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Abstract of the Dissertation

Invariant Representations and Learning for
Computer Vision

by

Andrea Vedaldi
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2008

Professor Stefano Soatto, Chair

In computer vision one is often interested in extracting from images only a few

of the many physical parameters that are entangled in the formation of such

images. For instance, one may ask whether an image portrays a certain object

regardless the illumination and viewpoint conditions. Eliminating the effects of

irrelevant factors is therefore an integral part of most vision algorithms. In this

manuscript we discuss two ways of doing so: Extracting invariant representa-

tions from images and learning with invariance constraints. In particular, in the

first part of the thesis we prove the existence of general local viewpoint invariant

features, propose a method to improve their distinctiveness by optimizing their

support, introduce a dataset and formalism to empirically evaluate invariant rep-

resentations, and propose joint data alignment to automatically learn canonical

representations. In the second part, we modify the AdaBoost learning frame-

work to operate efficiently under invariance constraints, we introduce a general

family of positive definite kernels that can be used to trade off invariance and

distinctiveness of image representations, and we propose quick shift, a novel and

efficient clustering algorithm.

Finally, the appendix discusses applications to the problem of structure from

motion. We introduce KALMANSAC, a very robust filtering method for on-

xvi



line structure from motion, and we discuss theoretical aspects of structure from
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CHAPTER 1

Introduction

Many tasks in computer vision require extracting from images only a few cate-
gorical properties, such as the presence or absence of a certain object (“is there
a refrigerator?”) or the category of a scene (“is this a kitchen?”). Even when
we are interested in estimating more detailed parameters, such as the outline
and pose of an object and its relationship with the context, most of the physical
factors that are entangled in the formation of images are irrelevant. We may not
care about the exact color, texture, or shape of an object. We also may not be
interested in recovering the viewpoint from which it is seen. Finally, the illu-
mination conditions are likely to be unimportant to us. Nevertheless, an image
depends crucially on all such parameters and it is simply not possible to ignore
them in analysis.

The larger part of this thesis explores methods to explicitly factor out the
effects of the irrelevant imaging parameters in the design of vision algorithms.
Chapters 2 through 5 study how and to which extent this can be obtained by pre-
processing images and extracting invariant representations (see also Section 1.1).
In Chapter 2 we prove the existence of generic viewpoint invariant local features
and study their properties. In Chapter 3 we address the limitations arising from
the locality of viewpoint invariant representations and we propose a method to
lift them. In Chapter 4 we study how to evaluate and learn from data invariant
representations, based on accurate ground truth. In Chapter 5 we propose a
complexity-based approach for the construction of canonical invariant features.

Chapter 6 departs from the pre-processing based methods and focuses on how
to exploit directly the invariant structure of the visual data during analysis (refer
also to Section 1.2). In particular, the chapter proposes a modification of the
popular AdaBoost algorithm that incorporates invariance at the level of the weak
learners, resulting in a powerful and efficient learning algorithm. In Chapter 7
we study a family of positive definite kernels useful to trade off invariance and
discriminative power of image representations derived from the popular bag-of-
features model. In Chapter 8 we study a clustering algorithms that extend the
generality and improve the efficiency of the popular mean shift paradigm.

The appendices include two contributions dedicated to applications in the
field of of Structure From Motion. In Appendix A we propose a robust filtering
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scheme suitable for on-line structure from motion which combines the popular
RANSAC algorithm and the Kalman filter. Appendix B deals with the problem
of singularities in structure from forward motion. Finally, in Appendix C we
describe our open source implementation of the popular SIFT feature detector
and descriptor that we made available to the community.

The following sections serve as a brief introduction to the concept of invariance
and illustrate how the material of the manuscript fits in this context.

1.1 Invariant representations

One of the main topics of this manuscript is image representations for computer
vision. The goal of a representation is to simplify images to the end of solving
a given vision problem, such as recognizing the presence of a certain object or
identifying selected points of a 3-D scene. In this sense, it may seem that the
best representation is the one that removes the effects of all the irrelevant phys-
ical parameters from an image, returning a quantity which directly encodes the
solution of the problem. For instance, the ideal representation for recognizing the
presence of an object would be a single bit, which is in one-to-one correspondence
with the answer. Thus, why do we distinguish representations from solutions?

The reason is that representations are general: they are preprocessing proce-
dures which help obtaining, but do not provide directly, the solution to different
problems (such as recognizing different objects). An important example are the
so called “invariant features”. An invariant feature φ(x) is a function of a data
point x ∈ X such that, if t is a transformation in some family T ⊂ XX , then
φ(tx) = φ(x). Applied to images, an invariant feature is just an image statistic
(i.e., a function of the image pixels) that is invariant to a well defined set of
image transformations, such as deformations of the image domain or rescalings
of its range. In our context, invariant features are useful when the image vari-
ability induced by some of the nuisance parameters can be captured in terms of
transformations of the images themselves. The most important case is viewpoint
invariance, extensively studied in Chapter 2.

Of course, it is not enough for a feature to be invariant (otherwise any constant
function φ would do!). In fact, the feature should also embody the information
useful to answer a question of interest. We call such a feature sufficient or, when
referring to a classification or categorization problem, sufficiently discriminative.
This concept can be formulated in at least two related ways, which are illustrated
next by an example. Consider the problem of finding the category c ∈ {1, . . . , C}
of the object portrayed by an image x.

Functional sufficiency. The object category c = c(x) is given as a function
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of the image x. The feature φ is sufficient if, whenever two images x and
y portray objects of different categories c(x) $= c(y), the representations
φ(x) $= φ(y) are different as well.

Statistical sufficiency. The object category c is obtained by solving a statistical
inference problem. The image x is “generated” by the object category c
and a nuisance parameter ν through a model specified by the log likelihood
function l(x; c, ν). The nuisance ν includes irrelevant details, such as the
viewing conditions and clutter, and can be eliminated1 by considering the
reduced model [Rem84] l̄(x, c) = supν l(x; c, ν). The feature φ is sufficient
if, whenever the function l̄(x, ·) − l̄(y, ·) is not constant for two images x
and y, the representations φ(x) $= φ(y) are different as well.

While sufficiency is a desirable property for a feature, sometimes we prefer
to trade it off for other useful properties. For instance, constructing invariant
features requires assumptions about the image formation that are usually not
satisfied globally. In fact, in Chapter 2 we discuss local invariant features which
are extracted from image regions or patches. Local features, considered in iso-
lation, are usually not sufficient to solve a complex problem such as recognizing
an object category, and a combination of them must be considered (e.g., a bag-
of-features (Chapter 7)). An important example are the so called “viewpoint
invariant local features”, which characterize image patches independently of the
viewpoint from which they are seen. In Chapter 2 we show that such features are
sufficient to discriminate local portions of the scene based on the albedo (texture).

A alternative criterion to sufficiency is to look for features that are maximally
discriminative [Ber85], in the sense that φ(x) = φ(y) exactly when y can be
obtained from x by a transformation t ∈ T . In this case, the feature eliminates
only the effects of the transformations T , but nothing else. This criterion is
useful in two regards: (i) differently from sufficiency, it is not bound to a specific
problem, and (ii) if the transformations t ∈ T are irrelevant for solving the
problem c(x),2 then a maximally discriminative feature φ(x) is sufficient for that
problem.

Example 1 (Invariant, sufficient, and maximally discriminative features). Let
c(x) = χ{x1>0} be the problem of deciding whether the first coordinate x1 of
a point x ∈ X = R3 is greater than zero. Let tx = (x1, x2 + t, x3) be a one
parameter family of translations t ∈ T = R. Then:

• φ(x) = x is sufficient but not invariant.

1In practice, eliminating the nuisance parameter in a way which is statistically satisfactory
can be harder [KS70, Bas77]. Here we adopt this method only because it is the quickest route
to illustrate the concept of sufficiency.

2I.e. if c(x) = c(tx) for all t ∈ T .
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• φ(x) = x1 is both sufficient and invariant, but not maximally discriminative.

• φ(x) = (x1, x3) is sufficient, maximally discriminative, and invariant.

Notice that the maximally discriminative features is also sufficient for the problem
c(x) = χ{x3>0}.

1.1.1 Canonization

Invariant and maximally discriminative features are completely characterized by
the following:

Lemma 1. Let T be a group of transformations3 acting on the set X and consider
the orbit T x = {tx : t ∈ T }. Then

• φ(x) = T x defines an invariant maximally discriminative feature.

• Any other invariant maximally discriminative feature φ′(x) is equal to φ(x)
up to a bijection.

Proof. This is a well known result from algebra. A rigorous and elegant proof,
based on the concept of universal constructions, can be found in the classic [MB99].
Intuitively, T x is an equivalence class of the equivalence relation x ≡ y ⇔
{∃t : y = tx}. By definition of maximally discriminative feature, the condi-
tion φ(x) = φ(y) defines the same equivalence relation. Hence the functions
T x and φ(x) associate unique labels to the same classes and are equal up to a
bijection.

While sound, adopting T x as a feature is in most cases impractical. For
instance, if T are image rotations and x is an image patch, then T x is the set
of all rotated versions of x. Fortunately, another conceptual construction shows
that a far more manageable feature can be used in place of T x.

Lemma 2 (Canonization). Let T be a group of transformations acting on X .
Let a canonization E ⊂ X be a set that contains exactly one element for each
equivalence class T x. Then the function e(x) which maps x to the unique element
of the intersection T x∩ E defines an invariant maximally discriminative feature.

Proof. If S = T x = T y, then e(x) = e(y) because E contains only one element
of the subset S by hypothesis. Moreover, if e(x) = e(y), then T x and T y are
equivalence classes that share a point and are therefore identical.

3A set G with an operation ◦ is a group if: (associativity) g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3,
(identity) there exists e ∈ G such that e ◦ g = g ◦ e = g, and (inverse) if g $= e, then there exists
g−1 such that g−1 ◦ g = g ◦ g−1 = e. Here g1, g2, g3, g are generic elements of G.
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Example 2 (Continuing Example 1). The maximally discriminative feature φ(x) =
(x1, x3) is equal to T x = {x1} × R × {x3} up to the bijection (x1, x3) ,→
{x1}×R× {x3}, as predicted by Lemma 1. Choosing E = {(x1, 0, x2)} yields by
canonization (Lemma 2) the invariant maximally discriminative feature φ(x) =
(x1, 0, x3). Similarly, E = {(x1, sin(x1) +

√
2x2, x2)} yields by canonization the

feature φ(x) = (x1, sin(x1) +
√

2x2, x2).

To summarize, there exists a simple conceptual construction of invariant and
maximally discriminative features:

1. Partition the data space X into equivalence classes, based on the transfor-
mation group T .

2. For each equivalence class T x, choose a canonical element e(T x) ∈ T x,
yielding a canonical set E .

3. Let the feature φ(x) be the projection e(T x) of x on the canonical set E .

1.1.2 Viewpoint invariant local features

Chapter 2 studies how the ideas introduced in the previous section apply to the
construction of local image features that are invariant to viewpoint change. A
famous result [BWR92] seems to suggest that no such construction is possible
if the 3-D shape of the scene or the change of viewpoint are generic. Thus it
may be surprising that we are able to prove the existence of exactly such generic
invariants. This is not a contradiction. The result from [BWR92] disregards any
photometric information attached to images. We show that, if the photometric
information is exploited, this construction is possible.

A limitation of viewpoint invariant features is the fact that they are, by nature,
local. This is due to the fact that assumptions required for invariance, such as
the necessity of avoiding occlusions (Chapter 2), are usually not satisfied globally.
Unfortunately, the locality of such representations diminishes their discriminative
power; in Chapter 3 we propose a technique to optimize the support of the local
features, and increase their distinctiveness.

In Chapter 4 we move to the problem of evaluating empirically local features.
This is a difficult task for several reasons. First, evaluation requires accurate
ground truth which is difficult to obtain from physical measurements alone. Sec-
ond, even if ground truth is available, one must define what is expected from the
various components of a feature (detector, descriptor, similarity metric) when
the working assumptions are not satisfied. This process is essential to rationally
assess the robustness of each component to deviation from the idealized assump-
tions.
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In Chapter 5 we explore the technique of joint data alignment as a means
of learning canonical representations from data. Canonization is a fundamental
technique for the construction of invariant features (Section 1.2). It amounts to
mapping images to standard configurations, removing in the process the effect of
the nuisance transformations. While the design of such canonical configurations
is hard to do by hand, joint alignment can be used to do so automatically.

1.2 Invariant learning

While invariance can be incorporated in preprocessing, this comes with a number
of possible disadvantages. For instance, common invariant representations are
local, and hence capture only partially the information conveyed by an image.
Therefore we are interested in analysis methods that can leverage on invariance
properties directly.

Consider for instance the problem of constructing a function c(x) that detects
the presence or absence of a face in an image x. Learning is the process of finding
such a function c in a large collection C of analogous functions, based on a limited
number of empirical observations of images that do and do not portray a face.
The difficulty is that the limited examples are often insufficient to assess the
general performance of c, potentially yielding a poor choice of the function. This
problem, known as “over-fitting”, can be alleviated by constraining the choice
with additional information about the structure of the data. Invariance is a
natural candidate, as it directly translates into a set of constraints on c. For
instance, if x portrays a face, and if y is an image obtained from x by perturbing
the viewpoint, then we obtain the constraint c(x) = c(y). In general, however,
enforcing such constraints is computationally quite demanding, if not unfeasible.
In Chapter 6 we propose a technique that enables incorporating invariance in
the popular boosting framework for classification and regression. Inspired by
vicinal risk and tangent distance, we introduce invariance at the level of the
weak classifiers and we show that this yields an efficient and powerful learning
algorithm.

There is yet an alternative approach for exploiting invariance in learning. In-
stead of building up invariance starting from the raw data, one can start from
a representation that is invariant to a large set of transformations and then
gradually reduce invariance until the right trade-off with discriminative power is
achieved. Notable examples are recent extensions to the popular bag-of-features
representation for object recognition. A bag-of-feature representation is an order-
less collection of local invariant features, as the one discussed in Chapter 2. It is
fully invariant to arbitrary permutations of the features, which provides, among
other things, insensitivity to viewpoint change. Recently new representations
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have been proposed that extend bag of features to incorporate a certain degree
of spatial information, with the result of diminishing invariance and increasing
distinctiveness. Such modifications have been formulated as positive definite ker-
nels, that can be readily used in support vector machines and other powerful
classifiers. In Chapter 7 we propose a general framework that subsumes and
extends these particular cases. The framework highlights interesting properties
shared by such methods and enables the systematic construction of new ones.

Finally, Chapter 8 proposes an extension to the popular mean-shift clustering
algorithm, which seeks the local modes of the data distribution in kernel space.
Similarly to the popular k-means algorithm, clustering can be used to devise
invariant or insensitive representations, such as the visual words used in the
popular bag-of-features model.

1.3 Applications

The appendix includes applications in the field of Structure From Motion (SFM).
The goal of SFM is to reconstruct the 3-D structure of a set of points and the
motion of the camera from the projections of those points on the moving camera
plane. Extracting such points from images can be done by the technique discussed
in Chapter 2.

In Appendix A we study the problem of on-line structure from motion. Here
the goal is to progressively update the estimate as more images from a video
sequence are received. While this is usually formulated as a filtering problem, the
high rate of outliers, caused by the unreliability of point extraction and tracking,
requires adopting robust filtering techniques. The chapter introduces a new filter,
based on RANSAC and Kalman filtering, which can handle unprecedented rates
of outliers.

Finally, in Appendix B we address the problem of structure from forward
motion. This is a particularly important case, as often the line of sight and
motion direction coincide. Unfortunately, estimation in this particular case is
subject to a large number of singularities, which are the focus of the chapter.
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CHAPTER 2

Existence of General Viewpoint Invariant Local
Features

Visual classification plays a key role in a number of applications and has received
considerable attention in the community during the last decade. The fundamen-
tal question is easy to state, albeit harder to formalize: when do two or more
images “belong to the same class”? A class reflects some commonality among
scenes being portrayed [FFP04, FHI00, LSP04, FPZ03]. Classes that contain only
one element are often called “objects,” in which case the only variability in the
images is due to extrinsic factors – the imaging process – but there is no intrinsic
variability in the scene. Extrinsic factors include illumination, viewpoint, and
so-called clutter, or more generally visibility effects. Classification in this case
corresponds to recognition of a particular scene (object) in two or more images.
In this chapter we restrict ourselves to object recognition. While this is consid-
erably simpler than classification in the presence of intrinsic variability, there are
some fundamental questions yet unanswered: What is the “best” representation
for recognition? Is it possible to construct features that are viewpoint-invariant
for scenes with arbitrary (non-planar) shape? If so, are these discriminative?

The non-existence of general-case view invariants [BWR92] has often been
used to motivate local descriptors, for instance affine invariants. The results
of [BWR92], however, pertain to collections of points in 3-D space with no pho-
tometric signature associated to them. Since we measure image intensity, we show
that viewpoint invariance can be achieved for scenes with arbitrary (continuous)
shape, regardless of their albedo, under suitable conditions which we outline in
Section 2.2. While this result by no means undermines the importance of affine
descriptors, we believe it is important to state it precisely and prove it for the
record, which we do in Theorem 1. The flip-side of general-case viewpoint invari-
ants is that they necessarily sacrifice shape information, and therefore discrim-
ination has to occur based solely on the photometric signature (Section 2.3.1).
This result is straightforward to prove (Prop. 3), but since nobody has done so
before, we believe it is important. It also justifies the use of “bags of features”
in handling viewpoint variations [DS04]. Finally, we show that if viewpoint is
factored out as part of the matching process, rather than in the representation,
then shape information is retained, and can be used for discrimination (Prop. 4).
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This may contribute to the discussion following [SM71] in the psycho-physical
community. On illumination invariants, [CBJ00] showed that even for Lamber-
tian scenes they do not exist. While they used a point light source model, diffuse
illumination is perhaps a more germane assumption for cloudy days or indoor
scenes, due to inter-reflections [LZ93]. Our results can be easily extended to in-
corporate invariance to such a first-order model of Lambertian reflection in diffuse
illumination.

For the benefit of the reader that is unappreciative of theory alone, we il-
lustrate our results with simple experiments that show that even a naive 3-D
viewpoint invariant can support matching whereas current affine descriptors fail
(Section 2.4). Of course, existing descriptors only fail at singularities, so our work
serves to validate existing methods where appropriate, and to complement them
where their applicability is limited. The point of this section is not to advocate
use of our detector/descriptor as a replacement of existing ones. It only serves to
illustrate the theory, and to point out that some of the restrictions imposed on
existing methods may be unnecessary.

2.1 Generalized correspondence

The simplest instance of our problem can be stated as follows: When do two
(or more) images portray (portions of) the same scene? Naturally, in order to
answer the question we need to specify what is an image, what is a scene, and
how the two are related. We will make this precise later; for the purpose of
this introduction we just use a formal notation for the image I and the scene
ξ. An image I is obtained from a scene ξ via a certain function(al) h, that also
depends on certain nuisances ν of the image formation process, namely viewpoint,
illumination, and visibility effects. With this notation we say that two images
are in correspondence1 if there exists a scene that generates them

I1 ↔ I2 ⇔ ∃ ξ |
{

I1 = h(ξ, ν1)

I2 = h(ξ, ν2)
(2.1)

for some nuisances ν1, ν2. Matching, or deciding whether two or more images
are in correspondence, is equivalent to ascertaining the existence of a scene ξ
that generates them all, for some nuisances νi, i = 1, 2, . . . . These (viewpoint,
illumination, occlusions, cast shadows) could be estimated explicitly as part of the
matching procedure, akin to “recognition by reconstruction,” or they could be
factored out in the representation, as in “recognition using features.” But what

1Note that there is no locality implied in this definition, so correspondence here should not
be confused with point-correspondence.
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is a feature? And why is it useful for matching? We will address these questions
in Section 2.2.

In the definition of correspondence the “=” sign may seem a bit strong, and it
could certainly be relaxed by allowing a probabilistic notion of correspondence.
However, even with such a strong requirement, it is trivial to show that any
two images can be put in correspondence, making this notion of correspondence
meaningless in lack of additional assumptions. Probabilistic assumptions (i.e.
priors) require endowing shape and reflectance with probability measures, not an
easy feat. Therefore, we choose to make physical assumptions that allow us to
give a meaningful answer to the correspondence problem. This problem naturally
relates to wide-baseline matching [PZ98, FTV03, FTV03, DZZ04, KRS04].

2.2 Existence of general viewpoint invariant local features

In Section 1.1 we defined an image feature φ(I) as any function(al) of the im-
age I. Of all features, we are interested in those that facilitate establishing
correspondence between two images I1, I2, or equivalently recognition of the
scene ξ (Section 2.1). This requires handling the nuisance ν: A feature φ
is invariant to the nuisance ν if its value does not depend on the nuisance:
φ(I) = φ ◦h(ξ, ν) = φ ◦h(ξ, µ) ∀ ν, µ. Naturally, in order to solve the generalized
correspondence problem 2.1, we also need the feature to be discriminative for the
scene ξ (this notion will be made precise later).

In Section 1.1 the concept of invariance was defined in term of transforma-
tions of the image, such as deformations of its domain or rescalings of its range.
Unfortunately, not all variations of the nuisance parameter ν can be captured in
term of image transformations. In fact, predicting the scene appearance result-
ing from different viewing conditions ν requires, in general, the knowledge of the
scene ξ, and the latter cannot be inferred from an image I alone. However, under
suitable conditions the effects of the nuisance factors can be captured in such a
way. For instance, if the camera is limited to rotate around its axis, then the
effect of a variation of viewpoint is captured by a rotation of the image.

The first part of the chapter establishes conditions for which general changes
of viewpoint can be captured in term of a family of image transformations, thus
enabling the construction of invariant features based on the principles illustrated
in Section 1.1. In particular, we will see that, if the scene is Lambertian and
if the viewpoint change does not activate occlusions, then the image transforms
according to an homeomorphism (Sections 2.2.1 and 2.2.2). This fact, together
with the results of Section 1.1, essentially proves the existence of features invariant
to generic viewpoint changes, for arbitrary 3-D shapes of the underlying scene ξ
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(Section 2.2.3). These features are also albedo-discriminative, in the sense that
they discriminate between objects with different albedo (texture).

The main issue with this simple construction is the fact that the non-occlusion
requirement is too strong for such features to be useful in practice. In fact, not
only the surface S must not occlude itself as the viewpoint varies, but it must
also be fully visible inside the image domain. The latter requirement is especially
stringent, because S lumps together all the objects in the scene. The necessity
of avoiding occlusions is the main reason why we move our attention to local
features, which are computed on subsets Ω of the image domain. We show that
our construction extends to general viewpoint invariant local features, under the
condition that the domain Ω is extracted in a special way (Prop. 1). Namely,
the selection of Ω must be co-variant with the image transformations. Therefore
Section 2.2.4 is dedicated to prove the existence of a co-variant detector, i.e. of
a mechanism that, given the image I alone, is able to extract a countable (in
practice, finite) number of co-variant regions Ω. This finally leads us to the
main result of the chapter, i.e. the existence of generic viewpoint invariant local
features (Thm. 1).

In Section 2.3.1 we show a limitation of generic viewpoint invariant features:
Because such features must absorb the image deformations induced by a view-
point change, the information about the underlying shape is lost. So, while
features are albedo-discriminative, they are not shape-discriminative. We also
discuss the discriminative power of such feature in relation to the concept of
maximal discriminability introduced in Section 1.1.

2.2.1 Image formation: Lambertian scenes

While global correspondence can be computed for scenes with complex reflectance
under suitable assumptions, local correspondence cannot be established in the
strict sense defined by (2.1) unless the scene is Lambertian, and even then, it is
necessary to make assumptions on illumination to guarantee uniqueness [CBJ00].
In particular, one can easily verify that if the illumination is assumed to be
constant (ambient, or “diffuse”) then local correspondence can be established.
We therefore adopt such assumptions and relegate all non-Lambertian effects as
“disturbances.”

We can now make the formal notation of Section 2.1 more precise: We rep-
resent an image as function I : Λ ⊂ R2 −→ R+; x ,→ I(x) defined on a com-
pact domain Λ. A Lambertian scene is represented by a collection of (piecewise
smooth) surfaces, as detailed by the following definition.

Definition 1 (Image Formation Model). A scene (S, ρ) is a piecewise smooth
surface S ⊂ R3 (not necessarily simply connected) together with a map ρ : S →
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R+ called albedo. A viewpoint g ∈ SE(3) is a rigid motion that maps points
X ∈ R3 in the inertial reference frame to the corresponding points gX in the
camera reference frame. The camera projection π is the function that maps
points X ∈ R3 (in the camera reference frame) on the image plane Λ ⊂ R2 by

π(X)
∆
=

1

X3

[
X1

X2

]
.

The inverse camera projection π−1(x) is the map that back-projects pixels x ∈ Λ
to the nearest surface point X, that is to the points X which verify

• X ∈ S,

• π(gX) = x ∧ e#3 gX ≥ 0 (positive depth),

• ∀X̃ ∈ S : x = π(gX̃) ∧ e#3 gX̃ ≥ 0 ⇒ e#3 gX ≤ e#3 gX̃ (first intersection).

Occasionally, to emphasize the dependency of the inverse projection on the scene
and viewpoint, we write π−1(x) = π−1(x; S, g). The image formation model
I = h(S, ρ, g) maps the scene (S, ρ) and the viewpoint g onto an image I(x)
according to

I(x) = h(S, ρ, g) = ρ(π−1(x; S, g)). (2.2)

With the notation of Section 2.1, the scene is ξ = (S, ρ) and the nuisance is
limited to the motion ν = g.

Remark 1 (Extension to ambient illumination). In the following discussion we will
concentrate mainly on the model (2.2) for notational simplicity, but the results
can easily be extended to the case of ambient illumination. In this case, to first
approximation2 equation (2.2) becomes

I(x) = αρ(π−1(x; S, g)) + β (2.3)

for an affine transformation (α, β) ∈ R2
+ of the range of the image. With respect

to the model (2.2), the nuisance here comprises both viewpoint and illumination,
that is ν = (g,α, β).

2.2.2 The deformation induced by a viewpoint change

As one can easily realize, it is impossible to construct non-trivial statistics that
are invariant to occlusions. For this reason viewpoint invariant features make the
assumption that no occlusion occurs as the viewpoint changes. Although this
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Q′

Q′′

Q′′′

Figure 2.1: Visible patches. The patch Q′ of the surface of the cube is visible
as it projects injectively on the image plane. It is also away from boundaries as
there exists an open neighborhood (in blue) that contains the closure of Q′ and is
itself visible. The patch Q′′ is again visible and away from occluding boundaries.
Note that the fact that ∂Q′′ intersects the singularities of the cube (its edges)
is inconsequential. Finally, Q′′′ is visible but not away from boundaries. In fact
there exists no open neighborhood containing Q′′′ ⊂ S which is visible.

is very unlikely for the scene as a whole, it happens frequently enough for local
patches.

Definition 2. We say that the surface patch Q ⊂ S is visible from the viewpoint
g ∈ SE(3) if, and only if, the map π(gX), X ∈ Q admits a left inverse and this
is the function π−1(x; S, g), x ∈ Ω (Fig. 2.1.)

Equivalently the patch Q is visible from g if, and only if, we have

π−1(π(gX); S, g) = X, X ∈ Q.

Sometimes we need the patch to be visible and away from occluding boundaries.
This notion is captured by the next definition.

Definition 3. We say that the surface patch Q is visible and away from (occlud-
ing) boundaries if there exists an open neighborhood of the closure of Q which is
itself visible (Fig. 2.1).

A summary of the symbols is provided in Fig. 2.3. The appearance of the scene
patch Q changes as we change the viewpoint. If the patch is visible from all
viewpoints, its appearance transforms according to an homeomorphism.

2More precisely, the radiance at p ∈ S is given by R(p) .= ρ(p)
∫

Vp
〈νp, λ〉dA(λ) where νp is

the normal and Vp the visibility cone at p and dA is the area form on the light source [LZ93].
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Image plane

Ω
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Ω

Boundary points included

Boundary points excluded

Q Q

Figure 2.2: Details of the proofs. The black segments represent respectively
a surface patch Q ⊂ S and the corresponding image region Ω = π(gQ). Note
that Q needs not be connected. Left: in Def. 3 the region is is “not away”
from an occluding boundary if no open neighborhoods of the closure of the Q
is visible. Right: the definition would fail if the open neighbor is taken on the
image plane as opposed to the surface. In Prop. 3 we make the assumption that
Q is compact. Right: if Q is not compact, the projection π can be continuous on
Q and invertible, but the inverse π−1(·; S, g) can be discontinuous.

Λ ⊂ R2 Image domain.
Ω, Ωt, t = 1, 2 Regions (subsets) of the image domain Λ.
S ⊂ R3 Surface.
Q ⊂ S Patch (subset) of a surface.

Figure 2.3: Notation.

Lemma 3 (Viewpoint induced deformation). Let I1 and I2 be two images ob-
tained from the same scene (S, ρ) and possibly different viewpoints g1 and g2. If
the compact surface patch Q ⊂ S is visible from both viewpoints g1 and g2, pro-
jecting on the image regions Ω1 = π(g1Q) and Ω2 = π(g2Q) respectively, then the
image patches I1(x), x ∈ Ω1 and I2(x), x ∈ Ω2 are homeomorphic, in the sense
that there exists some homeomorphism (or “warp”) w : Ω1 → Ω2 such that

I1(x) = (I2 ◦ w)(x), x ∈ Ω1.

Note that Ω2 = w(Ω1).
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Proof. Recall that an homeomorphism w is a continuous and invertible mapping
Ω1 → Ω2 with continuous inverse. Since Q is visible from gt, t = 1, 2, then
the maps Q → π(gtQ), X ,→ π(gtX) are continuous3 and invertible. As, by
hypothesis, Q is compact, these conditions are sufficient to conclude that the
inverse maps π−1(x; S, gt), t = 1, 2 are continuous as well.4 Thus both π(gtX),
t = 1, 2 are homeomorphisms.

We complete the proof by noting that

w(x) = π ◦ g2 ◦ π−1(x; S, g1), x ∈ Ω1,

that g2 is an homeomorphism Q → g2Q, X ,→ g2(X) and that compositions of
homeomorphisms are homeomorphisms.

Remark 2. We choose to work with scene patches Q rather than directly with
image patches Ω because this simplifies the formalism and makes certain patho-
logical cases straightforward (see Fig. 2.2.)

2.2.3 Viewpoint invariant descriptors

Definition 4 (Local descriptor). Consider a compact image region Ω ⊂ Λ. A

local descriptor is a map φ from an image patch I|Ω
∆
= {I : Ω ⊂ Λ → R+; x ,→

I(x)} to some space F . Occasionally we use the shorthand notation φ(I; Ω) for
φ(I|Ω).

Often a local descriptor is called local feature descriptor or feature descriptor,
or simply descriptor, and the space F is called a feature space. The following
proposition shows that there exist non-trivial viewpoint invariant local descriptors
for regions of the scene that are visible from a set of viewpoints.

Proposition 1 (Existence of viewpoint invariant descriptors). There exists a
local descriptor φ(I; Ω) with the following two properties:

• Invariance. Given any compact surface patch Q ⊂ S visible from view-
point g1 and g2, then φ(I1; Ω1) = φ(I2; Ω2) where Ωt = π(gtQ), t = 1, 2.

• Albedo-discriminativeness. Consider two scenes (St, ρt), t = 1, 2 and
two compact patches Qt ⊂ St, t = 1, 2 visible from viewpoints gt, t = 1, 2.
Then φ(I1; Ω1) = φ(I2; Ω2) (same descriptors), if, and only if, there exists
an homeomorphisms w : Q1 → Q2 such that ρ1|Q1 = ρ2|Q2 ◦ w (same
albedos).

3Take Q with the subset topology induced by R3 and note that, as Q is visible, no singular
point of π (that is points of zero depth) is comprised in Q.

4In general a continuous and invertible function does not have necessarily continuous inverse,
but this is the case if the domain is compact.
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Figure 2.4: Non-triviality of the local descriptor. The image patch on the
left cannot be mapped by an homeomorphisms to the image patch on the right.
Although this is obvious, the statement can be proved formally by noting that,
for example, the homotopy group of the gray areas differ (because the gray areas
have a different number of “holes”). Note also that both patches are delimited
by an extremal region and, as such, constitutes a valid example for the co-variant
regions of Thm. 1.

Proof. Denote It|Ωt the image patches It(x), x ∈ Ωt, t = 1, 2 and let φ be the
orbit of It|Ωt(x) under the action of the homeomorphism:

φ(It; Ωt) = {It|Ωt ◦ w−1 : w ∈ homeomorphism on Ωt}.

By Lemma 3 the patches It(x), x ∈ Ωt for t = 1, 2 are related by homeomor-
phisms. As such, they both generate the same equivalence class φ(I1; Ω1) =
φ(I2; Ω2), which proves the invariance of the descriptor.

In order to prove that the descriptor φ(I; Ω) is albedo-discriminative we note
that the albedo ρt can be identified with its projection It|Ωt up to an homeomor-
phism π−1 : Ωt → St, as

It(x) = ρ(π−1(x; S, gt)), x ∈ Ωt.

Then we observe that, by definition, φ(I1; Ω1) = φ(I2; Ω2) if, and only if, there
exists an homeomorphism w : Ω1 → Ω2 such that I1|Ω1 = I2|Ω2 ◦ w.

Remark 3 (Non-triviality). The descriptor of Prop. 1 is albedo-discriminative, but
this alone does not imply that it is not trivial. In order to prove this, we have to
check that there exist albedos which are not equivalent up to homeomorphism.
This is of course very easy to check and is left to Fig. 2.4.

