to objects. Pattern Recogn. Lett.,
27(10):1087–1097, 2006.

[14] R. E. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. In Computational learn-
ing theory, pages 80–91, 1998.

[15] B. Scholkopf, C. Burges, and V. Vapnik. Incorporating in-
variances in support vector learning machines. In Artificial
Neural Networks, pages 47–52, 1996.

[16] P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent
prop-a formalism for specifying selected invariances in an
adaptive network. Advances in Neural Information Process-
ing Systems 4, pages 895–903, 1992.

[17] J. Sivic and A. Zisserman. Video google: A text retrieval ap-
proach to object matching in videos. In International Con-
ference on Computer Vision, page 1470, Washington, DC,
USA, 2003. IEEE Computer Society.

[18] M. Turk and A. Pentland. Eigenfaces for recognition. J. of
Cognitive Neurosci., 3:71–86, 1991.

[19] V. Vapnik. The nature of statistical learning theory.
Springer-Verlag, Inc., New York, NY, USA, 1995.

[20] P. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154,
2004.