Although the descriptor φ(I; Ω) constructed in Prop. 1 is viewpoint invariant,
it is unpractical because its values are infinite collections of patches. However, a
more efficient descriptor can be constructed by finding a canonical way to select
a representative of the equivalence class.
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Figure 2.5: Invariance to scale and finiteness. Any scale invariant region
detector cannot be intrinsically finite. To see this, consider an object on which
the detector selects a region Ω. By replicating the object at decreasing scales,
we can fit a countable number of such regions into the image. Note that this
example applies to any scale invariant detector and not only to the one discussed
here.

Corollary 1 (Invariance by canonization). There exists an invariant and albedo-
discriminative local descriptor in the sense of Prop. 1 which has the same “com-
plexity” as the patch I|Ω. This is obtained by mapping the equivalence class
φ(I; Ω) onto a canonical patch Ie|Ωe.

2.2.4 Co-varaint detection

In order to compute the local feature φ(I; Ω) as specified in Def. 4, we need to
specify its domain Ω. To satisfy the hypothesis of Prop. 1, we need to select
regions Ωt on each image t = 1, 2 in such a way that they are projections of
the same portion of the scene regardless of the viewpoint. This process is called
co-variant detection. The domain is often referred to as a “co-variant region,”
in the sense that it varies with the map w.5 The pair of co-variant detector
and invariant descriptor, also referred to as detector/descriptor, is constitutes an
invariant feature. In order for the latter to be of any use, detection has to be
performed based on the images alone, with no information on the scene. In this
section we illustrate two possible ways to proceed.

We allow the detector to selects multiple regions from each image because (1)
the image might contain multiple useful regions (what is “useful” will become
clear later) and (2) there is no way to distinguish between them a priori. At
the same time, however, we should limit the detector to select a finite number
of regions as it does not make computational sense to extract an infinite number
of local features. Unfortunately, as illustrated by Fig. 2.5, a detector cannot

5In fact, it transforms with the inverse w−1, so a more appropriate nomenclature would be
“contra-variant.”
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be at the same time scale invariant and finite if the resolution of the image is
infinite. In the practical case this problem never arises as only numerical images
are available and details below the size of the pixel cannot be resolved. Thus, in
order to keep the formulation simple and clean, we relax the notion of finiteness
to the one of countability.6 This does not trivialize the concept of detector as the
number of possible regions is not countable.

Definition 5 (Detector). A detector is a function d that maps an image I :
Λ → R to a countable collection of image regions: d(I) = {Ω(1), ..., Ω(k), ...} with
Ω(k) ⊂ Λ.

For our purposes, the detector must satisfy two additional properties, known
as “co-variance” and “repeatability”. Simply stated, this means that, if the region
Ω1 is selected in the first image I1 and if it deforms according to a warp w due
to a viewpoint change, then the region Ω2 = wΩ1 is selected in the second image
I2. In order to guarantee the co-variant detection of a region, some assumptions
(such as visibility) on the image formation process must be satisfied at least
locally. Since there is no way for the detector to know which regions are “good,”
an obvious strategy is to select several and regions and hope that at least some
of them will satisfy the conditions.

Proposition 2 (Domain selection, or “co-variant detection”). There exists a
detector d : I ,→ {Ω(1), ..., Ω(k), ...} that selects co-variant regions, in the following
sense. Consider a scene (S, ρ), two viewpoints gt, t = 1, 2 and the generated
images It = h(S, ρ, gt). For all compact patches Q ⊂ S that are visible away from
occluding boundaries from both viewpoints g1 and g2, projecting onto the regions
Ωt = π(gtQ), t = 1, 2 respectively, one has

Ω1 ∈ d(I1) ⇔ Ω2 ∈ d(I2).

The following proof is constructive and inspired by the work of Matas and
coworkers [MCU02].

Proof. A region Ωt of the image It is an extremal region if it is a compact con-

nected component of a level set Lt(c)
∆
= {x | It(x) ≥ c} of the image for some

constant c ≥ 0 (we use the definition of [CCM99].) All extremal regions that

6Finiteness can be re-introduced in the infinite resolution setting with additional weak as-
sumptions on the regularity of the albedo (e.g. ρ ∈ BV (S)). However Fig. 2.5 shows that full
scale invariance cannot be achieved with a finite detector, and one must relax this notion as
well.
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w(x∗)x∗B

Figure 2.6: Critical point. A critical point x∗ is a point where two level curves
of I(x) “meet”. For a smooth function I(x), this would be a saddle point; here
we adapt this property to be invariant to homeomorphic deformation. We do this
as follows. Consider the function f(x1, x2) = x2

1−x2
2 defined on R2, portrayed on

the right. We use f(x) as a model of saddle point: We call x∗ a critical point if
there exists an open neighbor B and an homeomorphism w : B → R2 such that
w(x∗) = 0 and and each level set LI|B(c) of I(x), x ∈ B is homeomorphically
mapped to a level set Lf (c′) of f . This requires I(x) to be locally equivalent to
the “standard saddle” f(x) up to a monotonic contrast change [CCM99] and an
homeomorphic deformation of the domain. The property is obviously invariant
per homeomorphism and local (i.e. if it is verified in the neighborhood B, it is
verified in any neighborhood B′ ⊂ B).

satisfy the local conditions of Lemma 3 are transformed by a homeomorphism as
a result of a change of viewpoint.

Although (some of) the extremal regions satisfy the co-variance property,
these are usually not countable. We need a mechanism to choose a small (count-
able) number of extremal regions in a way which is independent of domain trans-
formations. We do this by considering the critical points x∗ of It(x), per Fig. 2.6;
the detector d then selects those extremal regions Ωt whose boundary ∂Ωt con-
tains at least a critical point x∗ (Fig. 2.7). As the image domain is compact, at
most a countable number of critical point can exist. Since the region is visible
away from occluding boundaries, there is an entire neighborhood of the critical
points which is homeomorphically mapped from I1 to I2. Furthermore, since
homeomorphisms do not alter the topology of the neighborhood, critical points
are mapped homeomorphically to critical points, hence they are repeatable across
different viewpoints.

Combining the previous results leads us to the following claim.
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x∗

x̄

Ω̄

Figure 2.7: Co-variant detector. The co-variant detector selects the extremal
regions Ω and Ω̄ because their borders ∂Ω and ∂Ω̄ contain the critical points x∗

and x̄. However, only Ω is visible and away from occluding boundaries, while
Ω̄ is only visible. As such, only x∗ is guaranteed to be repeatable (stable to a
viewpoint change), while x̄ can disappear as the viewpoint moves. Thus, although
the detector selects both regions, only Ω is a “good region.”

Theorem 1 (Existence of generic non-trivial viewpoint invariants). Consider
a scene (S, ρ), viewpoints g1, g2 and the resulting images I1, I2. Then there
exists a domain selection mechanism (detector) d and a local descriptor φ :

I|Ω ,→ φ(I; Ω) ∈ F such that the collection of detector/descriptor pairs F (I)
∆
=

{(Ω, φ(I; Ω)), Ω ∈ d(I)} satisfy

• (Invariance) If (Ω1, φ1) ∈ F (I1) is such that Ω1 is the projection of an
unoccluded portion of the scene Q ⊂ S, that is also visible without occlusion
from viewpoint g2, then (Ω2, φ2) ∈ F (I2) and φ1 = φ2.

• (Non-triviality) In general, the descriptors φ(I; Ω) varies as Ω varies in
d(I) (that is, they are not all identical).

Proof. Invariance follows from Prop. 1 and Prop. 2. Non-triviality follows from
the fact that the descriptors are albedo-discriminative (Prop. 1) and the counter-
example in Figure 2.4.

Remark 4 (Extension to ambient illumination invariants). A useful property of
level sets and critical points is that they are invariant to affine scaling of the
range of the image I(x). This allow to relax the hypothesis of Prop. 2 to varying
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ambient illumination and together with Remark 4, to extend Thm. 1 to viewpoint
and (ambient) illumination invariants.

Remark 5 (Alternative co-variant selection). It should be noted that the usage
of extremal regions identified by critical point is only one of many ways to detect
co-variant regions under the assumption of visibility and Lambertian reflection.
An interesting example is given in [LJ05], where co-variant regions are extracted
by walking along “image geodetics.” Unfortunately the method is not insensitive
to changes in ambient illumination.

Another domain selection mechanism can be provided by a segmentation pro-
cedure: Assuming that the image is a piecewise smooth function, and that the
locus of singularities is piecewise smooth [MS89], one can start from maxima
and expand the regions until it reaches some singularity of the image. This oc-
curs at edges and junctions, and can be performed following the guidelines of
Lindeberg [Lin98].

2.3 Properties of viewpoint invariant features

In this section we study a few theoretical properties of viewpoint invariant fea-
tures.

2.3.1 Shape discrimination

In order to construct a viewpoint invariant feature we need to eliminate the de-
pendency of the image from viewpoint-induced transformations. Unfortunately,
this process destroys the ability to discriminate scenes by their shape.

Definition 6. Consider a patch Q1 ⊂ S1 of a scene (S1, ρ1) and a patch Q2 ⊂ S2

of a scene (S2, ρ2). We say that the two patches have the same appearance if,
and only if, there exist viewpoints g1 and g2 such that their projections coincide:
I1(x) = ρ1(X1) = ρ2(X2) = I2(x) for all x = π(g1X1) = π(g2X2) with X1 ∈ Q1

and X2 ∈ Q2

Proposition 3 (Shape insensitivity). Let φ(I; Ω) ∈ F be a viewpoint invari-
ant local descriptor as defined in Prop. 1 (but not necessarily constructed as in
Prop. 1.) Consider two patches Q1 and Q2 of two scenes (S1, ρ1), (S2, ρ2) that
have the same appearance in the sense of Def. 6, but different shape S1 $= S2. Let
g1 and g2 be viewpoints under which Q1 and Q2 projects onto Ω1 = π(g1Q) and
Ω2 = π(g2Q) respectively. Then φ(I1; Ω1) = φ(I2; Ω2) for all viewpoints g1 and g2

that do not occlude the patches.
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Proof. By the definition of viewpoint invariant local descriptor given in Prop. 1,
the features φ(I1; Ω1) and φ(I2; Ω2) do not change as long as the change of view-
point does not result in occlusions. Since the two descriptors coincide for at least
the viewpoints for which the image of the two patches coincide (which exist by
hypothesis), they are equal for any other pair of viewpoints that do not yield
occlusions.

The above proposition shows that viewpoint invariant statistics cannot be
used to discriminate shape, no matter how such statistics are generated.

Remark 6 (Meaning of “shape”). To avoid confusion, note that here “shape”
means the 3-D geometry of the scene S. If we have, say, a planar contour, which
we can view as a binary image ρ, we can build a viewpoint invariant descriptor
(e.g. [BMP02]) that can be legitimately used to recognize shape without searching
for viewpoint during the matching procedure. Note, however, that the descrip-
tor is albedo-discriminative, and it is only accidental that the albedo is used to
represent (2-D) shape. Similarly note that the scene here includes everything
visible, so the theorem does not apply to cases where the occluding boundary
provides discriminative features, say to recognize a white sphere from a white
cube on a black background. Finally, note that the notion of viewpoint can be
generalized to an equivalence class under the action of a group, for instance the
3-D projective group, so that no explicit reconstruction is necessary during the
matching phase.

Prop. 3 does not mean that one cannot discriminate scenes based on their
shape, as we show next. Intuitively, given two images there are two possible
scenarios: (a) the two images are generated by the same scene under different
viewpoints, or (b) the two images portray different scenes. Local invariant fea-
tures cannot discriminate between these two scenarios. However, an attempt to
reconstruct the scene can discriminate, since only in the case (a) are the two
images compatible with only one underlying scene. Note that we are barring
visibility artifacts, lest given two images one can always construct a scene that
generates them (e.g. glue the two images onto two sides of a cube). Further note
that we are making the assumption of generic scene. One can easily construct
scenes that, when viewed from a particular set of viewpoints, generate images
that are compatible with a single underlying scene. These conditions, however,
are pathological in the sense that a change in viewpoint destroys the compatibility
and reveal that the images come from different scenes.

Proposition 4 (Recognition via reconstruction). Let the two patches ΩS1 of
scene (S1, ρ1) and ΩS2 of scene (S2, ρ2) have the same generic radiance and project
without occlusions from the generic viewpoints g1 and g2. If their images coincide

22



under viewpoints (g1, g2), then either ΩS1 = ΩS2 or, for almost all viewpoints g′1,
there exists no viewpoint g′2 such that the images are still the same.

Proof. Since the radiance is generic, and so are the viewpoints, we can assume

that g12
∆
= g−1

1 g2 has non-trivial baseline (non-zero translation). If the two images
come from the same scene, we can find one surface S and a viewpoint change
g12 such that I1(π(g12S(x))) = I2(x). This is tantamount to reconstructing the
shape of the scene and the viewpoint, which can be done uniquely up to a global
scale factor under the stated genericity assumptions [JSY03]. Under the same
genericity assumptions, two scenes generate images that are not compatible with
a unique reconstruction, since the viewpoint is generic [MSK03].

2.3.2 Maximally discriminative feature

The basic idea of Prop. 1 is to annihilate the effect of a viewpoint change by
absorbing in the descriptor all possible deformations of a given patch. There we
considered as deformations the family of all two-dimensional homeomorphisms
because any viewpoint induced deformation (of visible patches) falls within this
class. It is intuitive, however, that not all possible homeomorphisms can be
generated by a viewpoint change. Since the bigger is the class of transformation
that we annihilate, the lesser discriminative is the resulting descriptor, we should
understand which is the minimal class of transformations that we have to factor
out to achieve viewpoint invariance.

Definition 7. We denote by V the set of viewpoint induced warps v : Ω1 → Ω2,
i.e. warp v that can be induced on a visible patch by a change of viewpoint that
leaves the patch visible.

It is not difficult to characterize V . For example, [SD96] shows that, as long
as no camera sees the center of the other one, the deformation resulting from a
viewpoint change is the composition of two homographies and a parallax.7 Even
for more general conditions, the warp is still not generic (for example, epipolar
lines are transformed to other lines).

Unfortunately, factoring out V is not enough in order to get an invariant de-
scriptor; as Fig. 2.8 illustrates, we need to consider the bigger class V̄ obtained
by closing by composition the class V . Annihilating V̄ is not only sufficient, but
also necessary. Thus, by considering V̄ in place of the generic homeomorphisms in
Prop. 1, the construction leads to the most discriminative viewpoint invariant de-

7If this condition is not satisfied, a zooming is also required.
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I3|Ω3

I2|Ω2

I1 = {I1|Ω1 ◦ v : v−1 ∈ V(Ω1)}

I1|Ω1

φ(I1; Ω1) = φ(I2; Ω2) = φ(I3; Ω3)

I2|Ω2

I3|Ω3

I1|Ω1

I2 = {I2|Ω2 ◦ v−1 : v ∈ V(Ω2)}

Figure 2.8: Warps collapse due to invariance. In order to build a viewpoint
invariant descriptor we need to absorb not just the viewpoint transformations v ∈
V , but their compositions too. In fact, consider a viewpoint invariant descriptor
φ(I; Ω) and two patches I1|Ω1 and I2|Ω2 . The figure shows the families of patches
It, t = 1, 2 that are generated from It|Ωt by applying all possible viewpoint
warps V (the symbol V(Ωt) denotes the warps supported on Ωt). By definition φ
is constant over I1 and I2. Thus, if I1 and I2 intersect, say at I3|Ω3 = I1|Ω1◦v−1

1 =
I2|Ω2 ◦ v−1

2 , then φ is constant on the union I1 ∪ I2. But, in order to get I2|Ω2

from I1|Ω1 we need to use a warp w = v−1
1 ◦ v2 which is not in V .

scriptor.8 How much smaller is V̄ with respect to the class of all homeomorphisms
is subject of current study.

Remark 7. We said that the descriptor of Prop. 1 is albedo-discriminative, while
in this section we are guessing that descriptors even more discriminative are pos-
sible. This not a contradiction: in fact, the descriptor of Prop. 1 is discriminative
as long as we consider albedos to be equivalent up to generic homeomorphism.
Here is exactly the latter assumption that we want to relax.

2.4 A case study: 3-D corners

As an application of our theory, we develop a descriptor of a new kind of invariant
features, corresponding to “3-D corners”. We design a simple detector that selects

8The notion of maximal invariance is precise: it means that, if φ̃ is another viewpoint
invariant descriptor, then

φ̃(I1; Ω1) $= φ̃(I2; Ω2) ⇒ φ(I1; Ω1) $= φ(I2; Ω2).
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Figure 2.9: Corner: deformation, detection, and canonization. Left: a
corner consists of n angular sectors χ1, ...,χn separated by edges v1, ..., vn. The
length of the vectors v1, ..., vn fix a point along each edge, which can be thought
as a scale parameter. Right: the edge of the corner are detected by means of a
simple parametric model by connecting pairs of Harris’ points.

points where a suitable frame of reference can be easily attached. In particular,
we focus on points x0 ∈ Λ that are projections of corners of the surface S(x). A
corner is a singular point of the object surface and cannot be approximated by a
plane. Thus our descriptor works exactly under the conditions not supported by
existing approaches [MS04, FTV03] (Figure 2.11).

2.4.1 Deformation under viewpoint change

We model a corner as a vertex with n planar faces. Barring occlusions, its image
(see Figure 2.9) consists of n angular sectors, projections of the n faces, and a
center x0, projection of the vertex. These sectors are separated by edges, which
we represent as vectors vi ∈ R2, i = 1, ..., n. The length of the vectors will be
used as a scale parameter.

When the viewpoint changes, the n faces of the corner are transformed by
homographies, which we approximate by affine warps. This model locally cap-
tures the true transformation to an arbitrary degree of precision, which can-
not be done by a single affine transformation. Since the corner surface is con-
tinuous, in the absence of occlusions so is the overall transformation. Thus,
the n affine transformations are not independent and are fully specified by the
mapping x0 ,→ y0 of the center and the mappings vi ,→ ui, i = 1, ..., n of
the edges (with their scales). Formally, let {χi(x), i = 1, ..., n} be a parti-
tion of R2 in n angular sectors, being χi(x) the indicator function of the i-
Th. sector. We call piecewise affine transformation of degree n a function
w : R2 → R2 given by w(x) =

∑n
i=1 χi(x)Ai(x − x0) + y0, x ∈ R2 where the

matrices Ai ∈ GL(2), i = 1, ..., n are chosen so that w(x) is continuous.
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A convenient parameterization of w(x) is the tuple (x0, y0, v1, ..., vn, u1, ..., un),
specifying the mapping of the center and of the edges. If we assume that the
edges and the corresponding sectors are sorted counter-clockwise, the matrices
Ai, i = 1, ..., n are given by the equations Aivi = ui and Aiv(i)n+1 = u(i)n+1,
being (i)n the integer i modulo n. Let PWAn, n ≥ 2 be the set of all piecewise
affine transformations of degree n. For any fixed n ≥ 3, the class does not form
a group, since it is not closed under composition, but each transformation has
an inverse w−1(x) of the same degree. The group-closure of PWAn, n ≥ 3 is
PWA =

⋃
n≥2 PWAn.

Since the deformation of a corner under a viewpoint change is (locally) a
PWA, PWAs are the minimal class of transformations with respect to which the
feature has to be invariant, even though any more general class of transformations
would fit. In particular, a PWA of degree m can be used for a corner that has
n < m physical edges, as long as the transformation is estimated consistently.

2.4.2 Feature detection

The detection process searches for corner structures in the image and attaches
a reference frame to them. While there exist many possible procedures for de-
tecting corners, including sketch primitives [GZW03] or matched filters [HF94],
our emphasis here is not in proposing yet another detector, but rather in how to
arrive at a viewpoint invariant once a structure has been detected. Therefore, we
choose a simple if not somewhat naive detector, designed to provide directly the
structures that we need.

The procedure is articulated as follows. Initially, a set of Harris points [HS88]
X = {x1, ..., xn} is extracted. These points are used as candidate corners and as
evidence for edge-like structures in the image (we use the fact that some Harris
points are located along edges, particularly nearby the edge terminations). The
algorithm checks for each pair (xi, xj) ∈ X2 whether the image portrays an edge
connecting xi to xj. Edges are modeled using the parametric template

T (x, y; w) = sign(y), (x, y) ∈ [0, 1]× [−w, w] (2.4)

reminds what done in [BNM98] (Figure 2.9). The template is matched9 to the
image by normalized cross correlation (NCC). Once the set E of edges has been
extracted, the procedure attaches a reference frame to each point x0 ∈ X. All
edges connected to x0 are considered: first the localization of each edge is refined
using the model (2.4); then edges with the same orientation are clustered, because
they relate to the same image structure; finally the edge that best covers the full

9There exists some simple yet effective heuristics that one can use to pre-prune the set of
candidate edges and speed-up significantly the algorithm.
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(a) (b) (c)

Figure 2.10: Types of reference frame and their canonical configuration:
(a) all sectors are narrower than π radians; (b) a sector is wider than π radians
and (c) T-junction.

extension of the underlying image structure is selected within each cluster. The
selection uses an extension of the model (2.4) which represents explicitly the
edge termination.

2.4.3 Feature canonization

Once a reference frame has been detected, we map it to a canonical configuration.
In order to avoid singular configurations, we enforce the following conditions: (i)
if all sectors are less than π radians wide, the normalized frame has n equally
wide sectors; (ii) if one of the sectors is wider than π radians, we make this sector
3π/4 radians wide and we fit evenly the others in the remaining π/2 radians10;
(iii) if one sector is exactly π radians wide (T-junction), we delete one edge and
we reduce to the former case11. Note that at least two edges are required to
compute the PWA transformation. If a point has less than two edges attached
to it, it is discarded.

These rules fix the canonical reference frame up to a rotation. The rotation
can be partially eliminated by requiring that one edge maps to (1, 0). However,
any edge could do, and we are left with a discrete subgroup of rotations to choose
from. If the corner has a sector wider than π radians, we use this to uniquely
identify an edge and eliminate the ambiguity. This is possible because there is
at most one such sector and the property is preserved under viewpoint changes.
If all sectors are narrower than π radians, we use the sector with maximal mean
albedo as reference.

10We do this because no PWA (nor viewpoint) transformation can make the wide sector
smaller than π radians

11We do this because no PWA (nor viewpoint) transformation can change the π radians wide
angle.
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Figure 2.11: Affine-invariant descriptors fail to capture non-planar struc-
tures: (top) two images of the same scene with detected regions; (middle and
bottom) correspondence established using affine invariant signatures respectively
for planar (middle) and non planar (bottom) regions. Several non planar regions
are detected by the low-level detector, but are not matched because of the large
discrepancy in the corresponding descriptor, caused by the non-planar structure
of the scene.

2.4.4 Feature description

Although the canonized features could be compared directly (e.g. by NCC),
we compute a descriptor for each detected feature. This has two advantages:
(1) makes the comparison much faster and (2) may absorb differences in the
normalized features due to imprecise detections or unsatisfied assumptions (e.g.
the surface is not Lambertian). Furthermore, most descriptors are insensitive to
affine transformations of the albedo, so that we do not need to normalize explicitly
the illumination. In the experiments we use the SIFT descriptor [Low04], one
of the most widely used [Low04, MTS04]. We note however how this descriptor
may not be as effective in our case as is for other kind of features. Indeed our
canonized corners have strong oriented structures (the edges) in fixed position.
This makes the SIFT descriptor (which is based on the gradient distribution) less
discriminative.

Unilateral feature descriptors. The detector/descriptor works well under the
assumptions we made. However, we wish to relax the hypotheses that the whole
corner image is the projection of a single object. In fact, many corners are found
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Figure 2.12: General viewpoint invariants can match 3-D corners: (top)
detected reference frames; (bottom) matched “3-D features”; (right) examples of
canonized features. Most of the “3-D features” that are detected but mismatched
using an affine-invariant descriptor are correctly matched using a more general
viewpoint-invariant model, in this case a “3-D corner.”

Figure 2.13: Matching example: (top) all the features detected in the first
image are connected to their nearest neighbors in the second image; (bottom) all
the features detected on the first image are connected to their nearest neighbors
in the second image and (right) a variety of normalized features. Of 93 detected
features, 32 are present and correctly matched in the second image.
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Figure 2.14: Matching a challenging scene: (top) two corners matched by our
method; (middle) features canonized by a piecewise-affine transformation; (bot-
tom) features canonized by a thin-plate spline transformation. Concert Hall, like
all recent Gehry building, is challenging because severely non-Lambertian, and
non-planar. Although the scene does not meet most of our working assumptions,
a few corners are still matched (see also supplementary material).

on the boundaries of objects [SH05], and some sectors χi of the corner image
(Figure 2.9) may belong to the background. Clearly, we are not supposed to
incorporate the background into the feature if we want to preserve invariance. We
solve the problem by computing multiple descriptors for each possible assignment
of the faces to the foreground or the background. In practice, the most common
cases (objects with convex corners) are covered if we do so only for sectors larger
than π radians, thereby obtaining no more than two descriptors for each detected
feature.

2.4.5 Experiments

In the first experiment we explore the domain of applicability of our technique,
by showing that it operates when established detector/descriptor techniques fail.
To illustrate our point, we have purposefully chosen a simple scene (Figure 2.11):
even on such scenes, most of the current affine-invariant methods fail to establish
correspondence. Also, note that our goal is not to compare our method with
existing affine-invariant schemes, since our method works on top of them. Since,
to the best of our knowledge, nobody has presented viewpoint invariant schemes
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for non-planar scenes, we cannot do direct comparisons with any existing scheme.

As a typical representative [MTS04] of the class of affine invariant detectors,
we selected the Harris-Affine detector [MS04]. Figure 2.11 shows that most of the
non-planar detected regions are incorrectly matched using the affine descriptor:
of 186 features detected in the first image, 53 are successfully matched, 68 are
mismatched because the descriptor variability and 65 are not matched because the
low-level detector fails to select the corresponding region. In contrast, Figure 2.12
shows the performance of our method on the corners of the same images: almost
all 3-D corners are matched correctly. There is just one mismatch, due to the
almost identical appearance of the exchanged features (last two feature pair in
Figure 2.12), and two missing corners, which are not extracted by the Harris
detector in the very first stage of the algorithm. An exact comparison with the
affine-invariant detector is difficult because the latter finds several times the same
structures; roughly speaking, however, 70% of the mismatches (due to missing
features or discrepancy of the descriptor) of the affine detector are fixed by the
“3-D corner” model. As an additional advantage, our method extracts just one
feature for each 3-D structure, while the Harris-Affine detector generates many
duplicate detections of these structures.

In the second experiment we test our method on a more complex scene, made
of various objects presenting a variety of 3-D corners. Figure 2.13 shows the
detected reference frames and the matching pairs. One third of the detected
features in the first image are correctly matched to the corresponding features
in the second. Therefore, the performance is similar to that of the Harris-Affine
detector on the planar structures of Figure 2.11, but in our case for non-planar
structures. Some feature pairs are shown as well: they illustrate the most typical
canonical configurations.

In the last experiment (Figure 2.14) we test our method on a more challenging
scene, where several of our working hypotheses are not verified. We match two
images of an highly non-planar, non-Lambertian scene. Not only the scene con-
tains many 3-D corners, but these have non planar faces as well. Moreover, the
two images are at two significantly different scales. The figure shows two corners
that our method is able to match nevertheless, together with the corresponding
canonized features. Note that the features are quite different, because of both
the reflections and the non planarity of the corner faces. Still, these canonized
features are similar enough to be matched using the SIFT descriptor, illustrating
the importance of viewpoint canonization. As a further example of this fact and
of the generality of our framework, we show the same two corners normalized
using a thin-plate spline deformation, estimated by tracking and rectifying the
edges. The matching distances are slightly smaller (0.28 ,→ 0.15 and 0.4 ,→ 0.36
respectively) using this deformation as we compensate for the curvature of the
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edges.

Discussion

The material of this chapter is mainly theoretical: We clarify some misun-
derstandings that are lingering in the literature, where affine-invariant detec-
tors/descriptors are often motivated by the non-existence of general-case view-
point invariants following [BWR92]. Our results do not imply that affine-invariant
descriptors are not useful. On the contrary, they may very well be the way
to go, but we believe it is important that their motivations be clear and that
overly restrictive assumptions are not imposed. Furthermore, by showing that
viewpoint invariants are not shape-discriminative we validate “bags of features”
approaches to recognition (see [DS04] and references therein), where spatial re-
lations among features (i.e. shape) are either discarded or severely quantized or
“blurred” [BMP02, BM01b]. Finally, we show that if instead of using a feature-
based approach one factors out viewpoint as part of the matching process, then
shape is discriminative indeed. This, however, requires (explicit or implicit) op-
timization with respect to the viewpoint, which may help explain some of the
psycho-physical results following [SM71], where albedo is non-discriminative and
therefore shape is the only “feature.”

Formalizing the simplest instance of the recognition problem makes it immedi-
ate to see that features cannot improve the quality of “recognition by reconstruc-
tion,” if that was theoretically and computationally viable. However, features
can provide a principled, albeit suboptimal, representation for recognition: We
have shown that under certain conditions viewpoint and illumination-invariant
features can be constructed explicitly. Our framework allows comparison of exist-
ing methods and opens the way to design richer classes of detectors/descriptors.
As an illustrative example, we introduce a 3-D corner descriptor that can be
employed to establish correspondence when the state of the art fails because of
violation of the local-planarity assumption.
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CHAPTER 3

Optimal Support for Local Features

In Chapter 2 we noticed that viewpoint invariant features are limited, for all
practical purposes, to the description of local image regions. The reason is that,
in order to achieve invariance, one is forced to make assumptions on the image
formation that are rarely satisfied globally. Among these, the most important
is that the feature support must not be occluded during the viewpoint change.
While very small features have the highest chance of avoiding occlusions, these
are also the least informative, as they depend only on a small portion of the
available data. Ideally, one would like the support of local features to be as
large as possible, as long as no occlusion is intersected. Unfortunately, occlusions
depend on the interaction of two or more views, and cannot be estimated from a
single image. Therefore the optimal feature support cannot be determined when
the feature is extracted (that is, during detection).

This chapter stands on a simple yet useful observation: While the feature sup-
port cannot be optimally chosen during detection, we can still optimize it during
the matching process. In other words, we can start with small local features
(say affine invariant) selected and normalized independently in training and test
images, and expand their domain as part of the correspondence process. Cor-
respondence amounts to a (non-rigid) registration task, and the dilation process
yields a multi-view segmentation of the object of interest from clutter, including
the detection of occlusions.

This process can be interpreted as the simultaneous registration and segmen-
tation of deformable objects in multiple views starting from an “affine seed.”
It can also be thought of as an implicit 3-D reconstruction of the scene, which
enables the recognition of non-planar objects and the discrimination of objects
based on their shape (see Chapter 2).

We formalize the feature growth process as an optimization problem, and
introduce efficient algorithms to solve it under three different deformation models.
Our growth process can be thought of as a region-based segmentation scheme, but
indeed it is quite different since it is unilateral, i.e. it requires a characterization
of the foreground, but not of the background statistics.

Among the applications of our technique are general object recognition tasks,
both supervised, i.e. given an uncluttered, unoccluded image (“template”) of a
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(3-D, possibly deformable) object of interest, find it in a cluttered image, and
unsupervised, i.e. given two or more images all containing the same object under
different clutter and occlusions, detect and localize the common object. Note
that we concentrate on the recognition of specific objects, rather than object
categories, as we do not allow intrinsic variability of the object other than the
geometric deformations captured by the model. Our goal is to improve the dis-
criminative power of local representations, so that finer discrimination can be
performed: We do not just want to tell a face from a bottle; we want to tell one
particular bottle from another, say with a scratch on it.

Our technique builds on local affine invariant features [MTS04, KB03]. By
dilation and alignment, it increases their discriminative power as part of the
matching process rather than directly as part of the representation, and extends
their validity to non-planar, non-rigid objects. In principle, nothing prevents us
from gathering such enlarged regions into constellations or bags [FH05, FHI00,
FFP04, PLR04] although we will confine ourselves to studying one feature in
isolation to better test the improvement relative to affine descriptors.

Since we combine region growing with registration, our work is also related
to [Lhu98, WQ04], although these authors address the problem of global corre-
spondence in a short baseline setting. [FTV05] propagates affine matches from
an (unoccluded) image of an object (template) and a small set of initial seeds.
None of these approaches model both viewpoint-induced deformations and the
shape of the extracted regions explicitly.

As the selection of the interest region is not determined by the local image
statistics alone, but is determined through the matching process, one can think of
our technique as a motion segmentation procedure [ATW05, CS04, WAB03]. Fi-
nally, since the growth process takes part during the alignment (correspondence)
from multiple views, our work relates to [CMT04, HB98, Bla05] and other track-
ing and long-baseline correspondence techniques, although it differs from them
computationally.

In order to keep the implementation efficient, we work in a discrete rather
than variational setting, much in the spirit of [BM02, SK05]. To this end, we
introduce models of regularized region growth that are flexible and result in very
efficient algorithms [Tsi95]. As opposed to [ZY96] and similarly to [PTK04],
the segmentation is local and uses statistics only inside and in the immediate
neighborhood of the region.
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3.1 A model of feature growth

Recall that in Chapter 2 we defined images as a functions It : Λ → R+, t = 1, 2, ....
Differently from Chapter 2, in this chapter we assume that Λ = {0, ...,M} ×
{0, ..., N} is a discrete set (lattice) and we extend It(x) to non integer arguments
by bilinear interpolation.

In addition to the domain Ω ⊂ Λ of a feature, we also consider a (binary or
smooth) window function H(x) : Λ → [0, 1]. Although related to the window

H(x), Ω is not necessarily its support supp H
∆
= {x : H(x) $= 0}; its precise

meaning will be specified in Section 3.1.1. A feature match (Hi, wij) is a window
Hi(x) describing the interest region on one image Ii(x), together with a regular
warping (diffeomorphism) wij : R2 → R2 onto the corresponding region in another
image Ij(x).

Our method starts with a putative feature match (H, w)
∆
= (H1, w12) initial-

ized from an “affine seed” as in [MTS04, KB03]. An affine seed is a pair of
corresponding elliptical regions (Ω1, Ω2) in I1(x) and I2(x) respectively. The re-
gions are related by an affine warp w(x) = Ax + T, (A, T ) ∈ GL(2) × R2 which
is fixed (by wΩ1 = Ω2) up to a rotation R(θ) ∈ SO(2). We estimate the residual
rotation by maximizing the normalized cross-correlation (NCC) of the appear-
ance of the two regions. The region Ω1 and the transformation (A, T ) are then
used to initialize the feature match (H, w).

We grow the initial match by trading off dilation of the window H(x) and
quality of the alignment w, expressed by the following cost functional:

E(H,w, µ) =
∑

x∈Λ

H(x)[(µ(I1)− I2 ◦ w)(x)]2

− α

(
∑

x∈Λ

H(x)− βR(H)

)
+ γQ(w).

(3.1)

The first term is a sum of squared difference (SSD) representing the quality of the
local alignment. Minimizing this term has two effects: to select the warp w that
best aligns the interest regions and, of course, to shrink the region (the global
minimizer of this term is H(x) = 0 ∀ x). Minimizing the second term favors
instead larger regions. There is a simple interpretation of the control parameter
α ∈ R+:

∑
H(x) can be thought as the area of the region1 and α as the mean

squared residual that we are willing to absorb within the region. The terms
R(H) (Section 3.1.1) and Q(w) (Section 3.1.2) are regularization terms for the
region H and warp w respectively. The function µ : RΛ

+ → RΛ
+ is a pre-processing

1This is exactly the case for binary regions when β = 0.

35



operator that can be used to compensate for other factors affecting the range of
the image, such as illumination (Section 3.1.3). The goal is to find H, w and µ
by alternating minimization of E, which we discuss in the following sections.

3.1.1 Region model

The region growth is determined by a controlled evolution of the window function
H(x). There are several possible choices for the model of the window ranging
from simple parametric models that allow only a limited set of shapes (ellipses,
rectangles, etc.) to non-parametric models that enable regions with arbitrary
shape (up to topological and smoothness constraints). In order to explore this
spectrum of options, we experimented with three models, explained next. Since
in this section we focus on the region only, we rewrite the cost (3.1) as

E(H) =
∑

x∈Λ

H(x)(D(x)2 − α)− αβR(H) + const. (3.2)

where we have defined the residual D(x)
∆
= µ(I1)(x)− (I2 ◦ w)(x).

Elliptical region. The first model, fully parametric, is a smoothed elliptical
window

H(x; p)
∆
= φ(y#y), y = A(p)−1(x− T (p)), x ∈ R2

where φ ∈ C∞(R+ → [0, 1]) is a non-increasing function such that φ(0) = 1
and φ(+∞) = 0 and (A(p), T (p)) ∈ GL(2) × R2 is the affine map that brings
the unit circle onto the elliptical region. The window is parametrized by the
vector p ∈ R6 as vecA = (p1, p2, p3, p4)# and T = (p5, p6)#, where vec denotes
the stacking operator. This model does not make explicit use of the feature
support Ω; it is however handy to define it as the nominal support of the window
Ω = {x : H(x) > τ}, for some small value of τ (e.g. τ = 1%).

Since this model is fully constrained, the regularization termR(H) in eq. (3.2)
is unnecessary. The resulting minimization problem can be solved by Gauss-
Newton (GN) or any other descent technique. In the experiments we combined
steepest descent (SD) with GN for reliable and fast convergence.

Binary free-form region. A binary free-form region is the characteristic func-
tion H(x) = χΩ(x) of a domain Ω ⊂ Λ that has 4-neighbors connectivity. The
regularization term R(H) is the length of the 8-ways discrete perimeter π8(Ω) of
the set Ω. The representation allows for changes in topology, even if these are
discouraged by the regularization (too many “holes” will increase the length of
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Algorithm 1 Growing binary free-form regions
1: Pre-compute dilation cost table

Lkp : {0, 1}8 → R.
2: Make heap of
{(D2(x+)− α(1− β Lkp(NΩ(x+))), x+), x+ ∈ ∂+Ω}

3: loop
4: Pop minimal element (c+, x+) from the heap. Stop if c+ > 0.
5: Ω ← Ω ∪ {x+} and H ← χΩ+ .
6: Add missing 4-neighbors of x+ to the heap.
7: Update the cost of the 4-neighbors of x+ in the heap.
8: end loop

the perimeter). The cost functional (3.2) assumes the form

E(H) =
∑

x∈Λ

H(x)(D(x)2 − α) + αβπ8(Ω) + const.

To maximize of E(H) we add to Ω the pixel x+ belonging to the outer border
∂+Ω (dilation) or we remove the pixel x− belonging to the inner border ∂−Ω
(contraction) that most decreases the cost function (SD). Here we discuss only
dilation moves, as contraction moves are similar. The updated window H+ =
χΩ∪{x+} has cost

E(H+) = E(H) + (D(x+)2 − α) + αβ (π8(Ω ∪ {x+})− π8(Ω)) . (3.3)

The term π8(Ω∪{x+})−π8(Ω) is very efficient to compute. In fact, it depends only

on the tuple NΩ(x+)
∆
= (χΩ(x) : x is 8-neighbor of x+) and can be pre-computed

and stored in a lookup table of just 256 entries, leading to Algorithm 1. This
algorithm is similar to [Tsi95] and reminiscent of the discrete level-sets of [SK05].

This model has two drawbacks: the window H(x) is not smooth and the
amount of regularization that can be imposed on the shape of the region is lim-
ited by the discrete nature of the steps that are used in the descent (too much
regularization can block growth). To overcome these restrictions we turn to the
smooth free-form region model described next.

Smooth free-form region. A smooth free-form region is obtained by smoothing
a binary free-form region. The window H(x) is given by the convolution (gσ ∗
χΩ)(x), x ∈ Λ where gσ is a Gaussian kernel of standard deviation σ. This yields
a smooth window and a very efficient regularization criterion, as explained next.
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Algorithm 2 Growing smooth free-form regions

1: D2
σ ← gσ ∗D2

2: H ← gσ ∗ χΩ

3: Make heap of
{(D2

σ(x+)− α(2H(x+) + g0), x+), x+ ∈ ∂+Ω}
4: loop
5: Pop minimal element (c+, x+) from the heap. Stop if c+ > 0.
6: Ω ← Ω ∪ {x+} and H ← H + gσ ∗ δx+ .
7: Add missing 4-neighbors of x+ to the heap
8: Update the cost of neighbors within the support of the kernel gσ in the

heap.
9: end loop

In eq. (3.2) we set β = 1 and R(H) =
∑

Λ/Ω H(x) so that

E(H) =
∑

x∈Λ

H(x)D(x)2 − α
∑

x∈Ω

H(x) + const.

Since H = gσ∗χΩ is small where the boundary of the region has high curvature or
where the region is thin, the regularization favors compact and smooth regions.
Like for binary regions, minimization of E(H) is fast. Again we discuss only
dilation moves. Given the window H = gσ ∗χΩ, Ω ⊂ Λ, we need to find the pixel
x+ ∈ ∂+Ω for which the new window H+ = gσ ∗ χΩ∪{x+} has the lowest possible
cost E(H+). We have

E(H+) =
∑

x∈Λ

D(x)2
(
gσ ∗ (χΩ + δx+)

)
(x)− α

∑

x∈Ω

(
gσ ∗ (χΩ + δx+)

)
(x)

= E(H) + (gσ ∗D2)(x+)− α(2H(x+) + g0) (3.4)

where δx+ = δ(x− x+) is the Kronecker’s delta and g0
∆
= gσ(0). The map gσ ∗D2

can be conveniently pre-computed, leading to Algorithm 2. Figure 3.1 shows
some examples of regions grown using Algorithm 2; Figure 3.2 compares the
three models as they grow the same affine match.

3.1.2 Warping model

The deformation induced on the image domain by changes in viewpoint can
be rather complex, depending on the shape of the scene [VS05]. In particular,
occlusions cause such a transformation to be globally non-invertible, and there is
no way to distinguish a-priori an occlusion (a portion of the scene disappearing
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Figure 3.1: Smooth free-from region. We tested Algorithm 2 on the test
images shown on the top. We show in the middle row (cyan) the smooth window
H(x) and in the bottom row (green) the support Ω. The parameter σ has been
chosen so that the region can squeeze through the left corridor, but not the upper
corridor, and past the bottom line, but not the right line. The computation
requires a fraction of a second and the result is consistent even if a large amount
of noise is injected. Note the regularizing effect of the kernel gσ: the boundary
of Ω is fairly smooth despite the fact that it is grown by discrete steps (one pixel
per time).

under another) from a “collapse” (a portion of the scene being warped onto a
subset of measure zero). Therefore, we have to impose restrictions on the local
structure of the warping w (or equivalently on the motion and curvature of the
underlying 3-D shape), for instance that it be locally continuous and bijective
and, for reasons of computational efficiency, finitely parametrized.

We have experimented with three classes of transformations: affine, homog-
raphy (corresponding to locally planar regions), and thin-plate spline. The last
model is well suited to non-planar or deforming (non-rigid) scenes, but it is in
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(a) (b) (c) (d)

Figure 3.2: Effect of the region model in capturing correspondence be-
tween regions. (a) A round region with different texture from the background
(left) is moved and deformed affinely on the right image. Within these regions an
affine seed is detected by Harris-Affine (in green). Note that the regions do not
have well-defined (intensity) boundaries. The goal is to extend the seed to cap-
ture the elliptical region based on two-view correspondence. This can be thought
of as a “stereoscopic texture segmentation” or as a “motion segmentation” pro-
cedure [CS04, WAB03, ATW05]. The effects of the choice of region are shown in
(b)-(d). In (b) the region is by construction elliptical, and its domain captures
the texture boundary. In (c) the region is free-form, but captures the elliptical
shape, modulo some sprouts outside the region where the background happens to
match in the two views; in (d) the sprouts are contained by the smooth free-form
region.

general not globally invertible (thin-plate splines can fold).2 We optimize the
functional (3.1) using Gauss-Newton as in [BM02]. The derivation of the GN
algorithm for these models is standard.

Affine warp and homography. The affine warp and the homography are finite
dimensional and they do not need to be regularized, so that γ = 0 in (3.1).

Thin-plate spline. The thin-plate spline warp is given by [Boo89]

w(x) =
[
T A W

]



1
x

U(‖x− y(:)‖)





where (A, T ) is an affine transformation, W ∈ R2×K is a matrix of weights, y(:) =
(y(1), ..., y(K)) denotes collectively the K control points y(k) ∈ R2 and U(‖x −
y(:)‖) =

[
‖x− y(:)‖2 log ‖x− y(:)‖2

]
is the matrix of the radial basis functions of

2An interesting approach to this problem would be to regularize the warps based on priors
on the shape [BYJ97, SIF05, VS06]. This, however, is beyond the scope of this chapter.
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the spline. The matrices T, A and W are uniquely determined by the transformed
control points Ȳ =

[
w(y(1)) ... w(y(K))

]
, yielding a relation

w(x; Ȳ ) =
[
Ȳ 0

]
φ(x; y(:)), φ(x; y(:)) ∈ RK+3 (3.5)

which is linear in the parameters Ȳ .

Regularization is controlled both by the number of points K and the stiffness
(bending energy)

Q(Ȳ ) =
γ

2
(e1 ⊗ e1 + e2 ⊗ e2)

# vec(Ȳ SȲ #)

where ⊗ denotes the Kronecker’s product, S ∈ R2×2 is the stiffness matrix and
(e1, e2) is the standard basis of R2.

Optimization can be performed with GN,3 but this is quite costly as each con-
trol point has a global influence on the warp. We drastically accelerate the com-
putation by approximating the TPS by a piecewise-affine warp (PWA, [BM01a])
by imposing on its vertices the same regularization (stiffness) of the TPS. The
PWA is intrinsically more efficient because each control point has an effect lim-
ited to a few triangles of the mesh. We also make use of the inverse compositional
algorithm [BM01a] in place of GN, which is much faster.

3.1.3 Matching criterion

Appearance matching in model (3.1) uses a simple sum of squared difference
criterion. The adjustment function µ = (µ1, µ2) is an affine scaling µ(I1) =
µ1I1 +µ2 that accounts for global changes in the illumination. As such, µ can be
determined in closed form given H and w; alternatively, its optimization can be
combined in the GN iteration for w. Coarse illumination factors can be eliminated
in other ways. For instance, in some of the experiments we normalize the images
via

µ(I) =
I − gσ ∗ I√

gσ ∗ I2 − (gσ ∗ I)2
(3.6)

3As noted in [LY05], the linearity of (3.5) makes the estimation of the gradient efficient. In
order to write the equations for the GN iteration, one also needs the gradient and the Hessian
of the stiffness term, which are

∂Q(q)
∂q#

=
2∑

i=1

e#i Ȳ S ⊗ e#i ,
∂2Q(q)
∂q#∂q

= S ⊗ I2

where q
∆= vec Ȳ and I2 ∈ R2×2 is the identity matrix (see [Kin96] for more details on the

notation).
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(a) Initial affine match (b) Grown win-
dow

(c) Overlap (d) Residual

Figure 3.3: Growing a mosaic from one feature. A single feature detected
and matched on two images related by an homography grows to capture the
entire overlapping domain, yielding a projective mosaic. Here the region model is
elliptical and the warp is an homography. (a) Initial affine matches (very small,
so we inlay a magnified version) (b) interest region Ω (green ellipse) and window
H(x) (green shading) (c) overlap between the two images (perfect overlap results
in unsaturated color) (d) residual.

where gσ denotes an isotropic Gaussian kernel of variance σ2I2, with I2 the 2× 2
identity matrix. Note, however, that this operator has to be applied to both I1

and I2 ◦ w, which makes the optimization more complex. For further comments
on the matching criteria, see Section 3.2.

3.2 Experiments

Global projective registration from a seed. The first simple experiment
illustrates how a single local feature can grow to encompass the entire image.
The two images of Fig. 3.3 are related by an homography; their registration
yields a projective “mosaic” which can be obtained efficiently by matching a
single feature and then growing it to capture the entire overlapping domain.

Growing increases discriminative power. The second experiment correlates
the growth rate of the features to their initial overlap. In [MS03] the quality of
an affine seed (Section 3.1) is evaluated by means of the overlap error

ε
∆
= 1− |Ω1 ∩ w−1Ω2|

|Ω1 ∪ w−1Ω2|
(3.7)

where w is the ground truth viewpoint deformation. We used the “viewpoint
change” dataset of [MS03] and their code in order to extract Harris-Affine regions
and compute ε.

We ran the algorithm on several affine seeds using elliptical regions and homo-
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Figure 3.4: Growing increases discriminative power. On the left we show
the average dilation ratio of the features as a function of the initial overlap error
(3.7). As we stopped the algorithm after 20 iterations, the graph gives also an
idea of the speed of the dilation. This statistic includes only features with a
ratio ≥ 1. On the right we show how frequently this ratio is in fact bigger than
1 (dilation), again as a function of the initial overlap error. The experiment is
repeated for all affine seeds and for affine seeds that are SIFT [Low04] neighbors.
See text for further details.

graphies. As in the dataset there are almost no occlusions, correct seeds (overlap
error less than 100%) should grow indefinitely and incorrect seeds (100% overlap
error) should not grow at all. To check wether this is the case, in Fig. 3.4 we plot
the average dilation ratio of the matches (left) and the probability of each match
of being dilated (right) as a function of the initial overlap error. As desired, the
algorithm grows quickly correct matches with up to 50% of initial overlap error
and does not grow almost any of the incorrect matches. The algorithm does not
perform equally well for correct seeds that have initial error exceeding 50%. This
is because we focus on discriminating correct versus incorrect matches rather
than trying to fix seeds of poor quality. If this is desired, a robust initialization
step can be added (for instance as described in [FTV05]).

As our final goal is to discriminate features beyond the power of their de-
scriptors, we repeated this experiment for those affine seeds that are also SIFT
neighbors.4 The performance of the algorithm does not deteriorate; in particu-
lar, almost all matches determined incorrectly by SIFT are invalidated by our
criterion, while correct matches are preserved. As a side effect, the algorithm is
also more robust to poor initial overlap, probably because seeds which are SIFT

4More precisely: for each region Ω1 of image I1(x) we selected the three closest regions Ω2

of image I2(x) in terms of SIFT distance.
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Initial affine region Grown region Overlap Estimated warp

Figure 3.5: Object detection in clutter. The left column shows various train-
ing/test image pairs. Each pair shows the initial affine match that is grown by the
algorithm. Since the object is non-rigid, we used the thin-plate spline model for
the warp and the smooth free-form model for the region. In a few cases a portion
of the visible area is not included in the region: This is due to the non-uniform
illumination (difficult to see with the naked eye but quantitatively significant)
which is not compensated by the global model (3.1). It would not be difficult to
extend µ to account for more general contrast functions [CCM99] (Section 3.1.3
and 3.2).

neighbors have, if not good geometric correspondence, at least similar appear-
ance.

Finding a known object in clutter. This experiment tests the capability of
our method to find – in clutter – an object for which an uncluttered image is
given as a training set (or “template”). It is similar in spirit to the experiments
of [FTV05, FPZ05] and many other object recognition systems [Low04]. Since
we use a deformable object (the Garfield book in Fig. 3.5), we use the thin-
plate spline warp and the smooth free-form region model. The figure shows the
detection/segmentation results, together with the alignment to the template and
the estimated deformation. Note that the latter two quantities are meaningful
only locally to the segmented area (so it is not a problem if the template does
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Figure 3.6: Unsupervised detection in clutter. We show a series of four
images (1-4) portraying the same object (a bottle) in different clutter. The al-
gorithm is tested on each image pair (in both directions) in order to detect the
common object. The best SIFT matches of Harris-Affine features on the bottle
are expanded and the best result for each pair is kept. Along the diagonal, as we
test identical pairs, there is no deformation and the region extends to encompass
the whole image domain. In the pairs (4, 3) and (3, 4) the complex reflectance and
the particular image deformation (which has high stiffness) requires preprocessing
according to eq. (3.6) in order to enable matching. In the pairs (2, 4) and (4, 2)
part of the background is almost identical (once color is removed). Therefore,
the SSD criterion cannot discriminate between the bottle and the background.
One can overcome this ambiguity by using a more constrained region model (el-
liptical) at the cost of reducing the segmented area. A more principled solution
is indicated in Section 3.2.

not align well outside that area.)

Detecting a common object in cluttered scenes. While the previous ex-
periment can be thought of as “supervised” detection, since a template of the
object is given, here we address “unsupervised” detection, that is the problem of

45



detecting the common portion of two images, without a pre-segmented sample
of the region of interest. The data are four images that share a single object (a
bottle). In Fig. 3.6 we show that the algorithm is generally capable of segmenting
the common object from clutter (see the caption for more details).

Discussion

We have proposed a method that increases the information content of local fea-
tures by maximizing their support. We have shown that the growth rate can
be used to validate putative affine matches; the criterion is especially useful to
verify matches that have been hypothesized on the basis of the distance between
local descriptors. We have seen that the dilated support delineates segments of
both known and unseen objects from images with clutter. The latter task is sig-
nificantly more complex since no uncluttered, unoccluded view of the object of
interest is ever available.

Unsupervised detection in clutter is complicated by the fact that certain por-
tions of the background might match accidentally, which is especially easy if the
background is uniform. This problem can be properly addressed by ensuring
that the region grows where matching is non-accidental, that is in areas of the
two images that have an appearance which is at the same similar and contains
“enough structure” [KB03, Tri04]. While this constraint can be imposed as
a regularization term on the region, a better solution is to substitute the SSD
matching criterion with one that incorporates directly this requirement (see for
example [HF01]). Thus the issue is more computational than theoretical, as these
measures are significantly more expensive to optimize than SSD.
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CHAPTER 4

Evaluating and Learning Viewpoint Invariant
Local Features

In the previous chapters we have discussed local viewpoint invariant features
and established conditions for their existence. Some of such conditions, such
as Lambertian reflection, affine illumination, and no occlusions, are restrictive
enough that invariant representations may seem to be inapplicable to most real-
world problems. This is even more so for common viewpoint invariant features
that, by marrying an affine model of the image deformation, implicitly assume
that the local shape is flat. However, local viewpoint invariant features have been
successfully applied to a large variety of tasks, suggesting that these methods are
robust enough to absorb even relatively substantial deviations from their working
assumptions.

In this chapter we focus on the problem of evaluating empirically local view-
point invariant features in order to assess their applicability and to improve and
learn them from data. So far, the effectiveness of features has been measured
by recognition performance in an end-to-end task, where the features are one
element of the decision process, together with the classifier and the dataset. An
empirical test can tell which one is the better feature among the group being
tested, but it tells us nothing on how a given feature can be improved, or how
performance generalizes to different classifiers and different data sets.

In this chapter we introduce a different methodology for evaluating features.
We call this rational evaluation.

The first thing we need is ground truth. If features were designed for opti-
mality in an end-to-end task (in which case they would have to be co-designed
with the classifier), then any labeled training set, along with standard decision-
theoretic tools, would suffice. But features are not co-designed with the classifier,
so they should be evaluated independently of it. For that we need ground truth.
In this chapter we describe a way to design ground-truthed data to evaluate the
effectiveness of a given feature based on its underlying (explicit or implicit) in-
variance assumptions. Such data consists of synthetic images, generated with a
model that strictly includes the model underlying the invariance assumptions of
a given feature. While ultimately an end-to-end system should be evaluated on
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the recognition task performed on real images, there is no straightforward way
to distill the role of features unless proper ground truth is available.

Once we have ground truth, we need to elucidate the various components of
the feature design process, that includes a choice of image domain (the “feature
detector”), a choice of image statistic computed on such a domain (the “feature
descriptor”), and a choice of decision function (“feature matching”) that becomes
the elementary tool of the classifier downstream.

The effect of this procedure is not just a number to rank existing features
based on how well they perform, when coupled with a given classifier, on a given
dataset. A rational comparison also provides ways to improve the design of the
feature, as we illustrate with an example. A similar approach could be followed
to design better descriptors, and also better detector.

This chapter is part of a three-prong approach we have been developing for de-
signing and evaluating local features: In [VF08] we provide a reliable open-source
implementation of some of the most common local features. In this manuscript
we describe a methodology to compare local features. Finally, in [Ved08] we
provide code to generate synthetic test images, as well as a number of already
rendered samples.

4.1 Empirical studies of local features

Because of their prominent role in recognition systems, local features have been
the subject of considerable attention in the computer vision community. Due
to the difficulty of extracting adequate ground truth, however, direct evalua-
tion (i.e. not part of an end-to-end system) has been mostly limited to planar
scenes [MTS04] designed to fit the conditions for which the features were de-
signed. While local features are usually designed to be invariant to a simple class
of transformations (say affine, or projective, corresponding to the assumption of
planar scenes), it is the behavior of the feature in the presence of violations of such
assumptions that determines its effectiveness. Therefore, it is important that the
ground truth reflects conditions that supersede the underlying assumptions.

The need to test features on more challenging data has driven some to em-
ploy synthetic datasets [Roc03, LJ05], although the resulting images lacked in
visual realism. More realistic data was used by [FB05] to infer ground truth
via stereo. This procedure, however, is difficult to scale up to be representative
of the complexity and variability of natural scenes. The most extensive collec-
tion of real objects to-date is [MP05], where a selection of (uncluttered) objects
was placed on a calibrated turntable in front of a blue screen. Thousands of
features were mapped from small-baseline image pairs to wide-baseline views in
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a semi-automated fashion. A semi-synthetic data set was produced in [RB05]
by gathering range images acquired with a laser scanner and generating a num-
ber of artificial views by rotating the data. [WB07] recognized the importance
of obtaining wide-baseline feature deformation data for the study of viewpoint-
invariant features and used structure from motion to estimate re-projection of
point features from a large number of views of real scenes. Unfortunately this
technique provides only limited ground truth information (i.e., sparse 3-D points
estimated from the images themselves) and is laborious to collect, especially for
controlled experimental conditions. To this date, however, there is no extensive
data set that can scale up to an arbitrarily large number of scenes, where the
geometry of the scene, its reflectance, the illumination, sensor resolution, clutter,
and lens artifacts can be controlled and analyzed by the user.

In order to make a useful tool for evaluating features, however, it is not
sufficient to generate (even a lot of) synthetic scenes with ground truth. We
have to develop a methodology that allows us to evaluate different aspects of
the feature matching process in isolation if we want to rationally improve the
design of existing features. The following section does just that. While the
nomenclature we introduce may seem like a burden to the reader at first, it will
make the evaluation process more rigorous and unequivocal.

4.1.1 Feature extraction pipeline

The extraction of viewpoint invariant features was discussed in great detail in
Chapter 2. To the end of this chapter, it is useful to break the extraction of
invariant features in the following steps.

Detection. Given an image, the co-variant detector, or simply “detector”, se-
lects a number of image regions. It is designed to extract the same (de-
formed) regions as the image deforms under a viewpoint change. A specific
detector (SIFT, Harris-Laplace, Harris-Affine) is compatible by design with
a certain family of such deformations (usually a group, e.g. similarities,
affinities [MTS04]). Section 4.2.1 develops a formal model of this step.

Canonization. The co-variant regions are canonized, i.e. deformed to a stan-
dard shape. This process compensates (in part or entirely) for deformations
induced by the companion transformations. It is often assumed that such
transformations form a group, and therefore they can be undone (inverted).

Description. The descriptor computes a statistic of the image on the canonized
co-variant regions. This process may eliminate, or render the descriptor
insensitive to, additional deformations which are not removed by canoniza-
tion.
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x0

frame companion warps fixed subset
point homeomorphisms translations
disk similarities translations and scalings
oriented disk similarities similarities
ellipse affinities affinities up to residual rotation
oriented ellipse affinities affinities

Figure 4.1: Feature frames. Top. The figure depicts the five classes of feature
frames, together with their parameters and the selected point z used to represent
orientation. From left to right: point, disk, oriented disk, ellipse, oriented ellipse.
Bottom. Association of frame types to companion warps used in this chapter.

Matching. A similarity measure is used to compare invariant descriptors to
match regions in different images.

4.2 Constructing ground-truth

In Section 4.2.1 we introduce an idealized model of the output of co-variant
detectors and in Section 4.2.2 a model of feature correspondences. These will be
used in the empirical analysis in Section 4.2.3 and 4.2.4.

4.2.1 Modeling the detector

In Chapter 2 we have seen that viewpoint has a direct effect on the geometry of
local features, resulting in a deformation of their support and appearance. The
purpose of a (co-variant) detector is to select regions that warp according to,
and hence track, image deformations induced by viewpoint changes.

There is a correspondence between the type of regions extracted by a detector
and the deformations that it can handle. We distinguish transformations that
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are (i) compatible with and (ii) fixed by a detector. For instance, a detector
that extracts disks is compatible with, say, similarity transformations, but is not
compatible with affine transformations, because these in general map disks to
other type of regions. Still, this detector does not fix a full similarity transforma-
tion, because a disk is rotationally invariant and that degree of freedom remains
undetermined. These ideas are clarified and formalized by the next definitions.

Frames. Typically one models the output of a detector as image regions, i.e.
as subsets of the image domain [MTS04] . However, many popular detectors
produce “attributed regions” instead (for example the SIFT detector [Low04]
produces oriented disks rather than just disks). Since such attributed regions
are ultimately used to specify image transformations, in this work we refer to
them as “frames.” Thus a frame is a set Ω ⊂ R2 possibly augmented with a
point z ∈ Ω. For example, a disk is a set Ω = {|x − x0|2 < r} and an oriented
disk is the combination (Ω, z) of a disk and a point z ∈ Ω, z $= x0 representing
its orientation1 (as the line connecting the center x0 to z). Here we consider
the following classes of frames (see Fig. 4.1), that capture the output of most
detectors found in the literature:

• Points. Points are determined by their coordinates x0.

• Disks. Disks are determined by their center x0 and radius r.

• Oriented disks. Oriented disks are determined by their center x0, radius
r and orientation θ.

• Ellipses. Ellipses are determined by their center x0 and the moment of
inertia (covariance) matrix

Σ =
1∫

Ω dx

∫

Ω

(x− x0)(x− x0)
# dx.

Note that Σ has three free parameters.

• Oriented ellipses. Oriented ellipses are determined by the mapping A ∈
GL(2) which brings the oriented unit circle Ωc onto the oriented ellipse
Ω = AΩc.

Frames fix deformations. Each type of frame (point, disk, oriented disk, etc.)
can be used to fix (and undo, by canonization) certain image transformations.

1We prefer to use a point z rather than specifying the orientation as a scalar parameter
because this representation is easier to work with and can be easily generalized to more complex
feature frames.
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In fact, given a pair of frames Ω1 and Ω2, the equation Ω2 = wΩ1 determines
(partially or entirely) the warp w. Therefore, a frame Ω acts as a reference frame
to specify deformations. This fact is captured by the following definitions:

• Frame deformations. For what concerns our discussion, an image defor-
mation (warp) w is simply a transformation R2 → R2 of the image domain,
and wI denotes the image I(w−1(x)). Such deformations apply to frames as
well: Given a frame (Ω, z), the warped frame w(Ω, z) is the pair (wΩ, w(z)).
Note that, if present, the selected point z is moved too; later we will use
the shorthand notation wΩ, still meaning that the warp applies to both the
set and the selected point z.

• Closed, complete, and free frames. Frames are closed under the defor-
mations W if warping a frame by w ∈ W does not change their type. For
example, disks and oriented disks are closed under similarity transforma-
tions and ellipses and oriented ellipses are closed under affine transforma-
tions. We say that a frame is complete for a certain set of transformation
W if the equation Ω2 = wΩ1 admits at most one solution w ∈W. We also
say that the frames are free on the set W (as in “free generators”) if such
an equation has a solution for all possible pairs of frames Ω1 and Ω2.

When analyzing a detector, it is important to specify both the type of frames
it produces and the class of transformations that are assumed, which we call
companion warps. Notice in fact that each frame type can be used in connection
with different types of transformation, so both choices must be specified. In the
rest of the chapter we focus on the most natural cases, summarized in Fig. 4.1.
For instance, from the table we read that disks are used in conjunction with
similarity transformations (their companion warps), but are expected to fix only
a subset of them.2

4.2.2 Modeling correspondences

In the previous section we have modeled the detector as a mechanism that extracts
(co-variant) frames. Operatively, the output of the detector is used to establish
frame-to-frame correspondences between multiple images of the same object. For
evaluation purposes, it is therefore necessary to extract sets of corresponding
frames. This idea is captured by the following definitions.

2Notice also that frames (i) are closed under the companion warps, (ii) complete for a
subset of these, and (iii) free on the complete subset. Property (iii) is not always satisfied by
real detector. For instance, maximally stable extremal regions [MCU02] have arbitrary shape
Ω, but their companion warps are just affine transformations. This means that the equation
Ω1 = wΩ2 may not have a solution.
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View sets (multiple views). A view set [LLF05] V is a collection of images
(I1, . . . , In) of a scene taken under different viewpoints. Under Lambertian re-
flection and other assumptions [VS05], any image Ij(x), x ∈ Λ in a view set is
obtained from any other image Ii by a deformation Ij(x) = Ii(hij(x))=̇(hjiIi)(x).
Such a deformation arises from the equation

hij(x) = π(Rijπ
−1
j (x) + Tij), x ∈ Λ (4.1)

where π is the perspective projection and π−1
j (x) is the pre-image of pixel x from

viewpoint j and (Rij, Tij) is the camera motion from view j to view i. Also note
that, due to occlusions and other visibility artifacts, equations Ij = hjiIi may
have only local validity, but this is sufficient for the analysis of local features.

Co-variant frame sets (correspondences). A (co-variant) frame set F is a
selection of frames (Ω1, . . . , Ωn), one for each image of a view set V = (I1, . . . , In),
that are linked by the same deformations of the view set, i.e.

Ωi = hijΩj

where hij is given by (4.1). It is useful to think of co-variant frames as collections
of geometric elements (such as points, regions, bars and so on) that are “attached”
to the images and deform accordingly. Co-variant frames define the support of
features and, by tracking image deformations, enable canonization.

Frame sets enable canonization. By mapping a co-variant frame Ωi to a
canonical variant Ω0, the equation Ω0 = wiΩi defines a warp wi which undoes
the local image deformation in the sense that the local appearance wiIi is constant
through the view set i = 1, . . . , n. For example, mapping an oriented disk Ωi to
the disk Ω0 = wiΩi of unit radius and orientation z = (0, 1) undoes the effect of
a similarity transformation. Doing so for an un-oriented disk does the same up
to a residual rotation.

Remark 8. Operatively, a detector can attach a frame to the local appearance only
if this has enough “structure:” We can associate a disc to a radially symmetric
blob, but we cannot (uniquely) associate an oriented disc to it because the image is
rotationally symmetric. It should be noted, however, that this is irrelevant to the
end of canonization: As long as the most specific frame is attached to each image
structure, canonization will make the local appearance constant. For example,
we cannot associate an oriented disk to a symmetric blob, but this is irrelevant
as the residual rotation does not affect the local appearance by definition.

While so far we have just listed nomenclature, the next section will tie these
concepts to the empirical process of evaluating features relative to ground truth.
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4.2.3 Ground-truth correspondences

The main obstacle to the practical applicability of the concept of co-variant frames
given in Section 4.2.1 is that the actual image transformations hij (4.1) are rarely
of the idealized types because world surfaces are seldom flat, so the actual pixel
motion h(x) is more complex than a similarity or other simple transformation
that we might assume. Furthermore, due to occlusion, folding, visibility and
reflectance phenomena, images in a view set are rarely related to one another by
simple deformations of their domains.

Therefore, we relax our requirement that the frames represent exactly the im-
age deformations, and look for the best fit. We propose the following operational
construction of a ground-truth frame set (i.e. of ground-truth correspondences):

1. We select a reference view I0 ∈ V and an initial frame Ω0 in I0. Then, given
an alternate view Ii ∈ V , we map the points x of the frame Ω0 to points
y = h(x) of the alternate view. To this end we use the three-dimensional
ground truth in order to estimate the actual motion of the pixels from (4.1),
which does not depend on the local appearance. Note that h(x) is well
defined even when some pixels y = h(x) are occluded.

2. We search for the warp w ∈ W that best approximates h, for example by
solving

w = argmin
v∈W

∫

Ω0

‖h(x)− v(x)‖2 dx. (4.2)

Algorithms that solve efficiently this problem for the transformation classes
W of interest are reported in Appendix 4.A. Notice that one can choose a
cost different from (4.2), and we illustrate a different example in (4.3).

3. We map the frame Ω0 to the frame Ωi = wΩ0 by the estimated warp w.

Occlusions and foldings. The procedure we have delineated is simple, but can
be inadequate if the frame Ω0 contains an occlusion or a strong depth disconti-
nuity, which induces a highly non-linear or discontinuous motion h(x). In such
cases, instead of trying to capture the motion of all pixels simultaneously, one
can expect the detector to track only the dominant motion, i.e. the motion of
the background or the foreground, depending on which one occupies the larger
portion of the region, or “patch.” To this end, before executing step (4.2) we
consider splitting the patch in half. We sort the pixels x ∈ Ω0 by depth and we
search for a (relative) gap in the sorted values which is bigger than a threshold.
If we find it, we restrict equation (4.2) only to the pixels before or after the split,
based on majority rule.
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Figure 4.2: Deviation. The figure illustrates the quality index (4.3). Intuitively,
the deviation is the norm of the difference of the true motion h and the estimated
motion w, normalized by projecting on the unit disk (canonical configuration).
Normalization reflects the fact that features are being canonized before the de-
scriptor is computed.

Quality indices

The procedure just delineated finds, in each image Ii of a view set, the best
matching frame Ωi. However, not all matches are equal. Some may approximate
very well the underlying image transformation, while others may be poor fits,
due for instance to occlusions or strong non-linear distortions. For the evaluation
of a real-world detector, it is important to assess which of these ground-truth
matches are close to the idealized working assumptions, and which are not. To
this end, we propose the following quality indices:

Deviation. This index measures the “non-linearity” of the warp. Let w0 =
(A0, T0) and wi = (Ai, Ti) be the affine transformations that map the unit
(oriented) circle on the reference frame Ω0 and the alternate frame Ωi; let w
be the companion warp Ωi = wΩ0 that approximates the true motion h(x).
The deviation index is a normalized version of the average square residual
|h(x)− w(x)|2, obtained by conjugation with wi:

dev(w, h, Ωi) =

1

π

∫

{x:|x|<1}
|w−1

i ◦ (h ◦ w−1) ◦ wi(x)− w−1
i ◦ wi(x)|2 dx. (4.3)

The formula has a simple interpretation (Fig. 4.2). It is the average squared
residual |h(x)−w(x)|2 remapped to the canonized version of the frame Ωi.
Noting that, by definition, w = wiw

−1
0 and all but h are affine warps, we
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find (see Appendix 4.A)

dev(w, h, Ωi) =
1

π

∫

{x:|x|<1}
|A−1

i (h ◦ w0(x)− wi(x))|2 dx. (4.4)

In practice, we estimate the values of h on the pixels x̂i of the region Ω0;
in this case we use the formula

dev(w, h, Ωi) ≈
1

|Ω0|
∑

x̃i∈Ω0

|A−1
i (h(x̃i)− w(x̃i))|2 (4.5)

which preserves its validity even if the region Ω0 intersects the image bound-
aries.

Visibility. This is the portion of the frame Ωi that falls inside the image bound-
aries.

Occlusion. This is the portion of the region Ω0 that is occluded in the alternate
view Ii. Occluded pixels x ∈ Ω0 are determined empirically by checking
whether their pre-image from the reference view I0 and the alternate view
Ii correspond, i.e.

Ri0π
−1
0 (x) + Ti0 $= π−1

i (h(x)).

Splitting. This is the portion of frame Ω0 which is accounted for in the estima-
tion of the dominant motion and ranges from 1 (complete frame) to 1/2
(half frame).

Fig. 4.4 illustrates the quality indices for a number of co-variant frames.

4.2.4 Comparing ground-truth and real-world correspondences

One may regard a real-world detector as a mechanism that attempts to extract co-
variant frames from the local appearance only. This task is difficult because, while
the definition of correspondences (co-variant frames) is based on the knowledge
of the ground-truth transformations hij, these are not available to the detector,
and cannot be estimated by it as this would require operating on multiple images
simultaneously [VS05].

There exist several mechanisms by which detectors are implemented in prac-
tice. The simplest one is to randomly extract a large number of feature frames
so that eventually some frame sets will be filled “by chance”. Albeit very simple,
this process poses a high computational load on the matching step. More refined
approaches, such as Harris, SIFT, attempt to attach feature frames to specific
patterns of the local image appearance (for example SIFT attaches oriented disks
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to “image blobs”). This enables the detector to explicitly “track” image trans-
formations while avoiding the exhaustive approach of the random detectors. In
general, constructing a co-variant detector requires that it be possible to asso-
ciate co-variant frames to images based on the (local) appearance only. So, for
example, we can associate disks to image “blobs,” as long as we make sure that,
as the blobs move, the disks move according.

No matter what the underlying principle on which a detector is based, the
quality of the correspondences established by a real-world detector can be ex-
pected to be much lower than the ideal correspondences introduced in Sec-
tion 4.2.3, which, under the limited expressive power of the regions extracted
(e.g., disks are limited to similarity transformations), optimally approximate the
actual image transformations. Thus ground-truth frame sets can be used to com-
pare and evaluate the performance of the real-world detectors.

To asses the performance of a detector, we therefore measure how much the
approximate co-variant frame Ω̃i extracted by the detector deviates from the
ground truth co-variant frame Ωi defined in Section 4.2.3. To this end, we use
the same criterion introduced in 4.3, and compare the deviation of the ground
truth and estimated motions. Consider first the simpler case in which frames are
complete for the companion transformations W (for example oriented disks for
similarity transformations). Let wi = (Ai, Ti) and w̃i = (Ãi, T̃i) be the unique (by
hypothesis) warps in W that bring the oriented unit circle to the frames Ωi and
Ω̃i. Let w = w̃iw

−1
i be the transformation mapping Ωi to Ω̃i; the desired transfor-

mation h is the identity 1 and by plugging back into eq. (4.3) (see Appendix 4.A)
we obtain the oriented matching deviation

dev(w,1, Ω̃i) =
1

4
‖Ã−1

i Ai − 1‖2
F + |Ã−1

i (Ti − T̃i)|2 (4.6)

where ‖ ·‖ F is the Frobenius matrix norm.

In case the frames are not oriented, wi and w̃i are known only up to right
rotations R and R̃ and we have

dev(w,1, Ω̃i) =
1

4
‖R̃#Ã−1

i AiR− 1‖2
F + |Ã−1

i (Ti − T̃i)|2 (4.7)

where we used the fact that the Euclidean norm | · | is rotationally invariant.
We obtain the un-oriented matching deviation by minimizing over R and R̃ (see
Appendix 4.A)

dev(w,1, Ω̃i) =
1

4

(
‖Ã−1

i Ai‖2
F + 2(1− tr[Λ])

)
+ |Ã−1

i (Ti − T̃i)|2. (4.8)

where Λ is the matrix of the singular values of Ã−1
i Ãi.
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Figure 4.3: View sets. We show a small portion of a few view sets. These
are synthetic rendering of scenes from [Piq06] and come with accurate ground
truth. Each image requires several CPU hours to be generated. The data set,
which required a large computer cluster to be computed, is available to the public
at [Ved08].
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Figure 4.4: Quality indices. We show examples of the four quality indices (visibil-
ity, occlusion, split, and deviation) for a selection of of features in a small baseline
pair (top) and wide baseline pair (bottom). Quality indices signal if, and for
what reason, a certain match deviates from the idealized working assumptions.
Brighter colors indicate higher quality patches.
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Figure 4.5: Frame sets (correspondences). We show portion of two ground-
truth frame sets (Section 4.2.1) as canonized patches. Each patch is obtained
by un-warping to a canonical configuration the corresponding co-variant frame.
Note that, due to complex reflectance and geometric phenomena, canonization
never yields perfectly aligned patches.
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4.2.5 The data

Based on the concepts that we have introduced in the previous sections, we now
describe a new dataset to evaluate and learn visual invariants. The dataset is
composed as follows:

View sets. View sets are obtained from a number of three dimensional scenes
shot from different vantage points (Fig. 4.3). Each image comes with accurate
geometric ground truth information in the form of a depth map. This data can
be acquired by means of special instrumentation (e.g. a dome and a laser scan-
ner), but in this work we propose to use high quality synthetic images instead.
This has the advantages that (a) no special instrumentation is needed; (b) much
more accurate ground truth can be generated; (c) automated data extraction
procedures can be easily devised. Our data is largely based on publicly available
3-D scenes developed by [Piq06] and generated by means of the freely available
POV-Ray ray tracer.3 Currently we work with a few such scenes that include
natural as well as man-made environments; for each scene we compute a large
number of views (from 300 to 1000) together with their depth map and camera
calibration. The camera is moved to cover a large volume of space (it is more
important to sample the camera translations rather than the camera rotations
as additional orientations can be simulated exactly in post-processing by simple
homographies).

Frame sets. For each view set we compute a number of co-variant frame sets
(Fig. 4.5). This happens as follows:

• We choose a detector (e.g. SIFT) and a number of reference views in the
view set.

• We run the detector on each reference view to extract reference frames.

• We re-map each reference frame to all other views as explained in Sec-
tion 4.2.3 and we compute the four quality indices. The resulting collection
of frames is a co-variant frame set. Based on the quality indices, frames
can be filtered out in order to generate data of varying difficulty.

• Optionally, we run the detector on each non-reference view as well and
we match each co-variant frame to a detected frame by minimizing the
quality index introduced in Section 4.2.4. We then record the matching
score and matched frames along with the co-variant frame set. This is

3We actually use a customized version to export the required ground truth data. Patches
are available from [Ved08].
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the approximation of the co-variant frame set obtained from the real-world
detector.

In practice, only a few reference views (from 2 to 4) are selected for each view
set. This alone is sufficient to generate several thousand frame sets, and most
frame sets count dozens of frames from different views. Eventually it is easy
to generate data in the order of millions frames. The data comes with quality
indices so that interesting subsets can be easily extracted.

4.3 Learning to compare invariant features

The data developed in Section 4.2 can be used to:

1. Learn natural deformation statistics, similarly to [RB05], but in a wide-
baseline setting.

2. Evaluate/learn detectors that compute good approximations of co-variant
frames.

3. Evaluate/learn descriptors, given either the co-variant frame sets or the
frame sets matched to the output of any practical co-variant detector.

4. Evaluate/learn similarity measures between descriptors.

Here we limit ourselves to the last task for the purpose of illustration of the use
of the dataset. While the improvements we expect are limited, since we are only
operating on the last ingredient of the feature matching pipeline, the results are
readily applicable to existing systems.

More concretely, given a frame Ω0 in a reference view I0 and an alternate
view I1, we study two problems: (i) how to find the frame Ω1 of I1 that matches
Ω0 (Section 4.3.1) and (ii) when to accept a putative match Ω0 ↔ Ω1 in order
to minimize the expected risk of making a mistake (Section 4.3.2). We focus on
SIFT features (both detector and descriptor) because of their popularity, but any
other similar technique could be studied in this fashion.

4.3.1 Learning to rank matches

Given a frame Ω0 of the reference view I0, its descriptor f0 and an alternate
view I1, we order the frames Ω1, Ω2, . . . of I1 based on the similarity φ of their
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Figure 4.6: Learning SIFT metric. We show four views of a co-variant frame
(the frame on the ceiling lamp) and the ten most similar SIFT features in term
of their SIFT descriptors. Shades of green are proportional to the descriptor
φ2-similarity to the reference descriptor.
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Figure 4.7: Learn to rank matches. The figure shows the distribution of the
rank values of the correct feature match, averaged for frame sets in our database.
The SVM-based ranking outperforms the naive φ1 and φ2 ranking, resulting in
an expected rank of 1.62, 1.74 and 2.07 respectively.

descriptors f1, f2, . . . to f0, i.e.

φ(f0, f1) ≤ φ(f0, f2) ≤ . . . .

Ideally the similarity function φ is chosen in such a way that the correct matching
frame Ωi is ranked first.

Normally the similarity of a pair of SIFT descriptors is just their L1 or L2

distance, i.e.
φp(f0, f1)=̇‖f0 − f1‖p, p = 1, 2.
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Here we show how a similarity φ can be learned that outperforms both φ1 and φ2.
We do this by setting up a learning problem as follows: Based on our ground-truth
data, we sample pairs of corresponding descriptors (f0, f1) from a frame set and
a pair of non-corresponding descriptors (f0, f) randomly. We then learn a binary
classifier D(f0, f1) for the task of deciding whether f0 and f1 are the descriptors
of corresponding features. Following [HBW04], we assume that the classifier is
in the form [φ(f0, f1) ≤ τ ] for some function φ (for example this is the case for a
support vector machine (SVM) but one could use boosting as well [ZSG06]) and
we use φ as a similarity measure.

Re-ranking. Since the goal is to improve φ1 and φ2 (which have already good
performance), instead of choosing negative descriptors f completely at random,
we select them among the descriptors of the alternate view that have φp-rank
smaller or equal to 10 (Fig. 4.6). In testing, the learned similarity φ is then
used to re-rank these top matches in hope of further improving their ranking.
This approach has several benefits: (a) since the computation of φ is limited
to a few features, testing speed is not a concern; (b) experimentally we verified
that the top ten features include very often the correct match; (c) the learning
problem has a much more restricted variability because features are φp-similar
by construction.

Learning. We select about 500 frame sets (matched to actual SIFT frames –
see Section 4.2.4) and we extract their reference frames Ω0 and descriptors f0;
for each of them we select about 10 alternate views and we extract the relative
co-variant frame Ω1 and descriptor f1. In this way, we form about 5,000 positive
learning pairs (f0, f1). For each positive pair (f0, f1), we add about 10 negative
pairs (f0, f) formed as explained for a total of 55,000 examples. The data is used
to learn an SVM with polynomial kernel.

Testing. While φ is optimized for classification, here we are interested in its
ranking performance. Thus testing is done by taking a large number of fresh
frame sets and averaging the ranking performance of φ over them. Fig.4.7 shows
that learning can indeed improve the basic similarities.

4.3.2 Learning to accept matches

Once putative matches have been proposed, for example based on the similarity
metric φ, we need to accept or reject them based on some notion of expected
risk. In some applications we also want to order matches by reliability [CM05a].
[Low04] proposes a simple score that can be used to both accept and rank putative
matches. With notation similar to the previous section, denote f0 the descriptor
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Figure 4.8: Learning to accept matches. The figure compares the ROC curves
of the function D(f0, f1, f2) in its basic form and as learned by an SVM.

of a reference frame Ω0 and by f1 and f2 the two φ-top matches in an alternate
view. We define the belief that the match Ω0 ↔ Ω1 is correct as

P (Ω0 ↔ Ω1|f0, f1, f2) = 1− φ(f1, f0)

φ(f2, f0)
.

Here we use φ = φ2 to be compatible with [Low04]. This quantity can be directly
used to rank and accept matches, the latter by comparing it to a threshold τ ,
getting the decision function

D(f0, f1, f2) = [P (Ω0 ↔ Ω1|f0, f1, f2) ≤ τ ] . (4.9)

As D(f0, f1, f2) is a decision function, it can also be learned by means of some
standard technique, which we do next.

Data and learning. Data is obtained similarly to Section 4.3.1, with the obvious
adaptations. Learning is still performed by an SVM based on a polynomial kernel.

Testing. In Fig. 4.8 we plot the ROC curve of (4.9) as τ is varied and the ROC
curve of the SVM-based decision function D(f0, f1, f2). The equal error rate is
lowered from 0.16 to 0.13 showing again that learning can be used to improve the
basic method.
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Discussion

We have presented an extensive, flexible, accurate ground-truthed dataset for
matching local invariant features. Together with it, we have presented a method-
ology to evaluate local features, and illustrated their use to not only evaluate,
but also improve current algorithms. Our analysis separates the effects of a fea-
ture detector, a descriptor, and a matching algorithm, and our dataset is aimed
at facilitating the collection of natural image deformation statistics induced by
viewpoint changes, and at incorporating them in the design of better features. A
similar procedure can be followed to incorporate natural reflectance, illumination
and occlusion statistics, which is obviously beyond the scope of this chapter. We
have demonstrated the use of the dataset to improve on the matching score in
matching SIFT features. Albeit the quantitative improvement is not stunning,
it is sufficient to illustrate the potential advantage associated in the use of the
dataset and the associated methodology for evaluating local features.

4.A Calculations

Justification of eq. (4.5)

By changing variable in (4.4) we obtain

dev(w, h, Ωi) =
1

π det A0

∫

Ω0

|A−1
i (h(x̃)− w(x̃))|2 dx̃

≈ 1

π det A0

∑

x̃i∈Ω0

|A−1
i (h(x̃i)− w(x̃i))|2.

Note that π det A0 is just the area of the region Ω0, so we obtain (4.5).

Oriented matching deviation and Frobenius norm

Define the “size” of the linear deformation A ∈ GL(2) the quantity

‖A‖2 =
1

π

∫

|x|<1

x#A#Ax dx.

This is the average of the norm of the vector Ax as x is moved along the unit
circle. We have

‖A‖2 =
1

π
tr

[
A#A

∫

|x|<1

xx# dx

]
=

1

4
tr[A#A].
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so this is just the Frobenius norm of A (up to a scale factor). Now consider the
affine deformation Ax + T . We define analogously

π‖(A, T )‖2 =

∫

|x|<1

|Ax + T |2 dx

=

∫

|x|<1

x#A#Ax dx + 2

∫

|x|<1

T#Ax dx +

∫

|x|<1

T#T dx.

So the “Frobenius norm” of an affine deformation is

‖(A, T )‖2 =
1

π

∫

|x|<1

|Ax + T |2 dx =
1

4
tr[A#A] + |T |2.

This also justifies (4.6) because

dev(w,1, Ω̃i) =
1

π

∫

{x:|x|<1}
|Ã−1

i (wi(x)− w̃i(x))|2 dx

=
1

π

∫

{x:|x|<1}
|(Ã−1

i Ai − 1)x + Ã−1
i (Ti − T̃i)|2 dx

Unoriented matching deviation

Lemma 4. Let A be a square matrix and Q a rotation of the same dimension
and let UΛV # = A be the SVD of A. Then the rotation Q which minimizes the
quantity tr[QA] is UV # and the minimum is tr[Λ].

Proof. Let V ΛU# = A be the SVD decomposition of matrix A. We have tr[QA] =
tr[LΛ] where Λ is a diagonal matrix with non-negative entries and L = U#QV is
a rotation matrix. The trace is equal to

∑
i Liiλi where 0 ≤ Lii ≤ 1 and Lii = 1

for all i if, and only if, L is the identity. So the optimal value of Q is Q = UV #.

Since the Frobenius norm is rotationally invariant, (4.7) can be written as

‖R̃#Ã−1
i AiR− 1‖2

F = ‖Ã−1
i Ãi‖2

F − 2 tr[QÃ−1
i Ai] + 2, Q = RR̃#

i .

Minimizing this expression with respect to Q is equivalent to maximizing the
term tr[QÃ−1

i AiR]. Let V ΛU# = Ã−1
i Ãi be the SVD of Ã−1

i Ai; Lemma 4 shows
that the maximum is tr[Λ] (obtained for Q = UV #), yielding (4.8).

4.B Frame alignment algorithms

In this section we derive algorithms to minimize (4.2) in the cases of interest.

The purpose of the following algorithm is to align a set of points x(1)
1 , . . . , x(K)

1 to

a set of points x(1)
2 , . . . , x(K)

2 up to either an affine, rigid, or similarity motion.
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Alignment by an affine motion

Let x2 = Ax1 +T for an affine motion (A, T ). We can transform this equation as

x2 = Ax1 + T = Bx = (x# ⊗ I2×2) vec B, x =

[
x1

1

]
, B =

[
A T

]

where ⊗ is the Kronecker product and vec is the stacking operator. We obtain
one of these equations for each of the points x(k)

1 , k = 1, . . . , K to be aligned and
solve them in the least-squares sense for the unknown B.

Alignment by a rigid motion

We give first a closed-form sub-optimal algorithm. This algorithm is the equiva-
lent as the one proposed in [ZS97], but our development is straightforward.

Let x2 = Rx1 + T be a rigid motion (R, T ) and assume for the moment that
the points are three dimensional. Let R = exp(θr̂) where r, |r| = 1 is the axis of
rotation, r̂ is the hat operator [MSK03], and θ > 0 is the rotation angle. We use
Rodrigues’ formula [MSK03] R = I + sin θr̂ + (1− cos θ)r̂2 to get

x2 = Rx1 + T = x1 + sin θ r̂x1 + (1− cos θ) r̂2x1 + T,

x1 = R−1(x2 − T ) = x2 − T − sin θ r̂(x2 − T ) + (1− cos θ) r̂2(x2 − T ).

Adding the previous equations, collecting sin θ r̂, and using the trigonometric
identity tan(θ/2) = (1− cos θ)/ sin θ we obtain

sin θ r̂

(
x1 − x2 + T + tan

θ

2
r̂(x1 + x2 − T )

)
= 0.

It is easy to check that this condition is equivalent to x2 = Rx1 + T for |θ| < π.
A sufficient condition is

x1 − x2 + T + tan
θ

2
r̂(x1 + x2 − T ) = 0.

which can be rewritten as

x1 − x2 + tan
θ

2
r̂(x1 + x2) + z = 0, z = T − tan

θ

2
r̂T.

Since, no matter what r is, z spans all R3 as T varies, we can equivalently solve
this equation linear in the unknowns tan(θ/2)r and z in order to estimate the rigid
transformation. As in the previous section, one obtains one of such equations for
each of the points x(k)

1 , k = 1, . . . , K to be aligned and finds the solution in the
least-squares sense.
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If there is noise in the model, i.e. if x2 = Rx1 + T + n, we get the condition

x1 − x2 + tan
θ

2
r̂(x1 + x2) + z + tan

θ

2
r̂n = −n.

This means that for moderate rotations (away from ±π) minimizing the l2 resid-
ual of this equation is almost equivalent to minimizing the norm of n itself.
However if θ approaches ±π, then the term tan(θ/2)r̂n will dominate, biasing
the estimate.

The formulas work for the 2-D case with little adaptation. In this case we
assume that all the points lie on the X-Y plane and the rotation vector is aligned
to the Z axis, obtaining

x1 − x2 − tan
θ

2

[
x2,1 + x2,2

−x1,1 − x1,2

]
+ z = 0.

Finally, the estimate can be refined by the iterative algorithm given in the
next section (where one fixes the scale s to the constant 1).

Alignment by a similarity

There is no closed-form algorithm for this case. Instead, we estimate iteratively
the translation T and the linear mapping sR. While the solution to the first
problem is obvious, for the second consider the following equation:

min
s,R

∑

k

(x(k)
2 − sRx(k)

1 )#(x(k)
2 − sRx(k)

1 )

= min
s,R

∑

k

|x(k)
2 |2 − 2s

∑

k

x(k)
2

#
Rx(k)

1 + s2
∑

k

|x(k)
1 |2. (4.10)

Rewrite the cost function al as c − 2bs + as2. The optimal value for s given a
certain R is s∗ = b/a and the optimal value of the cost function is a + c− 2b2/a.
Note that only the term b is a function of R, while neither a nor c depend on it.
As a consequence, the optimal value of R is obtained by solving the problem

max
R

b = max
R

∑

k

x(k)
2

#
Rx(k)

1 = max
R

∑

k

tr
(
Rx(k)

1 x(k)
2

#)

Thus we are simply maximizing the correlation of the rotated point Rx(k)
1 and

the target points x(k)
2 . By taking the derivative of the trace w.r.t. the rotation

angle θ, we immediately find that the optimal angle is θ∗ = atan(w2/w1) where

w1 =
∑

k

|x(k)
2 ||x(k)

1 | cos θ(k), w2 =
∑

k

|x(k)
2 ||x(k)

1 | sin θ(k)
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where θ(k) is the angle from vector x(k)
1 to vector x(k)

2 .

Thus, in order to estimate R and s, we can first solve for the optimal rotation
R∗, and then solve for the scale, which is obtained as

s∗ =
b

a
=

∑
k x(k),#

2 R∗x(k)
1∑

k |x
(k)
1 |2

.

The convergence of the alternating optimization can be greatly improved by re-
moving the mean from x(k)

1 , k = 1, . . . , K as a pre-processing step.
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CHAPTER 5

Ensemble Invariance and Joint Data Alignment

A building block in the conceptual construction of invariant and maximally dis-
criminative features is the process of canonization (Section 1.1). One obstacle
in the practical implementation of this idea is to constructively define the set of
canonized features, or canonical set. For simple cases, such as affine invariant
patches [MTS04], criteria such as imposing the symmetry of the structure tensor
might be sufficient.1 However, there is no universal way of specifying a canonical
set and doing so may be difficult in practice. In particular, if the transformations
and the data are complex, the geometry of the canonical set could be impossible
to define by hand-crafted rules. Even when this is possible, one might ask which
of the many possible canonical sets is the best in consideration of additional
desirable properties.

In this chapter we study methods that can be used to learn canonizations from
data in an unsupervised setting. We reformulate this problem as the one of joint
alignment: Given a large collection of patterns (e.g., image patches), we deform
them until they are aligned. The resulting set of aligned data constitutes the
canonical set, which is described non-parametrically by the aligned prototypes
themselves. The advantage of this approach is threefold: (i) we introduce a single
construction to align a large variety of different data, (ii) the canonical set may
have arbitrarily complex geometry as it is described non-parametrically, and (iii)
it is possible to encourage the algorithm to find canonizations that exhibit useful
properties.

5.1 Models of joint data alignment

Joint alignment is the process of removing from a collection of data the effect
of undesired and irrelevant transformations. It serves both in discriminative
modeling, to simplify the extraction of useful informations from the data, and
in generative modeling, to reduce the data variability and make it easier capture
it. For example, in order to recognize images of faces we are not interested in
the face pose, and alignment can be used to eliminate pose from the problem.

1I.e., one defines as canonical images that have symmetric structure tensor
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Similarly, if the goal is to encode images of faces, it is more convenient to factor
out pose first, and then encode only the residual variability.

But what does it means to jointly align data? A possible conceptual model
is the following: We assume that the observed data has been produced by trans-
forming data originally aligned, and the goal is to recover the aligned data from
the transformed one. This idea can be translated directly into a generative model
with three components: The aligned data, the transformations, and the trans-
formed data. Then the problem is to estimate the two unknown quantities
(aligned data and transformations) from the observed one (transformed data).
This is an inverse problem and is solved by making appropriate regularity as-
sumptions on the underlying statistical model. We call this approach alignment
by fitting a generative model, or, simply, generative approach.

In the context of joint alignment, the generative approach has been explored
by Transformed Component Analysis (TCA) [FJ03, FJ99]. TCA models the
aligned data as a Gaussian distribution, the samples of which are randomly
transformed to obtain the observed data. TCA can be regarded as a version
of Probabilistic Principal Component Analysis (PPCA) [TB99] augmented with
data transformations. While conceptually straightforward, the generative ap-
proach has a number of issues. First, one must make assumptions about the
statistics of the data that may be not well satisfied. Most importantly, the re-
sulting optimization problems are complex and slow, making it hard to deal with
large data. While there are known speedups [KJF07], these are limited to handle
only simple transformations such as translations.

Since the goal of alignment is to simplify the data for further processing,
estimating a full generative model may be an overkill. Instead, we may directly
search for a transformed version of the data which is simpler, in the sense that it
minimizes an appropriate measure of complexity. We call this approach alignment
by complexity reduction. This idea has been proposed and popularized in the
context of joint alignment by image congealing (IC) [Lea06]. In IC the data
complexity is intended in the Shannon’s (ensemble) sense as entropy and the
algorithm attempts to transform the data in order to minimize this figure. IC
is significantly simpler and more efficient than TCA, and enables aligning very
large data with relatively complex transformations. An additional advantage is
that IC does not make any particular assumption about the data statistics (albeit
it requires regularity assumptions on the transformations).

In this chapter we study the complexity-reduction approach to joint align-
ment. We identify and address problems which were left open by previous works,
providing a better understanding of its theoretical foundations and enabling new
extensions.

First, we show that simplifying the data alone may remove not only the ir-
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relevant variability, but also the useful information that one wants to preserve
(Section 5.2). Take the example of aligning a collection of digital images up to a
scaling of the domain. While in the continuous scalings are invertible transforma-
tions, this property is lost once we consider the discrete nature of digital images.2

An algorithm which is based on minimizing entropy will try to use these “lossy”
effects to improperly reduce the variability of the data, possibly converging to a
degenerate solution. In IC this is implicitly avoided by imposing regularity on
the transformations, which must be not “too lossy”. Here we explicitly address
the issue by imposing that the aligned data can be used to reconstruct the origi-
nal data up to deformation and a small residual distortion. This casts IC in the
framework of lossy compression (or lossy complexity reduction). So, as TCA is
related to PPCA, IC is related to encoding methods such as Vector Quantization
(VQ), Entropy Constrained Vector Quantization (ECVQ) and Rate Distortion
(RD).

Second, we discuss which measures of complexity are suitable for joint align-
ment (Section 5.2.3). It is tempting to use off-the-shelf measures such as entropy
and mutual information, and to regard joint alignment almost as a standard com-
pression problem. However, complexity in the Shannon’s sense, as captured by
VQ, ECVQ and RD, does not reflect any structural property of the data. Roughly
speaking, the goal of VQ, ECVQ and RD is to approximate the data with the
smallest number of codewords (prototypes) possible, as complexity is simply the
number of such codewords. The structure of the codewords themselves is irrel-
evant. So, while multiple data points may be aligned to a given codeword, and
hence one another, there is a-priori no reason why codewords should be globally
aligned, and so the data.

For the purpose of joint alignment, we need to link complexity to the regularity
of the codebook. For instance, IC complexity is the sum of the entropies of all
image pixels, regarded as statistically independent. While this complexity was
introduced as an approximation to the actual entropy of the dataset, we note
that it serves for the purpose of enforcing global alignment better than entropy
alone (see Section 5.3). Once this is understood, we can devise other types of
complexities that are be suitable for alignment. In particular, complexity can
be used to enforce useful properties of the aligned dataset. As an example, we
introduce a complexity term that can be used to encourage the aligned data to
span a linear subspace of small dimension (Section 5.4).

Third, we discuss a fundamental issue that arise when the aligned data is
continuous and one attempts to minimize its complexity. We show that the

2Due to aliasing, the cascade of interpolation-scaling-sampling required to approximate a
continuous transformation in the discrete domain yields in general a non invertible transforma-
tion.
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mere fact of measuring the complexity of a continuous variable introduces an
additional distortion term that, if ignored, leads in some cases to degenerate
solutions (Section 5.4.1).

We also develop efficient algorithms for all the cases that we consider, and we
demonstrate the ability of such algorithms to align large datasets. We conclude
the chapter with an application to the alignment of a large collection of natural
image patches (Section 5.6). This can be used to address the difficult problem
of sparse encoding of natural images under transformations that has recently
interested several authors.

5.2 Joint alignment as compression

In IC [Lea06] alignment is obtained by searching for a transformed version of
the data which minimizes entropy. Unfortunately, if the transformations are not
bijective (as in most applications) this encourages the algorithm to annihilate
all the data variability by preferring lossy transformations. For instance, in the
problem of aligning NIST digits presented in Section 5.3.4 and later in the chapter,
IC naturally shrinks digits to a single pixel, reducing the entropy to zero. In order
to avoid this degenerate solutions, [Lea06] penalizes lossy transformations by an
hand-crafted regularization term. Once this problem is understood, however, it
is more natural to change the formulation to reflect the fact that simplification
should not loose information besides the nuisance transformations. Formally,
joint alignment becomes akin to a lossy compression problem, where one trades
off simplicity of the aligned data and accuracy of the encoding.

In Section 5.2.1 we recall a few ideas from the theory of lossy compression,
and in Section 5.2.2 and 5.2.3 we discuss how they can be adapted to the prob-
lem of joint alignment. The formulation is then compared to the one of IC in
Section 5.2.4.

5.2.1 Lossy compression

Let x ∈ Rn be a continuous random variable (datum). In lossy compression we
search for another (continuous or discrete) r.v. y ∈ Rn (code) with conditional
density p(y|x) that represents x concisely and accurately. Formally, we look for
p(y|x) that minimizes

E(y) = D(x, y) + λC(x, y). (5.1)

The distortion D(x, y) reflects the average error of the approximation, the com-
plexity C(x, y) is average number of symbols required to encode y, and the pa-
rameter λ ≥ 0 trades off the two terms. This general idea has been pursued in
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various forms in the literature. In VQ [LBG80], y is restricted to K < ∞ code-
words, all encoded with the same number of symbols. Thus C(x, y) ∝ log K and
VQ trades off the number of codewords for the average distance of the code y to
the datum x. Entropy-Constrained Vector Quantization (ECVQ) [CLG89, BK93]
generalizes this idea and represents codewords with a variable number of sym-
bols. The optimal variable-length code uses an average number symbols equal
to the entropy H(y), so that C(x, y) = H(y). There also exist relaxations of VQ
and ECVQ based on deterministic annealing (DA) [RM93] that use a regularized
complexity term which depends jointly on x and y. Rate-Distortion (RD) [Sha48]
is a further generalization to the problem of compressing long sequences of data.
Shannon [Sha48] reduced this problem to the one of encoding a single instance x
by a code y (which in this case can be a continuous r.v.) and complexity measure
C(x, y) = I(x, y). This complexity gives also the rate (i.e. the average number of
symbols per component of the sequence).

Notice that VQ and ECVQ are useful not only for compression, but also for
clustering. Next, we look for choices of the distortion and complexity measures
that are useful for the problem of joint alignment.

5.2.2 Distortion for alignment

The basic idea to reduce the joint alignment problem to a (lossy) compression
problem is to search for a code y that represents the data x up to the action
of the irrelevant transformations G and is “as simple as possible”. Formally, we
enable the code y ∈ Rm to represent the data x ∈ Rn up to the effect of a family
G of transformations g : Rm → Rn. This is achieved as follows. Starting from
an arbitrary point-wise distortion measure d0 : Rn × Rn → R+, we consider the
expected invariant distortion

D(x, y) = E[d(x, y)], d(x, y) = inf
g∈G

d0(x, gy). (5.2)

Notice that the transformations g ∈ G need not to have a special structure and,
in particular, they are not required to form a group. There are several choices for
the base distortion measure d0; in the following we take the Euclidean distance
d0(x, gy) = ‖x− gy‖2.

5.2.3 Complexity for alignment

The complexity term C(x, y) of VQ, ECVQ, and RD essentially reflects the aver-
age number of symbols needed to index the code y (which in this case is a discrete
variable). Unfortunately, this is not well suited for alignment because it is in-
sensitive to the actual values of the codewords and cannot capture any of their
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“structural” regularities. In particular, there is no natural way of encouraging
the mutual alignment of the codewords.

In order to do this, we look for indexing mechanisms (and corresponding com-
plexity measures) that are efficient precisely when y exhibits the desired regular-
ity. For example, in IC the code y is a (random) binary image whose complexity
C(x, y) is defined as the total entropy of its pixels, regarded as independent ran-
dom variables. This gives the number of symbols required to index the codewords
y if the design of the indexing mechanism disregards the dependencies among pix-
els. Clearly, this scheme is efficient if the pixels of y are independent. Since in
practice pixels of natural images are highly correlated, this condition can be ap-
proached only if pixels are approximatively constant (across different samples of
y). Thus minimizing this complexity encourages the mutual alignment of the
codewords.

We study two complexity costs that have these characteristics. In Section 5.3
we consider a cost similar to standard IC, based on disregarding all the depen-
dencies among pixels. Then in Section 5.4 we propose an alternative complexity
term based on measuring the (properly normalized) entropy of a Gaussian distri-
bution fitting the code y. This disregards all but the linear dependencies among
pixels and encourages the code y to span a low dimensional subspace of Rm.

5.2.4 Formal comparison with IC formulation

Our formulation of joint alignment reduces to the minimization of (5.1). It is
interesting to compare this equation to IC formulation. There the code y = gx
is directly a function of the data point x and the random transformation g. The
distortion term D(x, y) is replaced by an hand-crafted regularization R(g) that
penalizes transformations g which are too lossy.

5.3 Naive complexity

In this section we introduce a complexity term C(x, y) that, similarly to IC,
disregards the dependencies among the components of the code y ∈ Rm. We call
this term naive as, similarly to naive Bayes, assumes independence of the data
components. Differently from naive Bayes, in which independence trades off bias
and over-fitting, here the independence assumption is exactly what makes the
complexity term suitable for alignment.
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Let e1, . . . , em be the vectors of the canonical basis of Rm. We define

C(x, y) =
1

K

K∑

k=1

m∑

j=1

h(〈ej, yk〉)) =
m∑

j=1

E[− log pj(〈ej, yk〉)]

where h(〈ej, yk〉) denotes the differential (or discrete) entropy of the projection
〈ej, yk〉. Concretely, given a data ensemble x1, . . . , xK ∈ X , the density func-
tions pj(φj(y)) are estimated from the samples 〈ej, y1〉 , . . . , 〈ej, yK〉 by a Parzen
window estimator [DHS01] with Gaussian kernel kσ(y) of standard deviation σ
(continuous case3), i.e.

pj(〈ej, y〉) =
1

K

K∑

k=1

kσ(〈ej, y − yk〉).

Thus

C(x, y) = − 1

K

m∑

j=1

K∑

i=1

log pj(〈ej, yk〉).

Let G = {gα : α ∈ A} be a parametric family of transformations. Given samples
{x1, . . . , xK} of the random variable x, the problem is then to find transformations
{α1, . . . ,αK} and codes {y1, . . . , yK} that minimize

E({αk, yk}) =
1

K

K∑

k=1

‖xk − gαk
yk‖2 − λ

1

K

m∑

j=1

K∑

i=1

log pj(〈ej, yk〉). (5.3)

Remark 9 (Continuous vs discrete entropy). It should be noted that in VQ and
ECVQ the entropy H(y) of the code is discrete even if x is a continuous random
variable, as the number of codewords is finite. Here instead we consider either
differential entropies or discrete entropies, depending on the nature of the data
x. This fact introduces a subtle issue, because the meaning of differential entropy
is itself relative to a quantization error ε which we did not account for yet. To
understand the effect of this problem, notice that the differential entropy may
be made arbitrarily small or large simply by scaling the random variable y. This
problem is further discussed in Section 5.4.1.

3By using the Parzen window estimator we guarantee that the differential entropy of the
distributions pj is always lower bounded by the entropy of the kernel kσ. This prevents the
differential entropy to have arbitrary small negative values, and is similar to the regularization
adopted in Section 5.4.
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5.3.1 Application to the alignment of images

The main application of our method is the joint alignment of large collection of
images. In this section we specialize (5.3) to solve this problem.

We start by specifying the nature of the data, of the codes and of the trans-
formations. Images are functions defined on a discrete lattice, as in Chapter 3.
To keep the notation consistent with the general case, however, in this chap-
ter images are denoted as functions x : (u, v) ,→ R+. Formally, the data point
x(u, v) ∈ R is a (random) discrete image defined on the two dimensional lat-
tice Ω = {−r,−r + 1, . . . , r}2 where r is a non-negative integer. Similarly, the
code y(u, v) is a (random) discrete image defined on a lattice Ω′ = {−r′, . . . , r′}.
The image x will also be identified with a matrix in R(2r+1)×(2r+1) or a vector
in R(2r+1)2 , and similarly for the image y. Our goal is to remove from the ran-
dom image x transformations g : R2 → R2 of the real plane. For simplicity, we
consider only affine transformations gα where α =

[
A T

]
, T ∈ R2, A ∈ GL(2)

and gα(u, v) = A−1 · (u, v) − A−1 · T (notice that α parametrizes the inverse
warp, as this simplifies the equations below). Applying the transformation gα

to an image y(u′, v′) yields the image (gαy)(u, v) = y(g−1
α (u, v)), where the value

y(u′, v′) at the fractional point (u′, v′) = g−1
α (u, v) is obtained by extending y

to the real plane by bilinear interpolation and zero padding. Notice also that
(gαy)(u, v) = M(u, v; α)y where M(u, v; α) is a linear operator independent of
the particular image y. Since y is finite-dimensional, M(u, v; α) is just a row
vector of mixing coefficients. Similarly, we will also use the notation

gαk
yk = M(αk)yk

where gαk
y ∈ R(2r+1)×(2r+1) and M(αk) is a matrix of mixing coefficients deter-

mined by the transformation αk and and the interpolation method in use.

The complexity of the aligned ensemble {y1, . . . , yK} is computed as in Sec-
tion 5.3. For each pixel (u, v) ∈ Ω′ the density p(y(u′, v′)), is estimated non
parametrically from the samples {y1(u, v), . . . , yK(u, v)} by the Parzen window
estimator. The complexity of a pixel is thus

h(y(u, v)) = − 1

K

K∑

k=1

log p(yk(u, v)).

Finally the overall cost function is obtained by summing over all pixels and av-
eraging over all images:

E({αk, yk}) =
1

K

K∑

i=1

‖xk − gαk
yk‖2 − λ

1

K

K∑

i=1

∑

(u,v)∈Ω′

log p(yk(u, v))). (5.4)
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Dealing with image boundaries. According to (5.4), only the portion of the
code y which is mapped back within the bounding box of the image x is actually
constrained by the distortion term ‖x−gαy‖2 (see Fig. 5.6). The other portion of
the code y is determined uniquely by minimizing the complexity C(x, y). In some
cases this introduces a discontinuity in the estimated code y which makes the
optimization of (5.4) tricky. This could be alleviated for example by delimiting
the domain of x by a Gaussian window rather than by a bounding box. If,
however, the image x can be extended beyond its bounding box in a natural way
then that information can be used to “fill the hole”. We will get back to this
issue in Section 5.5.

5.3.2 Optimization by coordinated descent

The transformation parameters αk in (5.4) can be optimized by coordinate de-
scent similarly to [FJ00]:

1: Estimate the probabilities p(y(u, v)), (u, v) ∈ Ω′ from the samples
{yk(u, v) : k = 1, . . . , K}

2: For each datum k = 1, . . . , K and for each component αjk of
the parameter vector αk, try a few values of αjk. For each value
re-compute the cost function (5.4) and keep the best value of αjk.

3: Repeat, refining the sampling step of the parameters.

This algorithm is appropriate if the dimensionality of the parameter vector α
is reasonably small. Here we consider affine transformation, so that α is six-
dimensional.

We are left with the problem of estimating the codes yk. As a first order ap-
proximation (the final result will be refined by Gauss-Newton as explained in the
next section), we bypass this problem and we simply set yk = g−1

αk
xk, exploiting

the fact that the affine transformations gα, as maps from R2 to R2, are invertible.
Notice however that gαk

is not invertible as an image transformation due to the
approximation introduced by the discrete nature of the images. Eventually the
distortion D(x, y) writes

D(x, y) =
1

K

K∑

k=1

‖(I − gαk
g−1

αk
)xk‖2

which is an empirical measure of the “non invertibility” of the image transforma-
tions gαk

. It is interesting to compare this term with the ad-hoc regularization
used by Learned-Miller in the original IC formulation [Lea06] (Section 5.2.4).
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5.3.3 Optimization by Gauss-Newton

Compared with the standard formulation of IC, here we need to estimate both
the transformation parameters αk and the codes yk. As promised in the previous
section, this can be done by Gauss-Newton (GN).

Applying Gauss-Newton requires to take derivatives with respect to the pixel
values yk(u, v). We exploit the fact that the variables yk(u, v) are continuous (no-
tice that in IC [Lea06] these are discrete for the application to image alignment).

We still process a single image per time, reiterating several times across the
whole ensemble {x1, . . . , xK}. For a given image xk we update the warp param-
eters αk and the codeword yk simultaneously. We exploit the fact that, as the
number K of images is usually large, the density p(yk(u, v)) does not change
significantly when only one of the codeword yk is changed. Therefore p(yk(u, v))
can be assumed constant in the computation of the gradient and the Hessian of
the cost function (5.4). The gradient is given by

∂E

∂α#k
=

∑

(u,v)∈Ω

2∆k(u, v)(∇gαk
yk)(u, v)

∂g

∂α#k
(u, v),

∂E

∂y(u′, v′)
=

∑

(u,v)∈Ω

2∆k(u, v)(M(u, v; αk)δuv)−
∑

(u′,v′)∈Ω

ṗ(yk(u′, v′))

p(yk(u′, v′)

where ∆k = gαk
yk − xk is the reconstruction residual, M(u, v; αk) is the linear

map introduced in Section 5.4.2 and δuv is the vector of all zeros and a one in
position (u, v).

The approximated Hessian of the cost function (5.4) can be obtained as fol-
lows. First, we use the Gauss-Newton approximation for the derivative w.r.t. the
transformation parameters αk

∂2E

∂αk∂α#k
≈

∑

(u,v)∈Ω

2
∂g#

∂αk
(u, v)∇#(gαk

yk)(u, v)∇(gαk
yk)(u, v)

∂g

∂α#k
(u, v)
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Figure 5.1: Toy example. Top left. We distort the patterns by applying
translations drawn uniformly from the 8-shaped region (the center corresponds
to the null translation). Top. We show the gradient based algorithm while it
gradually aligns the patterns by reducing the complexity of the alignment y.
Dark areas correspond to high values of the density of the alignment; we also
superimpose the trajectory of one of the patterns. Unfortunately the gradient
based algorithm, being a local technique, gets trapped in two local modes (the
modes can however be fused in a post-processing stage). Bottom. The basic
algorithm completely eliminates the effect of the nuisance transformations doing
a better job of avoiding local minima. Although for this simple problem the basic
search is more effective, on more difficult scenarios the extra complexity of the
Gauss-Newton search pays off (see Section 5.3.4).

We then have

∂2E

∂yk(u′, v′)2
=

∑

(u,v)∈Ω

2(M(u, v;αk)δu′v′)2 −
∑

(u′,v′)∈Ω

p̈(yk(u′, v′)))p(yk(u′, v′))K − ṗ(yk(u′, v′))
p(yk(u′, v′))2

∂2E

∂yk(u′, v′)∂yk(u′′, v′′)
=

∑

(u,v)∈Ω

2(M(u, v;αk)δu′v′)(M(u, v;αk)δu′′v′′)

∂2E

∂yk(u′, v′)∂α#k
=

∑

(u,v)∈Ω

2(M(u, v;αk)δu′v′)∇(gαkyk)(u, v)
∂g

∂α#k
(u, v)

+
∑

(u,v)∈Ω

2∆k(u, v)M(u, v;αk)
[
D1δu′v′ D2δu′v′

] ∂g

∂α#k
(u, v)

where D1 is the discrete linear operator used to compute the derivative of yk(u, v)
along its first dimension u and D2 the analogous operator for the second dimen-
sion v. The second term of the last equation gives a very small contribution and
can be dropped.
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Figure 5.2: Basic vs GN image alignment algorithms. Left. We show the results
of applying the basic image alignment algorithm of Section 5.3.2. The patterns
are zeroes from the NIST Special Database 19. We show in writing order: The
expected value E[y(u, v)]; the per-pixel entropy h(y(u, v)) (it can be negative
as it is differential); a 3-D plot of the same function h(y(u, v)); the distortion-
complexity diagram as the algorithm minimizes the function D + λR (in green
we show some lines of constant cost); the density p(y(u, v) = l) as (u, v) varies
along the middle scan-line; and the per-pixel distortion E[(x(u, v)−(gαy)(u, v))2].
Right. We demonstrate the GN algorithm of Section 5.3.3. The algorithm
achieves a significantly better solution in term of the cost function (5.4). Moreover
GN converges in only two sweeps of the dataset, while the basic algorithm after
10 sweeps is still slowly moving. This is due to the fact that GN selects both the
best search direction and step size, resulting in a more efficient search strategy.

The equations are all straightforward and result in la linear system

δθ#
(

∂2E

∂θ∂θ#

)
= − ∂E

∂θ#

where the vector θ = (αk, yk) has size in the order of the number of pixels of the
codeword yk. While this system is large, it is also extremely sparse an can be
solved rather efficiently by standard methods [GL96].

5.3.4 Experiments

The first experiment (Fig.5.1) is a toy problem illustrating our method. We collect
K patterns xi, i = 1, . . . , K which are arrays of M 2D points xi = (x1i, . . . , xMi).
Such points are generated by drawing M i.i.d. samples from a 2-D Gaussian
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Figure 5.3: Aligned patterns. Left. A few patterns from NIST Special Database
19. Middle. Basic algorithm: Results are very similar to [Lea06], except that no
regularization on the transformations is used. Right. GN algorithm: Patterns
achieve a better alignment due to the more efficient search strategy; they also
appear to be much more “regular” due to the noise cancellation effect discussed
in Fig. 5.4. Bottom. More examples of patterns before and after GN alignment.
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(a) Distortion-Complexity (b) Not aligned (c) Aligned

Figure 5.4: Distortion-complexity balance. We illustrate the effect of varying
the parameter λ in (5.4). (a) Estimated distortion-complexity function D(R).
The green (dashed) lines have slope equal to λ and should be tangent to D(R)
(Section 5.3). (b) We show the alignment T (wix) of eight patterns (rows) as
λ is increased (columns). In order to reduce the entropy of the alignment, the
algorithm “forgets” about specific details of each glyph. (c) The same as (b),
but aligned.
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distribution and adding a random translation wi ∈ R2 to them. The distribution
of the translations wi is generic (in the example wi is drawn uniformly from an
8-shaped region of the plane): This is not a problem as we do not need to make
any particular assumptions on w besides that it is a translation. The distortion
d(xi, yi) is simply the sum of the Euclidean distances

∑m
j=1 ‖yji + wi − xji‖2 be-

tween the patterns xi and the transformed codes wi(yi) = (y1i +wi, . . . , ymi +wi).
The distribution p(yi) of the codes is assumed to factorize as p(yi) =

∏
j=1 p(yji)

where the p(yji) are identical densities estimated by Parzen window from all the
available samples {yji, j = 1, . . . ,M, i = 1, . . . , K}.

In the second experiment (Fig. 5.2) we align hand-written digits extracted
from the NIST Special Database 19. The results (Fig. 5.3) should be compared
to the ones from [Lea06]: They are of analogous quality, but they were achieved
without regularizing the class of admissible transformations. Despite this, we did
not observe any of the aligned patterns to collapse. In Fig. 5.4 we show the effect
of choosing different values of the parameter λ in the cost function (5.4). As λ is
increased, the alignment complexity is reduced and the fidelity of the alignment
is degraded. By an appropriate choice of λ, the alignment can be regarded as
a “restoration” or “canonization” of the pattern which abstracts from details of
the specific instance.

5.4 Structural complexity: The linear case

In this section we introduce a complexity term C(x, y) that characterizes the
linear dimensionality (the number of dimensions of the linear subspace spanned
by y) of the code y ∈ Rn. We do so by constructing a description of y which
is efficient when y spans a low-dimensional affine subspace of Rn. To do this,
first we approximate the density p(y) of the code y with a Gaussian density g(y),
which captures the linear statistics of p(y). Then, as if y had density g(y), we
use standard tools from rate-distortion theory to devise the optimal description
of y and estimate its length (rate). The Gaussian density g ∈ N (µg, Σg) which is
closer to p(y) in Kullback-Leibler (KL) divergence kl(p||g) = Ep[− log g(y)]−h(p)
is the one that matches the mean and the variance of y, i.e. µg = µp = Ep[y],
and Σg = Σp = Ep[yy#] − µpµ#p . This Gaussian g yields an upper bound on
the rate R(ε; p) (number of bits per symbol) required to describe y with some
accuracy4 ε: R(ε; p) ≤ R(ε; g). The rate-distortion function of a Gaussian source
is known analytically [CT06], but in general its calculation requires computing
the eigenvalues of Σg. If, however, we add to y a small Gaussian noise of variance

4The slack between R(ε; p) and R(ε; g) is irrelevant, as our goal is to characterize the linear
dimensionality of the code y.
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Figure 5.5: Aligning 2-D points (see text). (a) the data points x1, . . . , xK

(circles), the initial codes y1, . . . , yK (stars — they are obtained by adding a small
noise to the data) and reconstructions (dots — they coincide with the codes as
initially g1 = · · · = gK = 1); (b) removing the group G1 of rotations from the data
by mapping them to an affine subspace (line) — the curves show the trajectories
mapping back the codes to the data; (c) removing the group G2 of scalings from
the data; (d) same as (c), except that the un-normalized complexity term (5.5)
is used, which causes the solution to collapse on the origin.

ε2 [YWS07], the formula is simply R(ε; g) = 1
2 log det ε2I+Σg

ε2 and we obtain

C(x, y) =
1

2
log det

ε2I + Σp

ε2
=

1

2
log det

(
I +

Σp

ε2

)
. (5.5)

5.4.1 Degenerate solutions and normalization

It is easy to see that (5.5) decreases not only with the dimensionality of y, but
also with its variance. Thus, if the transformations g ∈ G enable reducing the
variance of y without increasing the distortion of the reconstruction gy, then
minimizing (5.5) yields a degenerate code (see also Fig. 5.5).

We remark that the same problem affects all similar formulations in which the
code y is a continuous r.v. (for instance, it applies to some versions of IC [Lea06]).
The reason is that the mere fact of measuring the complexity of the continuous
r.v. y requires approximating it, as reflected by the error term ε in (5.5). Thus ε is
an additional distortion which is not accounted for in (5.2). While it is possible to
map the error ε back to the distortion d(x, gy) through the transformation g ∈ G,
doing so is cumbersome. Fortunately there is a simple short-cut that works well
in practice. The idea is to tune ε adaptively as a fraction of the average variance
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E[‖y−µ‖2] = tr Σp of the code itself. This yields the corrected complexity term5

C ′(x, y) =
1

2
log det

(
I +

Σp

ε2 tr Σp

)
. (5.6)

Notice that (5.5) can still be used in place of (5.6) when the particular problem
prevents the degenerate solution to be found (for instance, (5.5) works well for
aligning images).

Example 3 (Removing planar transformations). Consider g : R2 → R2 acting on a
set of K 2-D points x1, . . . , xK ∈ R2 (Fig. 5.5). We compute the transformations
g1, . . . , gK ∈ G and codes y1, . . . , yK ∈ R2 by minimizing the cost function

E({gk, yk}) = D(x, y) + λC ′(x, y)

=
1

K

K∑

k=1

‖xk − gkyk‖2 +
λ

2
log det

(
I +

Y Y #

ε2 tr Y Y #

)
(5.7)

where Y =
[
y1 − µ . . . yK − µ

]
is the matrix of the centered codes and µ =∑K

k=1 yk/K is the sample average. This can be done by gradient descent. In
Fig. 5.5 we use this method to remove respectively rotations around the origin
G1 = SE(2) and scalings G2 = R. The latter case clearly illustrates the impor-
tance of the normalization in (5.6), lest all points collapse to the origin.

5.4.2 Application to images

Given samples {x1, . . . , xK} of the random image x, the problem is then to find
transformations {α1, . . . ,αK} and codes {y1, . . . , yK} that minimize

E({αk, yk}) =
1

K

K∑

k=1

‖xk − gαk
yk‖2 + λ

1

2
log det

(
I +

Y Y #

Kε2

)
, (5.8)

where Y =
[
y1 − µ . . . yk − µ

]
is the matrix of centered codes yk − µ, and

µ =
∑K

k=1 yk/K is the sample average. Notice that (5.8) is formally identical
to (5.7), except that the complexity term (5.5) is used as the normalization is
not necessary (because warps cannot decrease the variance of the code without
affecting the reconstruction accuracy).

5There is another interesting interpretation of (5.6). Let g′ be the isotropic Gaussian closer
in KL divergence to p(y). Similarly to g(y), this Gaussian matches the mean of y, and its
(isotropic) variance is given by trΣp/n. Then the KL divergence kl(g||g′) of the Gaussians
g and g′ is equal to (up to constants) log det (Σg/(tr Σp/n)). Thus minimizing (5.6) can be
interpreted as making y as different as possible from an isotropic Gaussian distribution.
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code y
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−r
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−r′

+r′

+r′

−r′−r

gαdatum x

5.6: Boundaries: the code y is mapped back to
the datum x by a transformation gα. The por-
tion of the code which is clipped by this operation
(dashed area) needs not match x. If, however, x is
extracted from a larger image or can otherwise be
extended to the real plane, then the context of x
can be used to fill the dashed area.

(a) codewords (b) codewords (c) aligned (d) aligned

Figure 5.7: Aligning NIST digits: (a), (b) show examples of original digits (first
column) and of the codewords found by minimizing (5.8) for different values of
λ. From second column to last: λ = 1.5, 2, 2.5, 3, 3.5. (c), (d) show the aligned
versions of the same digits (g−1

α x) obtained by backprojection according to the
optimal transformation.

Experiments. We explore the effect of minimizing the cost functional (5.8) on
the NIST handwritten digits dataset. A simple gradient descent method was used
to find the optimal set of codewords and transformation parameters {yk, αk}. For
each digit, a set of 500 samples was extracted and aligned. The result is shown in
Fig. 5.7 for different values of the trade-off parameter λ. Note that increasing λ
the structure of the codewords converges to a low-dimensional space, eventually
collapsing to a zero dimensional space (a single template).

Once the algorithm has found the optimal codeword and transformation gα for
each sample, we can apply the reverse transformations g−1

α on the original digits
to obtain the aligned dataset, as shown in Fig. 5.7-(c,d). Figure 5.8 shows the
mean of all the digits aligned in this way, compared to the mean before alignment.
The result is qualitatively similar to IC.
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Figure 5.8: Aligning NIST digits: Per-digit average of the original data (above)
and of the aligned data (below). It can be seen that the average appears much
sharper after the alignment process despite only affine transformations are re-
moved.

(a) context (b) original (c) direct (d) gradient

Figure 5.9: Aligning bars and wedges by the efficient formulation of Section 5.5:
(a) two images from which a number of patches are sampled (in red we show the
actual patch, and in blue the context used to complete the code y = g−1

α x); (b) a
few such patches; (c) alignment based on direct search of rotation and translation;
(d) refinement based on gradient descent on the full six parameters of the affine
transformation. Note that in (c), (d) all bars are aligned and so are edges; the
algorithm found two “codewords” to represent the data.

5.5 An efficient variant for decimated affine transforma-
tions

In this section we derive a variant of the model (5.8) which is computationally
more attractive. The key idea is that, instead of explicitly estimating the codes
yk, one could simply let yk = g−1

α xk and avoid estimating the codes altogether.
Unfortunately doing so requires in general to extend the image x beyond its
bounding box (see Fig. 5.6 and Section 5.4.2), so this method can be used only
if there is a reasonable way of doing so. For instance, in Fig. 5.9 small patches x
are naturally extended by their context in the larger image and in Fig. 5.10 the
hand-written digits are naturally extended by zero-padding.

By letting yk = g−1
α xk the distortion term becomes ‖x − gαy‖2 = ‖x −

gα(g−1
α x)‖2, which in general is not identically zero since the action of gα on a

discrete image is not necessarily invertible. In particular, y = g−1
α x could be used
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(a) original (b) direct (c) gradient
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Figure 5.10: Aligning NIST digits: (a),(b) and (c) have been obtained as in
Fig. 5.9; (d) shows the singular values of the three datasets (a),(b) and (c):
notice the progressive reduction in the linear dimensionality of the data.

to decimate the data by mapping the data x to a constant code g−1
α x which in

turn would trivially decrease the complexity C(x, y). So the term ‖x−gα(g−1
α x)‖2

forces the code y = g−1
α x to preserve information about the datum x.

Notice that IC uses implicit codes too [Lea06]. However, in place of the
distortion term ‖x − gα(g−1

α x)‖2, IC simply penalizes transformations gα that
differ from the identity. This method has the advantage of speed and simplic-
ity. Motivated by this observation, we experimented with a few surrogates of the
distortion term and found that the simple function β(x)/| det(A)| approximates
well ‖x− gα(g−1

α x)‖2. Here β(x) is a constant which depends only on the datum
x and can be estimated easily during pre-processing. Of course, this approxima-
tion is valid as long as the bounding box of the image x is mapped within the
bounding box of the image y (Fig. 5.6), which can be enforced as a set of sixteen
linear constraints Mα + b @ 0. It is convenient to incorporate these additional
constraints into the energy function as a logarithmic barrier [BV04], yielding to
the formulation

E({αk}) =
1
K

K∑

k=1

(
βk

det Ak
− 1

γ

16∑

l=1

log(−e#l (Mαk + b))

)

+ λ
1
2

log det
(

I +
Y Y #

Kε2

)
, (5.9)

where αk =
[
Ak Tk

]
, Y = [g−1

α1
x1 − µ, . . . , g−1

αK
xK − µ] is the matrix of the

centered implicit codes and γ is the slope of the logarithmic barrier (we use a
large value of γ so that the barrier has an effect only at the boundaries of the
feasible region).

Optimization. We optimize (5.9) one image per time, looping over the entire
dataset x1, . . . , xK several times. By doing this we can derive an efficient update
rule for the transformations αk. We start by noting that in (5.9) the only term
that couples the different data is the entropic term through the covariance C =
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(a) original (b) direct (c) gradient
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Figure 5.11: Aligning natural image patches: We use the same conventions of
Fig. 5.9. The alignment results may not be evident from the patches alone, but
the mean of the data (small images on the right) reveals the structure found by
the algorithm. (d) PCA analysis of (a), (b) and (c) reveals the decreasing linear
complexity.

I + Y Y #/Kε2. Now fix the attention on a particular code yk. As we vary yk

while keeping the other variables fixed, the matrix C becomes

C = C − (yk − µ)(yk − µ)#

Kε2
+

(yk − µ)(yk − µ)#

Kε2

= C̃ +
(yk − µ)(yk − µ)#

Kε2
. (5.10)

We can expand the entropic term to the second order around yk = µ, obtaining

1

2
log det

(
C̃ +

(yk − µ)(yk − µ)#

Kε2

)
≈ 1

2
(yk − µ)#

C̃−1

Kε2
(yk − µ) + const.

which is a good approximation if ‖yk − µ‖/ε
√

K is small, i.e. when K is large.
Moreover for a large K we have C̃ ≈ C. Adding the other terms of (5.9) back, we
get that, as long as only one image is changed and K is sufficiently large, (5.9)
can be approximated well by

E(αk) ≈
1
K

(
βk

det Ak
− 1

γ

16∑

l=1

log(−e#l (Mαk + b))

)

+
λ

2ε2K
(g−1

αk
x− µ)C−1(g−1

αk
x− µ) + const. (5.11)

which depends only on αk. We use two algorithms to optimize (5.11). The
first, dubbed direct search, simply tries a number of values of each parameter
of the transformation αk (this is basically the same strategy of IC). The second,
dubbed gradient search, uses the efficient Gauss-Newton quadratic approximation
of (5.11). In Fig. 5.10 we used the efficient formulation (5.11) and the two
algorithms to align NIST digits, and we got alignment results analogous to the
one obtained from the formulation (5.8).
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Figure 5.12: Extracting natural image patches: from left to right: a natural
image (640× 480); the image whitened and contrast normalized; selected 11× 11
patches.

5.6 Aligning natural image patches

Starting from [OF96], there has been an emerging interest in studying sparse
representations of natural images. Results from [OF96] show that, when a collec-
tion of natural patches are projected onto a linear basis whose coefficients have
sparse statistics, structures such as bars, wedges and dots emerge, which resem-
ble receptive fields of the human brain cortical areas V1, V2. Formally, given
a collection Y =

[
y1, . . . , yK

]
of such natural patches, the sparse decomposition

could be obtained by minimizing

E(A, B) = ‖Y −BA‖2
F + η

∑

qk

log(1 + a2
qk),

subject to ‖bq‖2 = β > 0 for q = 1, . . . , Q (5.12)

where N is the number of pixels of each image yk, B =
[
b1 . . . bQ

]
∈ RN×Q is

the matrix of basis elements bq and A = [aqk] ∈ RQ×K is the matrix of coefficients
aqk and η a parameter controlling the sparsity of the solution. For this procedure
to work well, natural images must be appropriately whitened and contrast nor-
malized [OF96]. The result of minimizing (5.12) over Q = 128 basis elements on
a collection of 5000 natural image patches extracted in such a way is shown in
Fig. 5.13-(a).

From Fig. 5.13-(a) and the analogous results obtained by many other authors,
it is evident that many of the structures found are similar, differing only by
geometric parameters such as position, orientation and scale. Recently it has
been argued by [GR05, OCC07] that these systematic transformations could be
estimated and removed, obtaining a more compact representations which would
also be invariant to such kind of geometric distortions.
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(a) original (b) aligned

(c) clusters

Figure 5.13: Sparse decomposition of natural image patches: (a) decomposition
of 5000 image patches (basis elements are ordered by decreasing Kurtosis of their
coefficients). (b) decomposition of the same 5000 patches after alignment. (c)
duplicate basis function detected in (b), showing significantly small complexity
of the basis after alignment.

To this end [GR05, OCC07] extend the generative model (5.12) to account
for geometric transformations and solve for basis, coefficients and geometric pa-
rameters (this is not dissimilar from [FJ99], except for the sparsity prior). Un-
fortunately this results in a large computation which is unstable. Moreover, we
explicitly address the problem of boundaries, which are an important factor even
when dealing with simple transformation such as translations.

Since our alignment algorithm is capable of decreasing the dimensionality
of the linear embedding spanned by the data (no matter whether its statistic
is sparse or Gaussian) it may be appropriate as a pre-processing step to align
the collection of natural image patches before the sparse dimensionality reduc-
tion (5.12). The result of such alignment is shown in Fig. 5.11 and Fig. 5.13-(b)
illustrates the result of applying the very same algorithm of Fig. 5.13-(a) to the
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aligned data. Several observations can be made. First, a few dominant hori-
zontal structures emerge, which evidently subsume many of the other structures
found in Fig. 5.13-(a) at different orientations and translations. Second, such
structures are found multiple times, with exactly the same appearance and posi-
tion and orientation. To quantify this phenomenon, in Fig. 5.13-(a) we collapse
similar basis elements until the reconstruction error in (5.12) increases less than
1% (we do this by iteratively collapsing the pair of most similar basis elements).
This shows quantitatively that indeed several of the basis elements are redun-
dant copies, created by the local optimization procedure used to minimize (5.12).
Third, a number of relatively unstructured basis elements remain, which may
indicate that the variety of strong structures has been significantly reduced by
aligning the data.

Discussion

We have presented a novel approach to perform alignment with respect to trans-
formations of the data that are not invertible. We have showed that a measure
of complexity can be defined that is tailored to the postulated structure of the
space where the codebook lives, and in particular we explore the case of affine
subspaces of the embedding space of the raw data. We have presented efficient
alignment algorithms that allow aligning large collections of handwritten digits
and natural image patches, and more general real valued data.
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CHAPTER 6

Invariant Boosted Learners

In the fist part of this thesis we studied how invariance properties of visual data
can be exploited in preprocessing, by constructing invariant representations which
facilitate subsequent analysis. We have seen that, while useful and of broad ap-
plicability, invariant representations are limited in several regards. For instance,
in Chapters 2 and 3 we have seen that viewpoint invariant representations are
essentially local and carry only partial information about the image. As a con-
sequence, in some cases it may be preferable to bypass preprocessing and exploit
invariance directly during analysis. In this chapter we propose, in particular, a
method for learning a classifier that reflects invariance properties of the data (see
also Section 1.2). This is an important special case, to which many object and
category recognition problems can be reduced.

The simplest way to extend a learning algorithm to incorporate data invari-
ance is to artificially modify the training data and make it representative of the
irrelevant variations that need to be captured. This can be done by the addition
of virtual samples, i.e. of samples obtained by transforming the available data
by the irrelevant transformations [GC95, PB06]. This approach is conceptually
straightforward and effective, but makes the training phase extremely slow and
memory inefficient.

Instead of manipulating the training data, invariance can be incorporated in
the cost function used for selecting the optimal classifier during training. Since
the latter is usually the empirical error of the classifier, this can be done by
computing analytically the error when random transformations are applied to
the data (assuming to know the distribution of such transformations). This is,
for example, the approach used in Vicinal Risk Minimization (VRM) [CWB00,
PB06].

In this chapter we show how the latter idea can be applied to the AdaBoost
algorithm in a way which results in a simple and powerful learning algorithm.
We attach probability distributions to transformations that are local rather than
global, as the extrapolation of samples for large transformations may not be
reliable. This allows us to introduce tangent vector methods [PB06, SVL92] in
our algorithm. To further limit the amount of computations, we introduce two
additional elements: gradient descent and Haar wavelet projection. Our gradient
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descent procedure allows to find good features automatically and efficiently so
that exhaustive search over large databases can be avoided. Gradient methods
have been also suggested in a scale-space scheme in VRM, but not in a boosting
framework [CWB00]. Haar wavelet projection allows to dramatically reduce the
amount of computations at test time by mapping each feature to a finite set of
Haar wavelets and therefore enabling the use of integral images [POP98, VJ04b].

In the next section we revisit the basics of the binary classification problem;
then, in Section 6.2 we introduce the tangent space approach and, finally, in
Section 6.3 we present the Parzen-AdaBoost approach.

6.1 Binary classification

For the sake of simplicity, in this chapter we discuss only the binary classification
problem. Extensions to multiple classes can be easily obtained, for instance, by
using AdaBoost.MH [SS98]. In binary classification we are given a collection of N
i.i.d.1 observations x1, . . . ,xN ∈ X and labels y1, . . . , yN ∈ {−1, +1}. The goal is
to design a function H : X ,→ {−1, +1}, a classifier, that predicts the label y of
a generic observation x. As we deal with images, X ⊆ Rd, where d is the number
of pixels of the image. We denote the unknown joint probability distribution
density of (x, y) with p(x, y) and the expectation of a random variable w with
respect to p with Ep[w].

The optimal classifier H is the one that minimizes the so-called 01-loss ex-
pected risk

Errp(H)
.
= Ep[I(H(x) $= y)] =

∑

y={−1,+1}

∫
p(x, y)I(H(x) $= y) dx (6.1)

where I(A) is the indicator function of the event A. Unfortunately, the optimal
classifier cannot be computed as eq. (6.1) requires the distribution p(x, y), which
is unknown. The common strategy is then to approximate p(x, y) by using the
available set of samples {(xi, yi), i = 1, . . . , N}. One such approximation is to
replace the true distribution p(x, y) with the empirical distribution

p̂e(x, y) =
1

N

N∑

i=1

δ(x− xi)δ(y − yi) (6.2)

where δ(x) and δ(y) are Dirac’s deltas. This choice leads to the minimization of

1The notation i.i.d. stands for independent and identically distributed.
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the empirical loss2

Errbpe(H) ∝ − 1

N

N∑

i=1

yiH(xi). (6.3)

Alternatively to eq. (6.2), one can consider Parzen’s windows [DHS01]

p̂g(x, y) =
1

N

N∑

i=1

gΣ(x− xi)δ(y − yi) (6.4)

where gΣ(x) denotes a zero-mean Gaussian distribution with covariance Σ. In
this case, the classification error is

Errbpg(H) ∝ Ebpg [−yH(x)]

= − 1

N

N∑

i=1

∫
gΣ(x− xi)yiH(x)dx

(6.5)

An interesting observation in [CWB00] that we exploit in our algorithm is that
Parzen’s windows method can be formulated as the empirical loss of a smoothed
classifier H, i.e.,

Errbpg(H) = Errbpe(gΣ ∗H). (6.6)

6.1.1 Discrete AdaBoost

In boosting one builds a classifier H by combining additively several so-called
weak classifiers [FHT00, HTF01]. The key idea is that, as long as the weak
classifiers do better than chance, it is possible to boost their performance by
combining them linearly.

In Discrete AdaBoost M weak classifiers fm : X ,→ {−1, +1} are combined
to yield an auxiliary function FM and the corresponding strong classifier HM

FM(x) =
∑M

m=1 cmfm(x), HM(x) = sign (FM(x)) (6.7)

with parameters c1, . . . , cM ∈ R. Rather than directly minimizing the empirical
error (6.3), AdaBoost minimizes the exponential loss

Ebpe [e
−yFM (x)] (6.8)

which bounds from above the empirical error (6.3) as e−yFM (x) ≥ I(HM(x) $=
y), ∀M . To limit the computational burden the auxiliary function FM is built

2In our notation A(x) ∝ B(x) if and only if there exist constants a > 0, b such that A(x) =
aB(x) + b.
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iteratively. Given Fm−1 one searches for the optimal update cmfm such that the
exponential loss (6.8) is minimized. Every iteration can be written recursively
by means of weights w(x, y) = e−yFm−1(x), which automatically concentrate the
error on the difficult samples. The algorithm is summarized in Algorithm 3.

Algorithm 3 Discrete AdaBoost
1: Initialize F0(x) = 0 for all x ∈ X .
2: Initialize w(xi, yi) = 1/N for all i = 1, 2, . . . , N .
3: for m = 1 to M do
4: Find the weak classifier fm ∈ F that minimizes

Errq(f) ∝
N∑

i=1

w(xi, yi)I(f(xi) $= yi)

where the distribution q is defined as

q(x, y) ∝
N∑

i=1

w(x, y)δ(x− xi)δ(y − yi);

5: Let
cm ← 1

2
log

1− Errq(fm)
Errq(fm)

;

6: Update the weights

w(xi, yi) ← w(xi, yi)e−yicmfm(xi);

7: Update the auxiliary function Fm = Fm−1 + cmfm.
8: end for

6.2 Invariance and tangent spaces

As mentioned in the Introduction, in many computer vision applications one is
interested in classifying objects in images irrespectively of translations t ∈ R2,
rotations3 R ∈ SO(2), scalings s ∈ [0, +∞), and changes in intensity due to
contrast b ∈ [0, +∞). Let α = [t R s b] ∈ L be a vector lumping all the
transformation parameters. Then, given a sample x, the transformed sample xα

is defined as
xα

.
= T (x, α) (6.9)

3SO(2) denotes the special orthogonal group of 2-D rotation matrices.
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where T : X × L ,→ X is the morphing function defined via

T (x, α)(x)
.
= bx(sRx + t) (6.10)

and x ∈ R2 denotes the 2-D coordinates of x. Let p(α) be the probability density
of a transformation α. Then, one could incorporate invariance to transformations
in the empirical error as follows

Errinv
bpe

(H) ∝ − 1

N

N∑

i=1

∫
p(α)yiH(T (xi, α))dα. (6.11)

Virtual samples can be easily generated by letting p(α) =
∑K

j=1 δ(α − αj) for a
certain set of transformations {αj}j=1,2,...,K . However, this has the immediate ef-
fect of multiplying the size of the data set of the samples by a factor K. Moreover,
notice that virtual samples generated for large transformations may not reliably
substitute real samples due to missing data, sampling, and quantization. This is
the case, for instance, when we scale, translate, or rotate an image. Therefore, we
consider incorporating invariance to transformations only locally at each sample.
To do so, we use the tangent vector approach [SVL92], i.e., we approximate the
global transformation at each sample as

T (x, α) B x +
K∑

k=1

Lk(x, α0
k)(αk − α0

k) (6.12)

where α0 is the identity transformation, which we can assume identically zero
without loss of generality, and Lk : X ×L ,→ X are local transformations defined
as

Lk(x, α0)
.
=

∂T

∂αk
(x, α)

∣∣∣∣
α=0

. (6.13)

Note that Lk are operators that generate the whole space of local transforma-
tions (a Lie algebra of local transformations). Such operators can be computed
analytically or, more easily, by using finite differences. Finally, to enforce local-
ity we assume that the prior p(α) is Gaussian with mean α0 = 0 and diagonal
covariance matrix Ψ.4 By substituting this prior in eq. (6.11) and by using the
tangent vector approximation we obtain

Errinv
bpe

(H) ∝ − 1

N

N∑

i=1

yi (gΣi ∗H) (xi) . (6.14)

4One way to estimate Ψ is, for example, via cross-validation. However, in our experiments we
manually fix Ψ to the maximum amount possible and within the limits imposed by linearization.
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where Σi = L(xi,0)ΨL(xi,0)T and we have defined L(xi,0) = [L1(xi, 0) L2(xi, 0) . . . LK(xi, 0)].
Notice that the above equation can also be readily interpreted as Parzen’s win-
dows error where the covariance of the Gaussian kernel in eq. (6.3) is Σ = Σi,
i.e.,

Errinv
bpe

(H) = Errbpe(gΣ ∗H) = Errbpg(H). (6.15)

Let us now consider the case of additive Gaussian noise w ∼ p(w). This
case is particularly interesting as it corresponds to no a-priori knowledge where
every pixel of the image x is affected by an unknown disturbance. In this case,
the tangent vectors cover the whole space X and Σ becomes a diagonal matrix,
thus yielding isotropic smoothing. In other words, when samples are affected by
additive Gaussian noise that is independent at each pixel, virtual samples lie in
a sphere around the original image sample. This has the effect of increasing the
classifier margin [Vap95].

6.3 Parzen-AdaBoost

So far, AdaBoost has been based on the empirical distribution in eq. (6.2). We
now look at the extension of AdaBoost to Parzen’s windows eq. (6.4) because, as
we have seen in Section 6.2, it allows us to incorporate invariance to a prescribed
set of transformations.

Similarly to Discrete AdaBoost, our algorithm is based on the following in-
equality

1

2
Ebpe [1− ysign(gΣ ∗ F (x))] ≤ Ebpe [e

−ygΣ∗F (x)]. (6.16)

The auxiliary function F of a strong classifier H(x) = sign F (x) is written as a
summation FM =

∑M
m=1 cmfm, so that gΣ∗FM =

∑M
m=1 cm (gΣ ∗ fm) and this cor-

responds to smoothing each weak classifier. This approach has three advantages:
First, eq. (6.16) guarantees that by minimizing the right-hand side one improves
the empirical error eq. (6.3) of the strong classifier sign(gΣ∗F ). Second, by select-
ing weak classifiers based on eq. (6.16) one automatically incorporates invariance.5

5Later, we will see that the strong classifier F approximately minimized Parzen’s loss (6.6).
When F is a single weak classifier of the form F (x) = c sign(γT

1 x + γ0) the bound
Ebpe [1− ysign(gΣ ∗ F (x))] /2 ≤ Ebpe [e−ygΣ∗F (x)] is guaranteed for any c < 2.678. When F
consists of more than one weak classifier, we assume that only one weak classifier is changing
sign “close to” a sample. In this context, the notion of distance from a sample is based on Σ.
In this case, we have that F (x) = c sign(γT

1 x+ γ0)+ θ where θ is constant (near a sample) and
collects all the decisions from the other weak classifiers. The above bound is again guaranteed
for c < 0.693.
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Third, the minimization of eq. (6.16) results in a very efficient algorithm, as few
weak classifiers are required.6 We call this novel method Parzen-AdaBoost.

Our strategy is to find a recursive iteration along the lines of Discrete Ad-
aBoost to minimize Parzen’s windows loss in eq. (6.5). Similarly to Discrete
AdaBoost we have a strong classifier H(x) = sign(gΣ ∗ FM(x)), where FM(x) =∑M

m=1 cmfm(x), and define Parzen’s windows exponential loss as

Ebpe

[
e−y gΣ∗FM (x)

]
. (6.17)

Then, given a classifier Fm−1 we search for the optimal update cmfm such that
eq. (6.16) is minimized. Thanks to the exponential form, we can separate the
update from the current classifier so that

Ebpe

[
e−y gΣ∗(Fm−1+cmfm)(x)

]
= Eq

[
e−y cmgΣ∗fm(x)

]
(6.18)

where
q(x, y) = 1

N

∑N
i=1 w(xi, yi)δ(x− xi)δ(y − yi)

w(xi, yi) = e−yi gΣi
∗Fm−1(xi).

(6.19)

Thus, at the m-th iteration we need to minimize

N∑

i=1

w(xi, yi)e
−yicmgΣ∗fm(xi) (6.20)

with respect to fm and cm. Finding a closed form solution for this minimization
problem is not straightforward. In this chapter we follow an approach proposed
by Friedman [Fri01] and consider the minimization of eq. (6.20) in function space.
First, we compute the derivative of eq. (6.20) along an arbitrary weak classifier
h : X ,→ R. This yields

lim
ε→0

Eq

[
e−y gΣ∗εh(x)

]
− Eq [e0]

ε
= −Eq [y gΣ ∗ h(x)] . (6.21)

Then we search for the weak classifier fm that results in the steepest descent, i.e.,
that maximizes

Eq [y gΣ ∗ fm(x)] ∝ −Errq(fm) (6.22)

where

Errq(fm) = Eq

[
1− y gΣ ∗ fm(x)

2

]
. (6.23)

Thus we are searching for the weak classifier fm that, after smoothing, has the
minimum weighed risk. Once fm has been chosen, we need to compute the

6This algorithm can also be cast as a Real-Boost method where we search for the optimal
weak classifiers among the smooth and transformation invariant ones.
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optimal step cm. To this end, we consider the first and second derivative of
eq. (6.20) with respect to cm, i.e.,

∂

∂cm
Eq

[
e−y cmgΣ∗fm(x)

]
= Eq′ [−y gΣ ∗ fm(x)]

∂2

∂c2
m

Eq

[
e−y cmgΣ∗fm(x)

]
= Eq′ [(gΣ ∗ fm)2(x)]

(6.24)

where q′(x) = q(x)e−y cmgΣ∗fm(x) is the iteratively updated weighed distribution.
Thus, starting from

cm ←
1

2
log

1− Errq′(fm)

Errq′(fm)
=

1

2
log

1 + Eq′ [y gΣ ∗ fm(x)]

1− Eq′ [y gΣ ∗ fm(x)]
(6.25)

we get the Gauss-Newton update

cm ←
Eq′ [y gΣ ∗ fm(x)]

Eq′ [(gΣ ∗ fm)2(x)]
. (6.26)

The algorithm is summarized in Algorithm 4.

Algorithm 4 Parzen-AdaBoost
1: Initialize F0(x) = 0 for all x ∈ X .
2: Initialize w(xi, yi) = 1/N for all i = 1, 2, . . . , N .
3: for m = 1 to M do
4: Search for the weak classifier fm ∈ F that minimizes Errq(fm) given in eq. (6.23),

where q(x, y) is given in eq. (6.19). In alternative to the exhaustive search, use
the gradient descent method described in Section 6.3.2.

5: Initialize q′ ← q.
6: Initialize

cm ← 1
2

log
1− Errq′(fm)

Errq′(fm)
. (6.27)

7: while not converged do
8: Calculate Eq′ [(gΣ ∗ fm)2(x)].
9: Calculate Eq′ [y gΣ ∗ fm(x)].

10: Set δ ← Eq′ [y gΣ ∗ fm(x)]/Eq′ [(gΣ ∗ fm)2(x)].
11: Update cm ← cm + δ.
12: Update q′(x, y) ← q′(x, y)e−δy gΣ∗fm(x).
13: end while
14: Update the auxiliary function Fm ← Fm−1 + cmfm.
15: end for
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6.3.1 Linear classifiers

In the simplest instance of a classifier H(x) = sign f1(x) the auxiliary function
f1 is linear, i.e.,

f1(x) = sign(γ0 + 〈γ1,x〉) (6.28)

where γ0 ∈ R and γ1 ∈ X . Graphically, this corresponds to defining a hyper-
plane that separates the space of the input images x into two complementary
hyper-volumes. The vector γ1 defines the normal to the hyper-plane. In practice,
γ1 can be rearranged as an image and be seen as a feature. As we will see in
the later sections, we can approximate γ1 with Haar wavelets and improve the
computational efficiency of the classifier. In the case of Parzen’s windows in
eq. (6.4) we immediately find that

(gΣ ∗H)(x) = erf

(
γ0 + 〈γ1, x〉√

2γ#1 Σγ1

)
(6.29)

and thus the approximate Parzen’s windows loss eq. (6.5) becomes

Errpw(H) =
1

2
− 1

2N

N∑

i=1

yierf

(
γ0 + 〈γ1, xi〉√

2γT
1 Σiγ1

)
(6.30)

where erf is the error function and is defined as

erf(z) =
2√
π

∫ z

0

e−t2 dt. (6.31)

Tangent vectors can then be readily incorporated as suggested in sec. 6.2 by
defining Σi = L(xi,0)ΨL(xi,0)T .

6.3.2 Optimizing linear weak classifiers

The first step in Parzen-AdaBoost is to search for a weak classifier fm that min-
imizes eq. (6.23). Typically, one defines a very large set of weak classifiers and
then performs an exhaustive search to determine the optimal one. In addition to
being rather time-consuming, this procedure yields cumbersome and computa-
tionally inefficient strong classifiers when the set of weak classifiers is not chosen
purposefully. In this section we suggest a method to automatically design weak
classifiers via a gradient descent procedure.

We restrict the weak classifiers to be linear so that, as shown in sec. 6.3.1,

fm(x) = sign (γ0 + 〈γ1,x〉) (6.32)

102



where γ0 ∈ R and γ1 ∈ X . The initialization of the parameters (γ0, γ1) is done
by selecting a random vector γ1 and then by a simple line search on the other
parameter γ0. In our algorithm, however, we implement a more efficient method
for the initialization of γ0 based on sorting the responses 〈γ1,xi〉, that we do
not report here for lack of space. Once the parameters have been initialized, we
compute the gradient of

Φ(γ0, γ1)
.
=

N∑

i=1

w(xi, yi)erf

(
γ0 + 〈γ1,xi〉√

2γ#1 Σiγ1

)
. (6.33)

with respect to (γ0, γ1). This results in

∂Φ

∂γ0
=

∑N
i=1 w(xi, yi) ˙erf

(
γ0+〈γ1,x〉√

2γ#1 Σiγ1

)
1√

2γ#1 Σiγ1

∂Φ

∂γ#1
=

∑N
i=1 w(xi, yi) ˙erf

(
γ0+〈γ1,x〉√

2γ#1 Σiγ1

)
1√

2γ#1 Σiγ1

·
(
x− γ0+〈γ1,x〉

γ#1 Σiγ1
Σiγ1

)
(6.34)

where ˙erf(z) denotes the derivative of erf(z) with respect to z. Let ν0
.
=

∂Φ

∂γ0
and

ν1
.
=

∂Φ

∂γ1
be the update directions of γ0 and γ1. Then, we can update the weak

classifier via
γ0 ← γ0 + λν0

γ1 ← γ1 + λν1
(6.35)

given a step λ > 0. To determine the optimal update step λ, consider

Φ(γ0 + λν0, γ1 + λν1) =
∑N

i=1 w(xi, yi)erf

(
β1,i+λβ2,i√

2β3,i+4β4,iλ+2β5,iλ2

)
(6.36)

where

β1,i = γ0 + 〈γ1,xi〉 β2,i = ν0 + 〈ν1,xi〉
β3,i = γ#1 Σiγ1 β4,i = ν#1 Σiγ1 β5,i = ν#1 Σiν1

These equations can be used to compute the energy function for several values
of λ rather efficiently. However, to improve efficiency even further we perform a
single Gauss-Newton step. Then, we compute the gradient and the Hessian of
eq. (6.33) with respect to λ and evaluate them in λ = 0

∂Φ

∂λ
(0) = Φ̇(γ0, γ1)

β2,i

β
1/2
3,i

− β1,iβ4,i

β
3/2
3,i

∂2Φ

∂λ2
(0) = 2Φ̇(γ0, γ1)

(
β2,iβ4,i

β
1/2
3,i

− 3
β1,iβ2

4,i

β
5/2
3,i

− β1,iβ5,i

β
3/2
3,i

) (6.37)
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where

Φ̇(γ0, γ1)
.
=

N∑

i=1

w(xi, yi)erf

(
β1,i√
2β3,i

)
(6.38)

Finally, λ ← −∂Φ

∂λ
(0)

(
∂2Φ

∂λ2
(0)

)−1

.

6.3.3 Projection onto Haar wavelets

In this section we suggest a simple step to considerably speed up the performance
of the classifier at run-time. So far we have been concerned with finding the weak
classifiers fm that minimize a certain exponential loss. We have not considered,
however, that the computation of the inner product 〈γ1,x〉 is rather intensive for
a generic vector γ1. This is because each element in γ1 needs to be multiplied by
the corresponding element of the image x. Nevertheless, if the elements of γ1 lie in
a rectangular region and have a constant value, the computations can be dramat-
ically reduced by using the well-known integral image method [POP98, VJ04b].
More in general, one can use Haar wavelets to compose several rectangular re-
gions and obtain more advanced weak classifiers. In our algorithm, we project the
weak classifier fm by truncating its Haar wavelet decomposition. We insert this
projection immediately before the update step of the auxiliary function Fm. In
the next section we will see that only a few Haar wavelets are required to achieve
the desired classification performance.

6.4 Experiments

The proposed algorithm has been thoroughly tested on both synthetic and real
data sets. In both cases we illustrate the effects of incorporating isotropic smooth-
ing, gradient descent, tangent vectors, and Haar wavelet projection.

6.4.1 Synthetic data experiments

In Figure 6.1 we show a first experiment on two-dimensional (2-D) data to empha-
size the efficacy of smoothing and the tangent vector method with few samples.
The synthetic data is invariant to 2-D rotations. We divide the plots into 3
groups (a), (b), and (c) where: (a) corresponds to a strong classifier with only
1 weak classifier, (b) to 100 weak classifiers, and (c) to 300 weak classifiers. For
each group the left image shows the classification result of Discrete AdaBoost,
the middle image shows the result of AdaBoost with isotropic smoothing only,
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(a) (b) (c)

Figure 6.1: Smoothing and tangent vectors. Within each of the three groups
(a), (b), and (c) we show the classification result of Discrete AdaBoost (left),
AdaBoost with isotropic smoothing (middle), and AdaBoost with tangent vectors
(right). Group (a) shows the classification result with 1 weak classifier, group (b)
shows the classification results with 100 weak classifiers, and group (c) shows the
classification results with 300 weak classifiers. The top row illustrates the decision
region: White corresponds to the region where points are classified as crosses and
black to the region where points are classified as circles. The bottom row shows
the response of the auxiliary function F , i.e., before thresholding with sign. Notice
that group (a) shows clearly the effect of introducing isotropic smoothing (middle
image) and that of introducing an anisotropic smoothing (right image). Notice
also how the standard AdaBoost method suffers from overfitting, while isotropic
smoothing and, in particular, tangent vector methods do not.

and the right image shows the result of AdaBoost with tangent vectors. The
top row displays the decision region where white corresponds to points that are
classified as crosses and black corresponds to points that are classified as circles.
The bottom row shows the response of the auxiliary function F . One can imme-
diately see that while Discrete AdaBoost suffers from overfitting, the other two
methods can cope well with few samples. In particular, as this data is invariant
to rotations, AdaBoost with tangent vectors obtains the best results.

In the second experiment, the synthetic data set consists of 24 × 24 pixels
images of 4 shapes: a circle, a triangle, a star, and a square. To each shape
we apply all the transformations listed in Section 6.2 and, in addition, skewness.
Some samples from each data set are shown in Figure 6.2.

We lump triangles and squares into class 1 and stars and circles into class 2.
Then, we train a strong classifier by changing the isotropic smoothing parameter,
by enabling or not the gradient descent on weak classifiers, by incorporating or
not the tangent vectors, and by changing the number of samples in the training
set. The results of several combinations of these features are shown in Figures 6.3
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Figure 6.2: Some samples from the synthetic data set of the second experiment.
Circles, triangles, stars, and squares are translated, rotated, scaled, skewed, un-
dergo changes in contrast and brightness, and have additive Gaussian noise.

and 6.4.

Notice that in Figure 6.3 the performance at run-time improves when tangent
vectors are used and even more when gradient descent is enabled. All experiments
share the same data set and the same initial set of weak classifiers. Furthermore,
notice how the proposed algorithm can cope well with few data samples in the
training set as the performance with 25 elements yields a 10% test error. As the
test error converges almost immediately when the proposed method is used, only
a few weak classifiers are needed to achieve a very low test error (i.e., 8 weak
classifiers for ∼ 2% test error).

In Figures 6.4 we show the performance of Parzen-AdaBoost when each linear
weak classifier is projected onto a Haar wavelet basis and a fixed number of
components is retained. Notice that the algorithm achieves 10% test error already
with 20 samples, and that on average 25 components are sufficient to capture the
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Figure 6.3: Classification results on synthetic data. The ordinate axis shows the
test error of the proposed AdaBoost method for several configurations of number
of samples in the training data set (N), usage of gradient descent (g), usage of
the tangent vectors (t), and level of isotropic smoothing (s).

variability of the weak classifiers.

6.4.2 Real data experiments

As real data set we use the Viola-Jones faces data set which is publicly available
[VJ04a]. In Figure 6.5 we show the same tests performed in the previous section.
Notice that the results resemble very closely the results obtained in the case
of synthetic data. The only exception is for the case of 25 samples when both
gradient descent and tangent vectors are used. In this case the method does still
better than Discrete AdaBoost, but worse than using only tangent vectors. As
this does not happen for larger training sets, we conjecture that gradient descent
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Figure 6.4: Classification results on synthetic data. The ordinate axis shows
the test error of the proposed AdaBoost method with Haar wavelet projection.
The plot shows how the performance changes as we increase the number of Haar
wavelets of each weak classifier (H).

may overfit data on extremely small training sets.

As in the previous section, we test the performance of the proposed algorithm
when the weak classifiers are projected onto a Haar wavelet basis. Figure 6.6
shows the results for 5, 15, 25, 35, 45, and 55 components in the truncated
Haar wavelet series. Notice that the performance does not change visibly when
more than 25 components are kept. In Figure 6.7 we show the result of training
the method on 8, 000 samples (almost half of the database) and show a final
comparison between the main features: optimization of the weak classifiers via
gradient descent and usage of tangent vectors. Again the performance shows a
consistent behavior. Not only AdaBoost based on tangent vectors and gradient
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Figure 6.5: Faces data set. Performance evaluation for varying isotropic smooth-
ing (s), gradient descent (g), tangent vectors (t), and number of samples in the
training set (N).

descent achieves the best performance in these experiments by and large, but
also it does so more quickly. Having quick convergence to the final test error
means that fewer weak classifiers can be used, with considerable reduction of the
computations at run-time.

Discussion

We have presented a novel boosting method that incorporates several features.
We start by extending the traditional AdaBoost framework to Parzen’s windows
and then show how this can be used to incorporate invariance to geometric and
photometric transformations of the data set. Furthermore, our formulation al-
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Figure 6.6: Faces data set. As in the synthetic data set, the ordinate axis shows
how the performance changes as we vary the number of Haar wavelet components
of each weak classifier (H).

lows the introduction of gradient descent to find optimal weak classifiers and
of Haar wavelet projection to improve the computational efficiency at run-time.
We demonstrate that our method has strong generalization properties on both
synthetic and real data.
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Figure 6.7: Faces data set. In this experiment we perform training on about half
of the data set. The results are once again consistent with the performance in the
previous cases, showing that the method scales well with the size of the training
set.
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CHAPTER 7

Relaxed Matching Kernels

Many visual tasks, such as visual recognition, categorization or three-dimensional
reconstruction, hinge on establishing at least partial correspondence between
different images affected by intrinsic variability of the underlying scene (e.g.
“chair”), as well as by variability due to changes in viewpoint and illumination. In
order to mitigate the effects of occlusions of line-of-sight, many methods employ
a representation of the image in terms of local invariant features, as discussed
in Chapters 2 through 5 of this thesis. The way local features are integrated
in a global representation of the image, however, varies greatly. At one end of
the spectrum are so-called “constellation models” that allow for affine transfor-
mations of feature locations [WWP00], or more general “deformable templates”
that allow for more general transformations, for instance represented by a finite-
dimensional thin-plate spline [Boo89]. At the other end of the spectrum are
so-called “bags of features” (BoF) methods [CDD04], that discard the location
of the features altogether [GD06a].

The fact that BoF methods have been so successful in visual categorization
tasks may seem surprising. A possible reason is that, as we showed in Chapter 2,
achieving viewpoint invariant image representations forces to discard shape in-
formation. However, this does not necessarily mean that a fully invariant repre-
sentation is preferable to one which is perhaps less invariant, but more discrim-
inative. In this context, works such as [LSP06, LS07] proposed variants of the
bag-of-feature model that tries to capture part of the spatial information as well.
In particular, they propose kernels for image comparison which are based on a
bag-of-feature representation augmented with spatial information.

In this chapter we build upon those works and define a general family of ker-
nels, called “relaxed matching kernels” (RMK) (Section 7.2). This family include
as special cases and unifies existing approaches such as the pyramid matching
kernel [GD06a], the spatial pyramid matching kernel [LSP06] as well as the prox-
imity distribution kernel [LS07]. We study interesting properties shared by these
kernels and we show that all of them can be computed efficiently. This helps
understanding the difference between these approaches, and at least in one case
it highlights inconsistencies in the weighting scheme and suggests a better ker-
nel. More importantly, our approach allows us to define new kernels, for instance
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the “graph-matching kernel” (GMK) and agglomerative-information-bottleneck
kernel (AIBMK) proposed in Section 7.3.

In Section 7.4.1 we test GMK on matching graphs of generic features, such as
those used in the “sketch” [GZW03], for wide-baseline correspondence. We show
that, even when features are ambiguous and their identity becomes unstable due
to viewpoint changes, the graph matching is robust enough to absorb much of the
variability. Finally, in Sect 7.4.1 we compare various kernels on the task of object
recognition on benchmark datasets such as Graz-02 and Pascal-05. We show that
our kernels are very competitive with respect to state of the art [TS07, LS07].
We also show, however, that a good baseline implementation of bag-of-features is
very competitive with this more advanced methods, an is capable to outperform
those and previously published sate-of-the-art results in some cases.

7.1 Bag-of-features and beyond

Constructing the Bag-of-Features (BoF) representation [CDD04] of an image
starts from the extraction of local image features. First, the image I is de-
composed in a number of interest regions. To this end, several operators (feature
detectors) are available, ranging from the selection of random patches [NJT06]
to the extraction of scale or affine covariant blobs and corners [MTS04]. This
results in a list l1, . . . , lN of feature locations (and the associated regions). Then
the appearance of each region is encoded by a compact but discriminative statis-
tic (feature descriptor). Again, several operators can be used, many of which are
based on computing an histogram of the image intensities or gradients [Low04].
This results in a second list d1, . . . , dN of feature descriptors.

The locations l1, . . . , lN are then disregarded and the image is represented by
the distribution of the feature descriptors d1, . . . , dN alone. The distribution is es-
timated by quantizing the descriptor space F and then computing an histogram1

h(b) of the occurrence of the quantized descriptors (it is also possible to avoid
quantizing altogether [PD06]). The quantization B ⊂ 2F may be obtained by
a variety of methods, such as K-means or regular partitioning [GD06a, TS07].
By analogy with the bag-of-words model of text analysis, the quantized descrip-
tors b1, . . . , bN ∈ B are also called visual words and the quantization B visual
dictionary.

Comparing two images I1 and I2 is then reduced to evaluating the similar-
ity K(h1, h2) of the respective bag-of-features hk(b), k = 1, 2 representations.
Recently [ZML06] has shown that the χ2 Radial Basis Function (RBF) kernel
(Section 7.2) yields particularly good performances in object categorization with

1We assume that histograms are normalized to one.
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the advantage of being directly operable in an SVM classifier.

A problem with the dictionary approach to BoF is the choice of the resolution
of the visual dictionary B. An excessively fine quantization causes features from
two images to never match (overfitting), while an excessively coarse quantization
yields non-discriminative histograms (bias). Grauman et al. [GD06a] proposed
Pyramid Matching Kernel to overcome this issue. The idea is to work with a
sequence of R progressively coarser dictionaries B0, B1, . . . , BR−1 and to define a
similarity measure as a positive combination of the BoF similarities at the various
levels. The formulation yields a proper Mercer (positive definite) kernel.

While BoF is a powerful paradigm, disregarding completely the image geom-
etry limits the discriminative power of the representation. Several attempts have
been made to extend BoF to account for geometric information. The easiest way
is to append the interest point locations to the descriptors (Section 4 of [GD06a]).
Lazebnik et al. [LSP06] extend this idea and introduce the Spatial Pyramid
Matching Kernel (SPMK): They propose to use quantized pairs (li, di) of in-
terest point location-descriptor as element of the base visual dictionary B0. The
pyramid B0, B1, . . . , BR−1 is then formed by coarsening the quantization of the lo-
cation component l only. In this way, the representation captures the distribution
of both the appearance and location of the interest points.

A limitation of this approach is that, since the location l is expressed in abso-
lute coordinates, the representation is unsuitable for objects which present large
variations in pose. To address this issue, Ling et al. [LS07] introduced the Prox-
imity Distribution Kernel (PDK). The idea is to start from triplets (di, dj, ρij),
where di and dj are interest points descriptors and ρij is their (nearest neighbors)
distance. Successive relaxations merge increasing values of the ρ component (Sec-
tion 7.2). Since ρ is a relative quantity, the limitation of SPMK is removed.

7.2 Relaxed matching kernels

In this section we introduce the “relaxed matching kernels” which generalize
PMK, SPMK and PDK.

Construction. Let B0 ⊂ 2F a quantization of the feature space F (base visual
dictionary). To obtain coarser quantizations Br, we recursively merge bins b ∈ B0

(Fig 7.1). The result of this process is an agglomerative tree, whose nodes are
bins and parents are obtained from children by merging.2

2In practice the tree might be a forest if one stops merging before all bins are merged into
one (but one can always assume that the latter is the case).
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B1

B0

B2

F

Figure 7.1: RMK construction: agglomerative tree. Left. The feature space
F and a sequence of three relaxations B0, B1 and B2. Right. The agglomerative
tree represents the merging operations transforming a relaxation to the next.
Each relaxation Br corresponds to a cut of the tree (dotted boxes).

The base dictionary B0 corresponds to the leaves of the agglomerative tree
and the coarser dictionaries Br correspond to tree “cuts”. A cut (Fig. 7.1) is just
a subset Br of the tree nodes such that any leaf b ∈ B0 is descendent of exactly
one node b′ ∈ Br of the cut. Cuts have the property of preserving the mass of
the dictionary: If hB0(b), b ∈ B0 is an histogram on the finer dictionary B0, then
its projection hBr(b) on the cut Br satisfies

∑

b∈B0

hB0(b) = 1 =
∑

b∈Br

hBr(b).

We compare images Ik, k = 1, 2 by comparing histograms of features defined on
corresponding cuts. Given a cut Br, the similarity measure is given by

Fr = k1(h
1
Br

, h2
Br

) =
∑

b∈Br

min{h1
Br

(b), h2
Br

(b)} (7.1)

To make the match robust, we adopt a “multiscale” approach. We consider
multiple cuts Br at increasing relaxation levels r = 0, 1 . . . , R− 1 and define

K(h1, h2) =
R−1∑

r=0

wrFr, (7.2)

where wr ≥ 0 is a sequence of weights that establish the relative importance of
the relaxations. We define this quantity relaxed matching kernel (RMK).

Base kernel, Mercer’s condition, and RBF. The RMK is a positive defi-
nite (p.d.) kernel [SS02] since each term k1(h1

Br
, h2

Br
) of the summation (7.1) is
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B2

Figure 7.2: RMK: agglomerative trees for PDK, PMK and SPMK. Left.
PDK relaxations merge successive values of the distance component ρ, yielding a
“linear” agglomerative tree. As an illustration, we highlight the cut corresponding
to relaxation B2. PDK fails to be a proper RMK, however, as it considers only
the shaded nodes and is not normalized. Right. PMK and SPMK relaxations
are obtained by merging octaves of the scale space, yielding a “logarithmic”
agglomerative tree.

p.d. [HB05] and the weights wr are non-negative [SS02]. Interestingly, Hein et
al. [HB05] provide a whole family of base kernels that can be substituted to the
l1 kernel k1 in (7.1). This family includes the χ2 and Hellinger’s kernels

kχ2(p, q) = 2
∑

i

piqi

pi + qi
, kH(p, q) =

∑

i

√
piqi.

All of these choices yield p.d. RMKs (another useful property is that the kernels
are normalized to one, i.e. k(p, p) = 1).

Finally, each base kernel corresponds to a distance d2(p, q) by the formula
d2(p, q) = 2−2k(p, q). So, for instance, k1(p, q) corresponds to d2

1(p, q) = ‖p−q‖1

and the χ2 and Hellinger’s kernels correspond to

d2
χ2(p, q) =

∑

i

(pi − qi)2

pi + qi
, d2

H(p, q) =
∑

i

(
√

pi −
√

qi)
2.

These distances can be used to define corresponding RBF kernels by setting
k(p, q) = exp(−γd2(p, q)), where γ > 0 is a tuning parameter. These kernels are
also p.d. [HB05, BFC02].

This flexibility in the choice of the base kernel is interesting as, for instance, [ZML06]
showed that the χ2 RBF kernel may perform better than the l1 kernel (on which
PMK, SPMK and PDK are based) for the task of object categorization.

PMK, SPMK, and PDK. The RMK construction encompasses the approaches
discussed in Set. 7.1. In PMK the feature space F is the set of descriptors
d, B0 is a regular partition of F and Br are obtained by recursively merging
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B0 B1 B2

Figure 7.3: RMK computation: feature visit order. The figure shows the
feature space F and the quantization B0, B1 and B2 of Fig. 7.1. The dots
represents the features fk

i and the dotted arrows a possible visiting order. Notice
that the visit traverses all the features of a bin b ∈ Br before passing to the
successive bin b′ ∈ Br, for all relaxations r = 0, 1, 2.

such partitions, reducing by half the resolution of the quantization. The SPMK
is similar, except that relaxations operate on the location component l of the
features (Section 7.1). The corresponding agglomerative tree height is logarithmic
in the size of the base dictionary B0 (Fig. 7.2).

In PDK B0 is obtained by quantizing the descriptor component di and dj of
the triplets (di, dj, ρij) (ρij is already discrete). Then the successive relaxations
Br are defined by merging triplets that have distance ρij ≤ r + 1. Still PDK
is not a proper RMK because (a) the histograms are not normalized and (b) at
each level the comparison (7.1) is defined as

kPDK(h1
Br

, h2
Br

) =

∑

d1,d2

min

{
∑

ρ≤r+1

h1
B0

(d1, d2, ρ),
∑

ρ≤r+1

h2
B0

(d1, d2, ρ)

}

and misses part of the mass. Specifically, the RMK version of PDK (Fig. 7.2)
yields

kPDK/RMK(h1
Br

, h2
Br

) = kPDK(h1
Br

, h2
Br

)

+
∑

d1,d2

∑

ρ>r+1

min
{
h1

B0
(d1, d2, ρ), h2

B0
(d1, d2, ρ)

}
.

Meaning of the weights. Define Wr =
∑r

q=0 wq and fr = Fr − Fr−1, W−1 =

117



F−1 = 0. Then the RMK (7.2) may be rewritten as

K =
R−1∑

r=0

wrFr =
R−1∑

r=0

(WR−1 −Wr−1)fr. (7.3)

An interesting property of the successive relaxations, proved in Theorem 2, is
that Fr is a monotonically increasing quantity (for a large choice of base ker-
nels, including all the popular ones). Moreover, if the last relaxation level cor-
responds to merging the whole feature space into a single bin, since the base
kernel is normalized we also have FR = 1. Therefore we can interpret Fr as a
cumulative distribution function and the summation (7.3) as the expected value
K = Efr [WR−1 −Wr−1] of the function WR−1 −Wr−1 of the random variable r
with (discrete) density fr. Notice that fr assigns more mass to the relaxation
levels r for which there is an abrupt increase in the matching score Fr. Since
WR−1 −Wr−1 decays with increasing relaxation r (the weights are positive), this
means that the score is large if the two image statistics match early in the relax-
ation sequence. In other words, the kernel is looking for the finer relaxation level
for which the statistics match well.3

For instance the PMK and SPMK kernels have exponentially decaying integral
weights of the form Wr ∝ −e−λr, λ > 0 (up to a positive factor and offset). In
fact, computing the differences Wr −Wr−1 yields wr ∝ e−λr and we have

KPMK ∝
R−1∑

r=0

(e−λr − e−λR)fr−1 ∝
R−1∑

r=0

e−λrFr.

For the PDK/RMK kernel we have wr = 1, Wr = r and

KPDK =
R−1∑

r=0

Fr =
R−1∑

r=0

(R− r)fr

so the weights are linearly decaying.

Computation. We show next that computing an RMK it is a fast operation as
it it is linear in the number of features and relaxation levels.4

Let fk
i , i = 1, . . . , Nk, k = 1, 2 be the features extracted from images I1 and

I2 and quantized to the base level B0. Let Fr, L1
r, L

2
r, r = 0, . . . , R − 1 be three

accumulators initialized to zero.
3This also suggests why counting the same features at multiple relaxation levels do not really

introduce bias in the comparison
4The complexity is O(NR) where N = N1+N2 is the number of features from the two images

to be compared and R is the number of relaxations. The algorithm is also space efficient as it
requires only O(N + R) memory.
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First, we show how to calculate Fr according to the definition (7.1) for a fixed
relaxation level r. To do this, we need to compare histograms h1

Br
and h2

Br
defined

over bins Br = {br1, . . . , brM}. We start by visiting all the features fk
i that belong

to the first bin br1, incrementing the value of the respective accumulators Lk
r .

When there are no more features in br1, we compute min{h1
Br

(br1), h2
Br

(br2)} =
min{L1

r, L
2
r} as of equation (7.1), accumulate the result to Fr, set L1

r and L2
r to

zero, and proceed to the next bin br2. When all bins brm ∈ Br are exhausted, Fr

holds the value (7.1).

This process can be extended to work simultaneously for all relaxation levels
r = 0, . . . , R − 1. This is possible because bins bri at level r are fully contained
in bins br+1,j at level r + 1, so visiting the features belonging to br+1,j can be
done by visiting the features belonging respectively to all the bins bri ⊂ br+1,j in
order, and so on recursively (Fig. 7.3). So it suffices to scan the features once (in
the proper order) accumulating their mass to Lk

1, . . . , L
k
R−1. Whenever the visit

crosses a bin boundary at some level r, the algorithm adds min{L1
r, L

2
r} to Fr,

resets L1
r and L2

r and moves on.5

7.3 Two novel RMKs

To illustrate the flexibility of the RMK construction, we introduce two new match-
ing kernels.

Graph Matching Kernel. Graphs have been used extensively for representing
and matching images. Usually a graph is constructed by connecting interest
points or other features in structures such as constellations, and sketches (see
for instance [FFP03, FPZ05, LZW07, FH05] and references therein). Matching
graphs however is difficult due to the high instability of such structures and the
combinatorial complexity of the search. Roughly speaking, three approaches are
used: (i) focus on simple structures (such as small graphs, trees or stars) that
enable exhaustive search [FPZ05, FH05], (ii) use statistical searching procedures
(e.g. RANSAC, Swendsen-Wang sampling [LZW07]), and (iii) use approximated
matching methods (e.g. spectral methods [QH06]).

Here we experiment with a loose but robust voting scheme, reminiscent of [KI02]
and PDK, based on comparing interest point pairs. Consider a graph G whose
nodes are interest points l1, . . . , lN with associated descriptors d1, . . . , dN . Let
G = {em, m = 1, . . . ,M} be the collection of edges forming the graph, where
em = {li, lj} is an (unordered) pair of image locations. Let ρij be the graph

5A further speed-up is obtained if features are pre-merged at the finer relaxation level B0

before running the algorithm. This is especially useful for kernel such as PDK which compare
pairs of interest point and may have large feature sets.
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distance from li to lj (i.e. the length of the shortest path connecting li to lj).
We construct an RMK by considering triplets (di, dj, ρij) as the base features.
We quantize the descriptor space as in PDK or SPMK (ρ has already a discrete
structure) to obtain the base dictionary B0. We then define the successive re-
laxation levels B1, . . . , BR−1 by merging values of the index ρ, using the linear
scheme of PDK/RMK. So the kernel has the form

K(G1, G2) =
R−1∑

r=0

wr

∑

(di,dj ,ρ)∈Br

k(h1
Br

(di, dj , ρ), h2
Br

(di, dj , ρ)).

In the following we refer to this kernel as Graph Matching Kernel (GMK). GMK
checks for the presence of edges between images features, as specified by the graph
structure. Despite this fact, in the limit when all nodes have unique identifiers,
K(G1, G2) assumes its maximum value

∑R−1
r=0 wr if, and only if, G1 ≡ G2.

Agglomerative Information Bottleneck Kernel. As a second example of
RMK, we introduce a kernel similar in spirit to PMK. We start by a basic quan-
tization B0 of the feature descriptors di (we discard the locations li). Then we
define the successive relaxations Br by iteratively merging bins of the base dictio-
nary B0. However, instead of guiding the merges based on descriptor similarity
(as PMK does), we use Agglomerative Information Bottleneck (AIB, [ST99]) to
obtain a sequence of binary merges. AIB produces a sequence of relaxations Br

so that the information I(d, c) between the feature descriptor d ∈ Br (regarded as
a random variable) and the class label c is maximally preserved. We use wr = Ir

to penalize coarser relaxations which correspond to uninformative dictionaries,
where Ir is the residual information I(d, c) at the relaxation level r. We call this
Agglomerative Information Bottleneck Matching Kernel (AIBMK).

7.4 Experiments

7.4.1 GMKs to match unstable graphs

The first experiment (Fig. 7.4) illustrates graph matching by GMK. Given an
image Ik, we construct a graph as follows: we run Canny’s edge detector on
the image, we extract straight edge segments, and we complete the graph by
constrained Delaunay triangulation. We then extract SIFT keys at the node lo-
cations (fixed window size and orientation) using software from [VF08] and we
create a dictionary of only sixteen visual words (such a vocabulary is not very dis-
tinctive but quite invariant). This yields graphs G1 and G2 from the two images.
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: GMK: robustness evaluation. (a) A few images from [MTS04].
The data consists of six image: a frontal view five other views from, 20 to 60
degrees of slant. Here we construct a graph by downsampling the images by half,
computing a Canny edge map and running constrained Delaunay triangulation.
We then compute SIFT features at nodes (fixed orientation and window size of 20
pixels). This construction is not affine invariant and the resulting graph is highly
unstable. We make the node labels as invariant as possible by choosing a small
dictionary size (64 bins). We then match each subgraph S1(li) in the frontal view
to similar graphs Sk(lj) in the other views (we do not try to remove ambiguous
matches). Using the ground truth homography, we record the graph distance
from the center of the best matching subgraph to the actual reprojection. (b)
a match at graph distance 0 from the 20o views pair. (c) A match with graph
distance 1 – the overlap is still very good. (d)-(f) two matches at 30o. (f) A
match at 50o. Up to 20o of slant 83% of the match are within graph distance 2.
At 30o this number reduces to 57%. After that the deformation of the descriptors
is excessive and matching becomes unreliable.

We then select a location li in the first image and extract a subgraph S1(li) ⊂ G1,
defined as the union of li with its neighbors at (graph) distance not greater than
T = 2. Then we try to match S1(li) to S2(lj) for all similarly constructed sub-
graphs in the second image. Notice the large variation in the structure of the
graphs being matched, due both to instability of the construction of the image
graphs Gk and the selection of the subgraphs Sk. We evaluate quantitatively how
many subgraphs can be successfully matched in a test sequence from [MTS04].
This data is devised to evaluate affine invariant descriptors; here we show that
RMK is robust enough to match unstable interest points graphs.
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Figure 7.5: ROC curves for Pascal-05 and Graz-02. We compare the average
ROCs obtained in several runs of the various algorithms (we average ROC curves
along lines from the origin; in this way the curve passes by the average equal-
error-rate point).

7.4.2 RMKs for object recognition

We evaluate GMK, AIBMK, PDK, PDK/RMK in object recognition experiments
on the Graz-02 and Pascal-05 datasets (mainly for the sake of comparison with
previous related approaches). We also compare the methods against the base-
line BoF as described by [ZML06], which we summarize next. Each image is
normalized so that the largest side measures 640 pixels. Then the Harris and
Laplace operators are used to extract multiscale interest points using publicly
available code from [Dor05]. We remove features of scale below 2.5 pixels (we
also remove duplicate features due to a bug in the software). As in [ZML06], we
fix the orientation of the patches to a nominal value (i.e. the interest points are
not rotationally invariant). At each interest point we compute a SIFT descriptor.
The visual vocabulary is formed by running k-means with k = 200 (Lloyd algo-
rithm) for each category independently, and then joining the dictionaries. Bag of
features are compared by the χ2 RBF kernel, which performs better on average.
The GMK, AIBMK, PDK, PDK/RMK also use the same χ2 basis kernel and the
RBF transformation. We use an SVM in all experiments. The parameter C of
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(b) Graz-02 Cars
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(c) Graz-02 People
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(d) Pascal-05 Bicycles
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(e) Pascal-05 Cars
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(f) Pascal-05 People
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(g) Pascal-05 Motor-
bikes

Figure 7.6: Equal Error Rates for Pascal-05 and Graz-02. We report the
maximum, minimum and average EER for each algorithm in multiple runs (as
the construction of the dictionary is randomized). The variability, especially in
the smaller Graz-02 dataset, is relatively large. This makes it difficult to compare
directly to previous work, which do not report this information. Here PDK.O
refers to [LS07], TU to [TS07] and PA5 to Pascal-05 winner. All algorithms,
whether they use spatial information or not, are very close. The baseline algo-
rithm performs as well or better in many of the cases, and it is very close to the
best algorithm in the others. Makes exception Pascal-05 bikes, where we were
able to obtain the better performance by method exploiting the spatial structure.

the SVM [SS02] is learned by 10-fold cross validation. The graph used in GMK
is computed by Delaunay triangulation of the points (we do not extract edges).

For Graz-02 we use the same training and testing sets of [LS07, TS07]. For
Pascal-05 we use the training and validation sets from the challenge as training
data and the test-2 (difficult) test set as testing data. Results are compared in
Table 7.6 against [LS07, TS07] and the winner of Pascal-05 VOC competition.
ROC curves are reported in Fig. 7.5.

Our kernels are competitive, outperforming previous state of the art in four
of the seven categories. Our implementation of PDK outperforms the original
paper [LS07] in all but one cases, perhaps due to the fact that we use the χ2

and RBF combination. We also compare favorably to [TS07] and the Pascal-05
winner.

We should note, however, than in most cases the advantage of one method
on another is small (see for instance GR-bicycles). In particular, the baseline

123



algorithm performs in practice as well and in some case better than these more
sophisticated kernels and [TS07] (which uses dense features and a large vocabu-
lary as opposed to sparse feature and a small vocabulary).

Discussion

We have introduced RMK as a generalization of popular kernels for image cate-
gorizations. The formulation defines a large space of possible useful kernels, and
suggests modifications and improvements to the current ones. We also have intro-
duced a novel interpretation of the kernel weights and showed the monotonicity
property of the relaxed similarity scores (7.1). These observations transfer di-
rectly to previous method as well.

We have introduced two new examples of RMKs: the GMK and AIBMK ker-
nels. GMK have been demonstrated successfully for matching graphs of features
in a wide-baseline matching experiment. We also have tested our kernels on ob-
ject categorization on Pascal-05 and Graz-02. However, we also noticed that a
baseline BoF formulation is often as competitive, which, we hope, will stimulate
a useful debate in the community.

7.A Proofs

We study the parametric family of kernels among histograms given by K(p, q) =∑
i kα|β(pi, qi), where [HB05]

kα|β =
pi + qi

2
− 1

2Z




(

pα
i + qα

i

2

) 1
α

−
(

pβ
i + qβ

i

2

) 1
β



 (7.4)

where α ≥ 1 and β ∈ [−∞,−1] ∪ [12 , α] and the normalization constant Z is

equal to 2−
1
α − 2−

1
β if β > 0 and to 2−

1
α if β < 0. l1, Hellinger’s and χ2 kernels

are obtained for (α, β) equal to (∞, 1), (1, 1
2) and (1,−1) respectively. In the

following we restrict to the case β ≤ 1 (we verified by simulation that these
results do not always hold if β > 1).

Lemma 5. Let x1, x2, y1, y2 ∈ R+ be non negative numbers and let k = kα|β as
defined above. Moreover, let β ≤ 1. Then

k(x1 + x2, y1 + y2) ≥ k(x1, y1) + k(x2, y2)

Proof. Let fα(xi, yi) = (xα
i + yα

i )1/α. Since α ≥ 1, by Minkowsky’s inequality6

6I.e. by th lα-triangle inequality applied to vectors (x1, y1) and (x2, y2).
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fα(x1 + x2, y1 + y2) ≤ fα(x1, y1) + fα(x2, y2). Minkowsky’s inequality reverses
when the exponent is smaller than 1, for which fβ(x1 +x2, y1 + y2) ≤ fβ(x1, y1)+
fβ(x2, y2). Substituting back in (7.4) we obtain the desired inequality.

Theorem 2 (Monotonicity of the kernel). Let p, q ∈ Rn
+ be non-negative real

vectors. Let W be a stochastic matrix (i.e. W ∈ Rm×n
+ , 1#W = 1#). Let K(p, q)

defined as above, with β ≤ 1.Then

K(Wp, Wq) ≥ K(p, q).

Proof. We have

K(Wp, Wq) =
∑

i

K

(
∑

j

wijpj,
∑

j

wijqj

)

Applying iteratively the lemma n− 1 times yields

K(Wp, Wq) ≥
∑

i

∑

j

K(wijpj, wijqj).

But K is homogeneous (i.e. K(cx, cy) = cK(x, y)), so

K(Wp, Wq) ≥
∑

j

∑

i

wijK(pj, qj) = K(p, q).
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CHAPTER 8

Fast Data Clustering and Quick Shift

Clustering is a fundamental primitive of many vision algorithms. An application
relevant to us is the construction of the so called “visual dictionaries” used in bag-
of-features image representations for the recognition of object categories (refer to
Chapter 7). Recall that a visual dictionary is a partition of the space of local
image features into a number of “visual words”. Ideally, visual words should be as
informative as the original features and contain less irrelevant details than them.
Perhaps surprisingly, however, clustering methods that are commonly used for
the design of such dictionaries are not tailored to this end. A typical example
is k-means, whose purpose is to approximate the feature (data) space with a
small number k of prototypes: These are apparently unrelated to the task of
characterizing object categories.

A possible reason why clustering methods such as k-means may work in this
context is that the distribution of local image features often reflects invariance
properties of the data. In particular, local image features may distribute in
modes, with each mode capturing a prototypical visual structure and some of
its irrelevant variations. Therefore, by representing such modes, k-means may
generate useful visual words.

The ability of k-means of capturing the data modes is limited by the fact
that the algorithm uses a parametric model of the cluster shapes. If more fine
grained information needs to be recovered, different approaches can be used.
For computer vision applications, the most notable example is probably mean
shift. Mean shift [FH75, Che95, CM02b] is a popular non-parametric cluster-
ing algorithm based on the idea of associating each data point to a mode of the
underlying probability density function. This simple criterion has appealing ad-
vantages compared to other traditional clustering techniques: The structure of
the clusters may be rather arbitrary and the number of clusters does not need to
be known in advance.

Mean shift is not the only “mode seeking” clustering algorithm. Other ex-
amples include earlier graph-based methods [KNF76] and, more recently, medoid
shift [SKK07]. Unlike mean shift, medoid shift extends easily to non-Euclidean
spaces. In fact, mean shift is essentially a gradient optimization algorithm [Che95,
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Figure 8.1: Mode seeking algorithms. Comparison of different mode seek-
ing algorithms (Section 8.1) on a toy problem. The black dots represent (some
of) the data points xi ∈ X ⊂ R2 and the intensity of the image is proportional
to the Parzen density estimate P (x). Left. Mean shift moves the points up-
hill towards the mode approximately following the gradient. Middle. Medoid
shift approximates mean shift trajectories by connecting data points. For reason
explained in the text and in Fig. 8.2, medoid shifts are constrained to connect
points comprised in the red circles. This disconnects portions of the space where
the data is sparse, and can be alleviated (but not solved) by iterating the pro-
cedure (Fig. 8.2). Right. Quick shift (Section 8.2) seeks the energy modes by
connecting nearest neighbors at higher energy levels, trading-off mode over- and
under-fragmentation.

CM02b, YL07] and the gradient cannot be defined unless the data space is en-
dowed with a Hilbert space structure. While there have been attempts to gener-
alize mean shift to non-linear manifolds by working on the tangent space [SM06],
medoid shift adopts a simpler and more general strategy, which does not require
the explicit computation of the gradient in the first place. Moreover, the algo-
rithm is non-iterative and there is no need for a stopping heuristic. Its biggest
disadvantage is its computational complexity [SKK07]. Depending on the im-
plementation, medoid shift requires between O(dN2 + N3) and O(dN2 + N2.38)
operations to cluster N points, where d is the dimensionality of the data. On the
other hand, mean shift is only O(dN2T ), where T is the number of iterations of
the algorithm, and clever implementations yield dT D N .

In this chapter we show that the computational complexity of Euclidean
medoid shift is only O(dN2) (with a small constant), which makes it faster (not
slower!) than mean shift (Section 8.2). We then generalize this result to a large
family of non-Euclidean distances by using kernel methods [Sch01], showing that
in this case the complexity is bounded by the effective dimensionality of the ker-
nel space (Section 8.2). Working with kernels has other advantages: First, it

127



extends to mean shift (Section 8.3); second, it gives an explicit interpretation of
non-Euclidean medoid shift; third, it suggests why such generalized mode seek-
ing algorithms skirt the curse of dimensionality, despite estimating a density in
complex spaces (Section 8.3). In summary, we show that kernels extends mode
seeking algorithms to non-Euclidean spaces in a simple, general and efficient way.

Can we conclude that medoid shift should replace mean shift? Unfortunately,
not. We show that the weak point of medoid shift is its inability to identify
consistently all the modes of the density (Section 8.1). This fact was addressed
implicitly by [SKK07] who reiterate medoid shift on a simplified dataset (simi-
lar to [Car06]). However, this compromises the non-iterative nature of medoid
shift and changes the underlying density function (which may be undesirable).
Moreover, we show that this fix does not always work (Fig. 8.2).

We address this issue in two ways. First, we propose using medoid shift to
simplify the data and initialize the more accurate mean shift algorithm (Sec-
tion 8.4.2 and Section 8.4.3). Second, we propose an alternative mode seeking
algorithm that can trade off mode over- and under-fragmentation (Section 8.2).
This algorithm, related to [KNF76], is particularly simple and fast, yields surpris-
ingly good segmentations, and returns a one parameter family of segmentations
where model selection can be applied.

We demonstrate these algorithms on three tasks (Section 8.4): Clustering
on a manifold (Section 8.4.1), image segmentation (Section 8.4.2), and clustering
image signatures for automatic object categorization (Section 8.4.3). The relative
advantages and disadvantages of the various algorithms are discussed.

8.1 Mode seeking

Given N data points x1, . . . , xN ∈ X = Rd, a mode seeking clustering algorithm
conceptually starts by computing the Parzen density estimate

P (x) =
1

N

N∑

i=1

k(x− xi), x ∈ Rd (8.1)

where k(x) can be a Gaussian or other window.1 Then each point xi is moved
towards a mode of P (x) evolving the trajectory yi(t), t > 0 uphill, starting from
yi(0) = xi and following the gradient ∇P (yi(t)). All the points that converge to
the same mode form a cluster.

1The term “kernel” is also used in the literature. Here we use the term “window” to avoid
confusion with the kernels introduced in Section 8.2.
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A mode seeking algorithm needs (i) a numerical scheme to evolve the trajec-
tories yi(t), (ii) a halting rule to decide when to stop the evolution and (iii) a
clustering rule to merge the trajectory end-points. Next, we discuss two algo-
rithms of this family.

Mean Shift. Mean shift [FH75, CM02b] is based on an efficient rule to evolve the
trajectories yi(t) when the window k(x) can be written as ψ(‖x‖2

2) for a convex
function ψ(z) (for instance the Gaussian window has ψ(z) ∝ exp(−z)). The
idea is to bound the window from below by the quadric k(z′) ≥ k(z) + (‖z′‖2

2 −
‖z‖2

2)ψ̇(‖z‖2
2). Substituting in (8.1) yields

P (y′) ≥ P (y) +
1

N

N∑

j=1

(‖y′ − xj‖2
2 − ‖y − xj‖2

2)ψ̇(‖y − xj‖2
2), (8.2)

and maximizing this lower bound at y = yi(t) yields the mean-shift update rule

yi(t+1) = argmax
y

1
N

N∑

j=1

‖y−xj‖22ψ̇(‖yi(t)−xj‖22) =
∑N

j=1 ψ̇(‖yi(t)− xj‖22)xj
∑N

j=1 ψ̇(‖yi(t)− xj‖22)
. (8.3)

If the profile ψ(z) is monotonically decreasing, then P (yi(t)) < P (yi(t + 1)) at
each step and the algorithm converges in the limit (since E is bounded [CM02b]).
The complexity is O(dN2T ), where d is the dimensionality of the data space and
T is the number of iterations. The behavior of the algorithm is illustrated in
Fig. 8.1.

Medoid Shift. Medoid shift [SKK07] is a modification of mean shift in which
the trajectories yi(t) are constrained to pass through the points xi, i = 1, . . . , N .
The advantage of medoid shift are: (i) only one step yi(1), i = 1, . . . , N has to be
computed for each point xi (because yi(t+1) = yyi(t)(1)), (ii) there is no need for
a stopping/merging heuristic (as these conditions are met exactly), and (iii) the
data space X may be non-Euclidean (since to maximize (8.4) there is no need to
compute derivatives). Eventually, points are linked by steps into a forest, with
clusters corresponding to trees. The algorithm is illustrated in Fig. 8.1.

According to [SKK07], the main drawback of medoid shift is speed. In fact,
maximizing (8.3) restricted to the dataset amounts to calculating

yi(1) = argmax
y∈{x1,...,xN}

1

N

N∑

j=1

d2(y, xj)φ̇(d2(xj, xi)) (8.4)

where d2(x, y) = ‖x−y‖2
2 in the Euclidean case. A basic implementation requires

O(N3+dN2) operations, assuming O(d) operations to evaluate d2(x, y). However,
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Figure 8.2: Medoid shift over-fragmentation. Left. We apply medoid shift
to cluster points −1, +1, +1/2 ∈ R using a Gaussian window of variance σ2 = 1
(dashed green lines). The density P (x) (red curve; Section 8.1) has a single mode,
but medoid shift fails to move the point −1 towards the mode (i.e. y−1(1) = −1).
The reason is that the quadratic lower bound (8.2) (blue curve) is larger at −1
than it is at +1 or +1/2. Notice that mean shift would have moved −1 towards
the mode by a small, but finite amount, eventually extracting the single mode.
Right. The problem is not solved even if medoid shift is reiterated [SKK07] on
the two modes −1 and +1 (where +1 has double mass), even if the density P (x)
does become blurrier [Car06, SKK07].

by defining matrices Dkj = d2(xk, xj) and Fki = φ̇(Dik)/N , we can rewrite (8.4)
as

yi(1) = argmax
k=1,...,N

N∑

j=1

DkjFji = argmax
k=1,...,N

e#k DFei (8.5)

where ei denotes the i-th element of the canonical basis.2 As noted in [SKK07],
O(N2.38) operations are sufficient by using the fastest matrix multiplication algo-
rithm available. Unfortunately the hidden constant of this algorithm is too large
to be practical (see [Knu98], pag. 501). Thus a realistic estimate of the time
required is more pessimistic than what suggested by the asymptotic estimate
O(dN2 + N2.38).

Here we note that a more delicate issue with medoid shift is that it may fail
to properly identify the modes of the density P (x). This is illustrated in Fig. 8.2,
where medoid shift fails to cluster three real points −1, +1 and +1/2, finding two
modes −1 and +1 instead of one. To overcome this problem, [SKK07] applies
medoid shift iteratively on the modes (in the example −1 and +1). However this
solution is not completely satisfactory because (i) the underlying model P (x)

2For instance e2 =
[
0 1 0 . . . 0

]#.
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is changed (similarly to blurry mean shift [FH75, Che95]) and (ii) the strategy
does not work in all cases (for instance, in Fig. 8.2 points −1 and +1 still fail to
converge to a single mode).

Finally, consider the interpretation of medoid shift. When X is a Hilbert
space, medoid (and mean) shift follow approximately the gradient of the density
P (x) (by maximizing the lower bound (8.3)). The gradient itself depends crucially
on the inner product defined on X (which encodes the cost of moving along each
direction [SYM07]). When X is not an Hilbert space, the gradient cannot be
defined, but the term d2(x, y) in (8.4) has a similar direction-weighing effect. In
later sections we will make this connection more explicit.

8.2 Fast clustering

Faster Euclidean Medoid Shift. We show that the complexity of Euclidean
medoid shift is only O(dN2) (with a small constant) instead of O(dN2 + N2.38)
(with a large constant) [SKK07]. Let X =

[
x1 . . . xN

]
be the data matrix. Let

n = (X#EX#)1 be the vector of the squared norms of the data, where 1 denotes
the vector of all ones and E the Hadamard (component wise) matrix product.
Then we have

D = 1n# + n1# − 2X#X, DF = n(1#F ) + 1(n#F )− 2X#(XF ). (8.6)

The term 1(n#F ) has constant columns and is irrelevant to the maximization (8.5).
Therefore, we need to compute

DF ∝ n(1#F )− 2X#(XF ), n = (X# EX#)1 = (I EX#X)1 (8.7)

where I is the identity matrix.3 It is now easy to check that each matrix product
in (8.7) requires O(dN2) operations only.

Kernel Medoid Shift. An advantage of medoid shift is the possibility of com-
puting (8.4) for distances d2(x, y) other than the Euclidean one [SKK07]. The
decomposition (8.6) can still be carried out if the distance d2(x, y) can be ex-
pressed as K(x, x)+K(y, y)−2K(x, y) for an appropriate positive definite (p.d.)

3And we used the fact that (I EAB)1 = (B# EA)1.
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kernel4 K [Sch01]. Then we have D = 1n# + n1# − 2K, and

DF ∝ n(1#F )− 2KF, n = (I EK)1.

Unfortunately, the multiplication KF is still O(N2.38). However we can search
for a low-rank decomposition G#G of K (we assume, without loss of generality,
that K is centered5). If G is a decomposition of rank d, then

DF ∝ n(1#F )− 2G(G#F ), n = (I EG#G)1 = (G# EG#)1

can still be computed in O(dN2) operations. The cost of decomposing K is
typically around O(d2N) [FS01, BJ02]. See Fig. 8.3 for a basic implementation.

Quick Shift. In order to seek the mode of the density P (x), it is not necessary
to use the gradient or the quadratic lower bound (8.2). Here we propose quick
shift, which simply moves each point xi to the nearest neighbor for which there
is an increment of the density P (x). In formulas,

yi(1) = argmin
j:Pj>Pi

Dij, Pi =
1

N

N∑

j=1

φ(Dij). (8.8)

Quick shift has four advantages: (i) simplicity; (ii) speed (O(dN2) with a small
constant); (iii) generality (the nature of D is irrelevant); (iv) a tuning parameter
to trade off under- and over-fragmentation of the modes. The latter is obtained
because there is no a-priori upper bound on the length Dij of the shifts yi(0) →
yi(1). In fact, the algorithm connects all the points into a single tree. Modes
are then recovered by breaking the branches of the tree that are longer than a
threshold τ . Searching τ amounts to performing model selection and balances
under- and over-fragmentation of the modes. The algorithm is illustrated in
Fig. 8.1.

Quick shift is related to the classic algorithm from [KNF76]. In fact, we can
rewrite (8.8) as

yi(1) = argmax
j=1,...,N

sign(Pj − Pi)
Dij

, and compare it to yi(1) = argmax
j:d(xj ,xi)<τ

Pj − Pi

Dij
(8.9)

4The kernel K should not be confused with the Parzen window k(z) appearing in (8.1). In
the literature, it is common to refer to the Parzen window as “kernel”, but in most cases it has
rather different mathematical properties than the kernel K we consider here. An exception is
when the window is Gaussian, in which cases k(d2(x, y)) is a p.d. kernel. In this case, we point
out an interesting interpretation of mean shift as a local optimization algorithm that, starting
from each data point, searches for the pre-image of the global data average computed in kernel
space. This explains the striking similarity of the mean shift update Eq. (8.3) and Eq. (18.22)
of [SS02].

5K is centered if K1 = 0. If this is not the case, we can replace K by K ′ = HKH, where
H = I − 11#/N is the so-called centering matrix. This operation translates the origin of the
kernel space, but does not change the corresponding distance.
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as given by [KNF76]. Notice that (Pj − Pi)/Dij is a numerical approximation
of the gradient of E in the direction xj − xi. The crucial difference is that
maximizing the gradient approximation must be done in a neighborhood of each
point defined a-priori by the choice of the parameter τ . Thus model selection
in [KNF76] requires running the algorithm multiple times, one for each value of
τ . In contrast, quick shift returns at once the solutions for all possible values of
τ , making model selection much more efficient.

8.3 Cluster refinement

In the previous section we introduced fast kernel medoid shift as an accelerated
version of non-Euclidean medoid shift. Since medoid shift may over-fragment
modes, quick shift was then proposed as a method to control under- and over-
fragmentation by the choice of a parameter τ . No algorithm, however, guarantees
the same accuracy of the slower mean shift.

It is then natural to ask whether mean shift could be extended to work in a
non-Euclidean setting. [SKK07] cites the problem of defining the mean as the
major obstacle to this idea. [SM06] addresses this issue by defining mean shift
vectors on the tangent space of a non-linear manifold, but no proof of convergence
is given, and the applicability is limited by the fact that the data space needs to
have a manifold structure known analytically.

A simple solution to this problem is to extend kernel medoid to a correspond-
ing kernel mean shift procedure. Let K(·, ·) be a p.d. kernel on the data space
X . Then K(x, ·) is an element of the so called reproducing kernel Hilbert space
H [SS02], whose inner product is defined by letting 〈K(x, ·), K(y, ·)〉H = K(x, y).
Points x ∈ Rd are then identified with elements K(x, ·) of the Hilbert space.
Given this identification, we can write 〈·, x〉H for 〈·, K(x, ·)〉H.

Kernel mean shift computes a “density6” on H

P (y) =
1

N

N∑

j=1

k(d2
H(y, xj)), y ∈ H (8.10)

where d2
H(xj, y) = 〈y, y〉H + 〈xj, xj〉H − 2〈y, xj〉H. Notice that y ∈ H, unlike

standard mean shift, does not belong necessarily to the data space X (up to
the identification x ≡ K(x, ·)). However, if k(z) is monotonically decreasing,
then maximizing w.r.t. y can be restricted to the linear subspace spanH X =
spanH{x1, . . . , xn} ⊂ H (if not, the orthogonal projection of y onto that space
decreases simultaneously all terms d2

H(xj, y)).

6The interpretation is discussed later.

133



(Kernel) Mean Shift (Kernel) Medoid Shift
function Z = meanshift(G, sigma)

[d,N] = size(G) ;
oN = ones(N,1) ;
od = ones(d,1) ;
n = (G’.*G’)*od ;

Z = G ;
T = 100 ;
for t=1:T

m = (Z’.*Z’)*od ;
D = m*oN’ + oN*n’ - 2*(Z’*G) ;
F = - exp(- .5 * D’ / sigma^2) ;
Y = F ./ (oN * (oN’*F)) ;
Z = G*Y ;

end

function map = medoidshift(G, sigma)

[d,N] = size(G) ;
oN = ones(N,1) ;
od = ones(d,1) ;
n = (G’.*G’)*od ;

D = n*oN’ + oN*n’ - 2*(G’*G) ;
F = - exp(- .5 * D’ / sigma^2) ;
Q = n * (oN’*F) - 2 * G’ * (G*F) ;

[drop,map] = max(Q) ;

Figure 8.3: Kernel mean and medoid shift algorithms. We show basic
MATLAB implementations of two of the proposed algorithms. Here K = G#G is
a low-rank decomposition G ∈ Rd×N of the (centered) kernel matrix and sigma
is the (isotropic) standard deviation of the Gaussian Parzen window. Both al-
gorithms are O(dN2) (for a fixed number of iterations of mean shift), reduce to
their Euclidean equivalents by setting G ≡ X and Z ≡ Y , and can be easily
modified to use the full kernel matrix K rather than a decomposition G#G (but
the complexity grows to O(N3)).

Therefore, we can express all calculations relative to spanH X. In particular, if
Kij = K(xi, xj) is the kernel matrix, we have d2

H(xj, y) = y#Ky+e#j Kej−2e#j Ky
where ej is the j-th vector of the canonical basis and y is a vector of N coefficients.
As in standard mean shift, the shifts are obtained by maximizing the lower bound

yi(t + 1) = argmax
y∈RN

N∑

j=1

(y#Ky + e#j Kej − 2e#j Ky)φ̇(d2
H(xj, yi(t))).

Deriving w.r.t. y and setting to zero yields the update equation

yi(t + 1) =
1

1#Fei
(Fei), Fji = φ̇(Dij), Dij = d2

H(yi(t), xj). (8.11)

Low-rank approximation. Similarly to medoid shift, we can accelerate the
algorithm by using a low-rank decomposition K = G#G of the (centered) kernel
matrix. It is useful to switch to matrix notation for all the quantities. Let
Y =

[
y1, . . . yM

]
be the trajectory matrix and define Z = GY the reduced
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coordinates.7 The distance matrix D can be written compactly as

D = m1# + 1n# − 2Y #K = m1# + 1n# − 2Z#G;

where

m = (Y # E Y #K)1 = (Z# E Z#)1, n = (I EK)1 = (G# EG#)1.

At each iteration D is calculated in O(dN2) operations. Then F = φ̇(D#)/N
is evaluated component-wise. Finally the trajectories Y (or equivalently Z) are
updated by

Y ← F diag(F1)−1, Z ← GY.

in O(N2) operations. Notice that, by setting G ≡ X and Z ≡ Y in these
equations, we obtain Euclidean mean shift back. See Fig. 8.3 for a basic imple-
mentation.

Interpretation, Regularization and Scaling. In Euclidean mean shift the
function P (x) is a non-parametric estimate of a probability density. Does the
same interpretation hold in kernel space? For any fixed data set of size N ,
we can restrict our attention to the subspace space spanH X ⊂ H and interpret
P (x) as a probability density on this finite-dimensional space. Unfortunately, the
number of dimensions of this space may be as large as the number of data points
N , which makes the Parzen density estimate P (x) inconsistent (in the sense that
the variance does not converge to zero as N → ∞). So how do we make sense
of kernel mean shift? The idea is to use the fact that most of the dimensions of
spanH X are often unimportant. Formally, consider the eigen-decomposition K =
V ΣV # = G#G, G = Σ

1
2 V # of the (centered) kernel matrix K. Assume Σ

1
2 =

N diag(σ1, . . . ,σN), with σ1 ≥ σ2 ≥ · · · ≥ σN . According to this decomposition,
vectors x, y ∈ spanH X can be identified with their coordinates g, z ∈ RN so that
〈x, y〉H = 〈g, z〉. Moreover the data matrix G =

[
g1 . . . gn

]
has null mean8 and

covariance GG#/N = Σ/N = σ2
1 diag(λ2

1, . . . ,λ
2
N). If λi decay fast, the effective

dimension of the data can be much smaller than N .

The simplest way to regularize the Parzen estimate is therefore to discard the
dimensions above some index d (which also improves efficiency). Another option
is to blur the coordinates z by adding a small Gaussian noise η of isotropic stan-
dard deviation ε, obtaining a regularized variable z′ = z + η. The components of
z with smaller variance are “washed out” by the noise, and we can obtain a con-
sistent estimator of z′ by using the regularized Parzen estimate

∑N
i=1(gε ∗ k)(zi)

(the same idea is implicitly used, for instance, in kernel Fisher discriminant analy-
sis [MRW99], where the covariance matrix computed in kernel space is regularized

7Similarly, the data matrix X has reduced coordinates equal to G.
8Because K is assumed to be centered, so that 1#G#(G1) = 1#K1 = 0.
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by the addition of ε2I). This suggests that using a kernel with sufficient isotropic
smoothing may be sufficient.

Finally, we note that, due to the different scalings λ1, . . . ,λN of the linear
dimensions, it might be preferable to use an adapted Parzen window, which
retains the same proportions [Sai02]. This, combined with the regularization ε,
suggests us to scale each axis of the kernel by

√
σ2λ2

i + ε2.9

9So far we disregarded the normalization constant of the Parzen window k(x) as it was
irrelevant for our purposes. If, however, windows kσ(x) of variable width σ are used [CRM01],
then the relative weights of the windows become important. Recall that in the d dimensional
Euclidean case one has kσ(0)/kσ′(0) = (σ′/σ)d. In kernel space therefore one would have

kσ(0)
kσ′(0)

=

√√√√
N∏

i=1

σ′2λ2
i + ε2

σ2λ2
i + ε2

.
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Figure 8.4: Clustering on a manifold. By using kernel ISOMAP we can apply
kernel mean and medoid shift to cluster points on a manifold. For the sake of
illustration, we reproduce an example from [SKK07]. From left to right: Kernel
mean shift (7.8s), non-iterated kernel medoid shift (0.18s), iterated kernel medoid
shift (0.48s), quick shift (0.12s). We project the kernel space to three dimensions
d = 3 as the residual dimensions are irrelevant. All algorithms but non-iterated
medoid shift segment the modes successfully. Compared to [SKK07], medoid
shift has complexity O(dN2), (with a small constant and d = 3 D N) instead of
O(N3) (small constant) or O(N2.38) (large constant)

8.4 Applications

8.4.1 Clustering on manifolds

[SKK07] applies medoid shift to cluster data on manifolds, based on the distance
matrix D calculated by ISOMAP. If the kernel matrix K = HDH ′/2, H =
I − 1

N 11# is p.d., we can apply directly kernel mean or medoid shift to the same
problem. If not, we can use the technique from [CC06] to regularize the estimate
and enforce this property. In Fig. 8.4 this idea is used to compare kernel mean
shift, kernel medoid shift and quick shift in a simple test case.

8.4.2 Image segmentation

Image segmentation is a typical test case for mode seeking algorithms [CM02b,
PD07, SKK07]. Usually mode seeking is applied to this task by clustering data
{(p, f(p)), p ∈ Ω}, where p ∈ Ω are the image pixels and f(p) their color coordi-
nates (we use the same color space of [CM02b]).

As in [CM02b], we apply mean shift to segment the image into super-pixels
(mean shift variants can be used to obtain directly full segmentations [Car06,
PD07, YL07]). We compare the speed and segmentation quality obtained by
using mean shift, medoid shift, and quick shift (see Fig. 8.5 for further details).
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Figure 8.5: Image segmentation. We compare different mode seeking tech-
niques for segmenting an image (for clarity we show only a detail). We report the
computation time in seconds (top-right corner of each figure). In order to better
appreciate the intrinsic efficiency advantages of each method, we use comparable
vanilla implementations of the algorithms (in practice, one could use heuristics
and advanced approximation techniques [YDG03] to significantly accelerate the
computation). We use a Gaussian kernel of isotropic standard deviation σ in the
spatial domain and use only one optimization: We approximate the support of
the Gaussian window by a disk of radius 3σ (in the spatial domain) which results
in a sparse matrix F . Therefore the computational effort increases with σ (top
to bottom). The results are discussed in the text.

Mean shift is equivalent to [CM02b] and can be considered a reference to
evaluate the other segmentations. Non-iterative medoid shift (first column) over-
fragments significantly (see also Fig. 8.2), which in [SKK07] is addressed by reiter-
ating the algorithm. However, since our implementation is only O(dN2), medoid
shift has at least the advantage of being much faster than mean shift, and can
be used to speed up the latter. In Fig. 8.5 we compare the time required to run
mean shift from scratch and from the modes found by medoid shift. We report
the speedup (as the number of modes found by medoid shift over the number of
pixels), the computation time of medoid+mean shift and, in brackets, the com-
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putation time of the mean shift part only. Interestingly, the efficiency increases
for larger σ, so that the overall computation time actually decreases when σ is
large enough.

Finally, we show the result of quick shift segmentation (last two columns) for
increasing values of the regularization parameter τ . Notice that quick shift is
run only once to get both segmentations (Section 8.2) and that the algorithm
is in practice much faster than the other two, while still producing reasonable
super-pixels.

8.4.3 Clustering bag-of-features

The interesting work [HB05] introduces a large family of positive definite kernels
for probability measures which includes many of the popular metrics: χ2 kernel,
Hellinger’s kernel, Kullback-Leibler kernel and l1 kernel. Leveraging on these
ideas, we can use kernel mean shift to cluster probability measures, and in par-
ticular histograms, such as the ones arising in bag-of-features [CDD04] or similar
representations. In the rest of the section we experiment with the χ2 kernel

Kχ2(x, y) = 2
B∑

b=1

xbyb

xb + yb

where x and y are histograms of B bins.

Inspired by [GD06b], we attempt to automatically infer the object categories
of Caltech-4 in a completely unsupervised setting. We select at random 1600
images from the categories bike, airplanes, cars and faces. Instead of the more
sophisticated representation of [GD06b], we compute a basic bag-of-feature image
representation as suggested by [ZML06]: We extract multiscale Harris and DoG
interest points (of fixed orientation; see [ZML06] and ref. therein) and calculate
SIFT descriptors [Low07], obtaining about 103 features per image. We then
generate a vocabulary of 400 visual words by clustering a random selection of
such descriptors by using k-means. For each image, we compute a bag-of-feature
histogram x by counting the number of occurrences of each visual word in that
image. Finally, we use the χ2 kernel to generate the kernel matrix, that we feed
to our clustering algorithms.

In Fig. 8.6 we compare kernel mean shift, kernel mean shift initialized by
medoid shift, and quick shift. The problem we solve is considerably harder
than [GD06b], since in our case the number of clusters (categories) is unknown.
All algorithms discover five (rather than four) categories (Fig. 8.6), but the result
is quite reasonable since the category airplanes contains two distinct and visu-
ally quite different populations (grounded and airborne airplanes). Moreover,
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Algorithm Scal. Rate [%] Time [s]
mean no 93.9 29.9
mean yes 94.6 89.0
mean+medoid no 93.9 3.63
mean+medoid yes 94.5 6.28
quick no 96.3 0.62
quick yes 96.1 0.70

Figure 8.6: Automatic visual categorization. We use kernel mean shift to
cluster bag-of-features image descriptors of 1600 images from Caltech-4 (four
visual categories: airplanes, motorbikes, faces, cars). Top. From left to right,
iterations of kernel mean shift on the bag-of-features signatures. We plot the first
two dimensions of the rank-reduced kernel space (z vectors) and color the points
based on the ground truth labels. In the rightmost panel the data converged to
five points, but we artificially added random jitter to visualize the composition
of the clusters. Bottom. Samples from the five clusters found (notice that
airplane are divided in two categories). We also report the clustering quality,
as the percentage of correct labels compared to the ground truth (we merge
the two airplanes categories into one), and the execution time. We use basic
implementations of the algorithms, although several optimizations are possible.

compared to [GD06b] we do not try to explicitly separate an object from its
background, but we use a simple holistic representation of each image.

The execution time of the algorithms (Fig. 8.6) is very different. Mean shift
is relatively slow, at least in our simple implementation, and its speed greatly
improves when we use medoid shift to initialize it. However, consistently with
our image segmentation experiments, quick shift is much faster.

140



We also report the quality of the learned clusters (after manually merging
the two airplane subcategories) as the percentage of correct labels. Our algo-
rithm performs better than [GD06b], that uses spectral clustering and reports
94% accuracy on selected prototypes and as low as 85% when all the data are
considered; our accuracy in the latter case is at least 94%. We also study rescal-
ing as proposed in Section 8.3, showing that it (marginally) improves the results
of mean/medoid shift, but makes the convergence slower. Interestingly, however,
the best performing algorithm (not to mention the fastest) is quick shift.

Discussion

In this chapter we exploited kernels to extend mean shift and other mode seeking
algorithms to a non-Euclidean setting. This also clarifies issues of regularization
and data scaling when complex spaces are considered. In this context, we showed
how to derive a very efficient version of the recently introduced medoid shift
algorithm, whose complexity is lower than mean shift. Unfortunately, we also
showed that medoid shift often results in over-fragmented clusters. Therefore,
we proposed to use medoid shift to initialize mean shift, yielding a clustering
algorithm which is both efficient and accurate.

We also introduced quick shift, which can balance under- and over-frag-
mentation of the clusters by the choice of a real parameter. We showed that,
in practice, this algorithm is very competitive, resulting in good (and sometimes
better) segmentations compared to mean shift, at a fraction of the computation
time.
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CHAPTER 9

Summary of Findings

In this thesis we have discussed methods for exploiting invariance of visual data
for the solution of foundational vision problems such as object and category
recognition and scene matching. We divided such methods into two broad fam-
ilies: the construction of invariant representations and learning with invariance
constraints. In this chapter we schematically summarize our findings.

Invariant representations.

• We have found that general viewpoint invariant features exist, if one con-
sider, along with geometry, the photometric properties of a three dimen-
sional scene. We have also found that such general invariants cannot be
shape-discriminative, but that discriminating shape is possible through re-
construction. We have found experimentally that affine invariant features
fail at scene singularities (3-D corners) where a more general invariant can
be successful, suggesting that looking beyond planar patches may be worth-
while (Chapter 2)

• We have found that, while occlusions require viewpoint invariant features
to be local, the discriminative power of local features can be significantly
improved by optimizing their support during matching. We have validated
experimentally this idea by demonstrating applications to supervised and
unsupervised detection of objects and the validation of putative feature
matches (Chapter 3).

• We have seen that complex ground truth is necessary in order to rationally
evaluate local viewpoint invariant features. We have found that synthetic
images can be used to obtain the required data. We have shown that, by
using open source software and freely available 3-D models, the simulations
of the physical processes underlying the generation of such images can be
carried at a level of granularity which is much finer than the one assumed
by the features object of our study. We have also introduced a methodology
that, along with our data, enables to assess the impact of complex visual
phenomena (non linear deformations, parallax, occlusions, etc.) on the
performance of local viewpoint invariant features (Chapter 4).
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• We have found that joint data alignment can be used to learn invariant rep-
resentations through canonization. We have found that formulating align-
ment as the problem of simplifying the data, as previously proposed, is
ill-posed and may yield degenerate solutions. We have seen that, instead,
the problem is well-posed if one searches for a simple representation of the
data by enforcing the reconstruction property. We have seen that this casts
joint data alignment as a lossy compression problem. We have discovered
that entropy (in the Shannon’s sense) may not be optimal for the task
of alignment and proposed novel measures of complexity that are better
adapted to this task. We have experimentally validated our formulation on
different problems, including the one of aligning a large collection of natural
image patches (Chapter 5).

Learning with invariance constraints.

• We have found that data invariance can be incorporated effectively and effi-
ciently in AdaBoost by smoothing the weak classifiers along the invariance
directions. We have seen that such regularized weak classifiers effectively
capture the data invariance and are also quite convenient for training. The
are two advantages: (i) by learning weak classifiers by gradient descent
we can significantly reduce the memory requirements compared to conven-
tional implementations of AdaBoost and (ii) such weak classifiers are more
expressive than basic Haar wavelets (or similar elementary classifiers), so
that fewer of them are needed. We have also seen that the resulting strong
classifier can be projected back onto Haar wavelets for efficient evaluation
(Chapter 6).

• We have seen that recent positive definite kernels for image comparison,
based on the idea of re-organizing the feature space into a pyramid, can be
captured and generalized by the idea of relaxed matching kernels. We have
seen that there is great freedom in the construction of such kernels, ranging
from the choice of the base kernel to the way the pyramid is formed. Nev-
ertheless, we have seen that all kernels can be computed efficiently by the
same algorithm and that they share a few useful properties. We have also
introduced a novel interpretation of the weights used for the construction
of such kernels which sheds light on their interpretation. We have intro-
duced two novel relaxed matching kernels and compared them on standard
benchmark data with previous kernels. We have noticed that, despite some
of these kernels incorporate explicitly spatial information, a flat represen-
tation such as bag-of-features is often very competitive. This suggests that
more work is needed to exploit the full potential of geometric information
in such approaches (Chapter 7).
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• We have found that the medoid shift clustering algorithm can be signifi-
cantly accelerated by exploiting the Hilbert structure of the data space. We
have found that kernels can be used to generalized mean shift to operate in
non-Euclidean spaces, along with medoid shift. We have seen that medoid
shift is more efficient than mean shift with our innovations, but tends to
significantly over fragment the data modes. We have introduced a novel al-
gorithm, quick shift, that can be used to overcome this limitation, yielding
high quality clusters, while at the same time being much faster than both
mean shift and medoid shift (Chapter 8).

Other contributions.

• We have contributed a robust filtering framework, KALMANSAC, and
applied it to the task of on-line structure from motion. We have seen
that this technique enables handling very high outlier rates (much higher
than conventional robust filters) being still suitable for on-line estimation.
KALMANSAC has been demonstrated on both synthetic and real structure-
from-motion data (Appendix A).

• We have studied the singularities that emerge in structure from forward
motion, showing that these are caused by the interaction of feature repro-
jection and unbounded depth estimates. We have shown that, by enforcing
that no depth may become arbitrarily small, the singularities can be re-
moved (Appendix B).

• As a service to the community, we have made available several open source
reference-quality implementations of fundamental algorithms. Such contri-
butions have been well received by the community (Applendix C).
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APPENDIX A

Robust Filtering for Structure From Motion

Structure From Motion (SFM) is a mature area of computer vision where signif-
icant success has been attained during the last decade: We now have consumer
products [2D3] that can estimate 3-D camera pose and point-wise structure of the
scene from a collection of images in a fully automatic fashion. Robust statistical
[SWB07] inference plays a crucial role in the practical implementation of most
SFM systems, since the correspondence mechanisms are often based on low-level
assumptions that are violated in practice. In particular, RANSAC [FB81a], along
with its many variants, has become the method of choice, owing to its ability to
operate in the presence of a large proportion of “outliers1.” By contrast, vision
has so far failed to materialize as a reliable sensory modality in real-time control
applications, where data has to be processed in a causal fashion2 as part of a
closed-loop system. We attribute part of this failure to the lack of availability
of suitable robust inference techniques that can be applied in causal data pro-
cessing (there are notable exceptions, e.g. [Nis03a]). Note that batch-processing
based SFM algorithms, together with the associated techniques for handling out-
liers, cannot be directly applied on these problems as they introduce destabilizing
delays in the feedback loop [Kai80]. On the other hand, existing robust filter-
ing techniques, which we review in Section A.1, either cannot tolerate a large
proportion of outliers, or are not suitable for real-time implementation.

Therefore, we turn our interest to causal robust statistical inference. This
problem arises when there is some hidden variable of interest that evolves over
time, and the observations are either related to the hidden states by a simple
statistical model, or they are “outliers.” The goal is to infer the hidden variables
despite outliers, and to do so causally, i.e. only using data up to the current time.
For example, the hidden variable could be ego-motion, and the measurements are
point correspondences from a low-level tracker. This is important for the real-
time estimation and segmentation of structure and motion in vision-based control
and robotics, for instance in tracking, manipulation, navigation, and surveillance.
The goal is not just to do it fast, but to do it causally to avoid delays in the loop.

1We will define the notion of outlier properly in Section A.2; for now an intuitive acception
suffices.

2I.e. the estimate at time t can only use measurements up to time t.
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A.1 On-line structure from motion

Robust statistical inference in a dynamic context is a particular type of non-linear
filtering problem. Given a probabilistic description of the uncertainty, as well as
of the outlier generation mechanism, one can write the equations that govern
the evolution of the conditional density of the hidden states (variables of interest
as well as inlier/outlier distribution at time t) given all measurements available
up to time t. The optimal filter evolves an estimate of such a density starting
from some initial condition and is easily derived formally (e.g. [Jaz70] p. 174).
From such a density, one would then have to construct some point estimate, for
instance the maximum likelihood, the maximum a-posteriori, or the least mean
square or median estimate.

In practice the conditional density can only be integrated numerically except
for a handful of cases that does not include ours. In general there is a variety of
numerical schemes available, including a plethora of particle evolution schemes
[Liu01, DFG01]. However, ultimately we are not interested in the entire condi-
tional density, but in a point estimate. Since the conditional density can only be
approximated, a point-estimate computed from it is an approximation too. At
that point, we may settle for a more efficient scheme that yields an (approximate)
point estimate at the outset. There is another more philosophical reason to prefer
a point-estimator: Often if a problem is well formulated the designer has reasons
to believe that what we are looking for is a unique entity (e.g. ego-motion), and
the multi-modality of the conditional density is only due to the output statis-
tics (e.g. outliers). Therefore, estimating the entire conditional density would
be an overkill. We make the assumption that the posterior density of the hid-
den variables would be unimodal if it were not for outliers. We therefore design a
point estimator that only attempts to model the evolution of the dominant mode,
rather than spreading computational resources thin by evolving particles at the
tails of the distribution.

This work relates to a large body of literature in robust statistics that exploit
heuristics related to sample consensus. A prototype algorithm of this class is
RANSAC [FB81b], and the many variants that have been proposed to improve
its efficiency [CM02a, CM05b, TM02], and robustness [TZ00, TD03, Nis03b]. Our
work can be interpreted as a way to make RANSAC work in a causal fashion.

The goal of our work is to extend random sample consensus techniques to a
dynamic context, so we can use them to handle outliers in real-time applications.
We use tracking and SFM as examples, but by no means is our work limited to
these applications. We illustrate our scheme on two simple problems that can
be used to implement a robust object tracker and a robust ego-motion estima-
tor. We show experiments where up to 85% of the measurements are outliers,
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where previous robust filters fail, and where a large number of particles would
be necessary in order to successfully capture the dominant mode. Although a
batch processing of the data necessarily would give better estimates, it would
require waiting for all data (or at least for a “large enough” temporal window)
to be collected, thereby introducing destabilizing delays in a vision-based control
scenario. Our scheme compares favorably with batch RANSAC, in the sense of
being in the ballpark in terms of accuracy and robustness, despite only processing
data in a causal fashion.

The only other scheme for causal robust inference in the context of computer
vision that we are aware of is [Nis03b] which provided ways to expedite non-causal
sampling schemes so they can be implemented fast enough to be used in real-time,
whereas we propose causal processing algorithms to perform robust statistical
inference. Whereas [Nis03b] is limited to processing a window of measurements,
with no long-term memory, we integrate information causally from time 0 to
time t and provide a long-term, albeit approximate, estimate of the conditional
density. Our approach does not have an intrinsic delay, and is therefore more
suitable to control applications that [Nis03b] that must carry a buffer of frames
in order to run its version of RANSAC.

A.2 Problem statement

We are interested in some quantity xt ∈ RM (the “state”) that evolves in time
but that we cannot measure directly. In the simplest case the time dependency
can be described by an ordinary difference equation (ODE), up to some “model
uncertainty” vt that we assume to be well captured by a simple statistical model,
say a Gaussian process. In the simplest case the ODE is linear, xt+1 = Axt + vt,
A ∈ GL(M), and without loss of generality we can assume the uncertainty to be
white and zero-mean3 {vt}t∈Z ∼ N (0, Rv). Although we cannot measure xt, we
are given measurements {yt ∈ RN}t∈Z that come from one of two possible sources:
At some time t ∈ Z, either yt is an instantaneous function of xt, up to some
measurement error that can be described by a simple statistical model, or yt is
“completely unrelated” to xt. In the former case, the simplest instance is a linear
model, yt = Cxt+nt where C ∈ RN×M and {nt}t∈Z ∼ N (0, Rn). In the latter case
“completely unrelated” means that there is no statistical dependency between yt

and xt that is simple enough for us to care to model it explicitly. Instead, in this
case we call yt an outlier and we wish to bar it from contributing to the inference
of xt. We do not know a-priori whether yt is a valid measurement (inlier) or

3Lest we can consider the mean to be part of the state and we can pre-whiten the filter by
simple (linear) projection operators [Jaz70]
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an outlier, so we can model the choice with a stochastic indicator process χt:
yt = diag(χt) (Cxt + nt) + (I − diag(χt))νt where diag is an operator that maps
a vector χt into a diagonal matrix, and νt is a stochastic process statistically
independent of the other variables.

Since we allow for uncertainty in the evolution of xt and in the measurement
process, we have to specify what we mean by inference, which we will do shortly.
To that end, we summarize the model that generates the data as follows4






xt+1 = Axt + vt vt ∼ N (0, Rv)

χt+1 = g(χt, µt) nt ∼ N (0, Rn)

yt = diag(χt) (Cxt + nt) + (I − diag(χt))νt

(A.1)

where the evolution of χt+1 is written formally as a function g : {0, 1}N ×RN −→
{0, 1}N of some unknown “input” µt that guarantees that χt remains an indica-
tor function. Given measurements (“output” of this model), i.e. realizations
of the process {yt}t∈Z, we want to infer the state xt, by employing only inlier
measurements. We are thus in the realm of robust statistical inference, and in
particular, since the inference concerns the state of a dynamical model, this prob-
lem is known as robust filtering [Hub81]. We indicate with yt

τ
.
= (yτ , . . . , yt) a

realization of the process {yt} from time τ to t, and we omit the subscript when
τ = 0. We denote by yt(i) the i-th component of the vector yt.

In the absence of more detailed information on the outlier process νt, we
will assume that these variables are uniformly distributed and independent, i.e.
p(νt(i)) = 1/η where η is a nominal spreading value. This simple model has
already been proven successful in applications similar to our [TZ00]. Moreover,
we will assume that the processes χt(i) and χt(j) are independent for i $= j. By
using these assumption, we can get for example the density of yt(i) conditioned
on the state xt and χt−1 as

p(yt(i)|xt, χt−1) = p(yt(i)|xt, χt(i))

× P (χt(i) = 1|χt−1(i)) + P (χt(i) = 0|χt−1(i))/η (A.2)

where p(yt(i)|xt, χt(i)) can be derived from the density of the measurement noise
nt(i) and P (χt−1(i)|χt(i)) is the transition probability encoded by g(·, µt).

A.2.1 Optimal filter and its infeasibility

Ideally, given the observation yt, we would like to obtain the posterior density
p(xt, χt|yt). This problem has a well known solution in term of a recursive filter:

4The generative model can be specified in terms of evolution of the joint density of {xt, yt},
or in terms of the evolution of the generic realization xt, yt. We choose the latter because of its
simplicity, although the two are entirely equivalent.
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The evolution of the conditional density is immediate to derive using Bayes’ rule
and Chapman Kolmogorov’s equations ((6.61) [Jaz70]):






p(xt+1, χt+1|yt+1) ∝ p(yt+1|xt+1, χt+1)·
·
∫

p(xt+1, χt+1|xt, χt)dP (xt, χt|yt),

p(x0, χ0|∅) ∼ p0,

(A.3)

where p0 ∼ p(x0, χ0|∅) is an initial estimate. The integrand p(xt+1, χt+1|xt, χt)
can be factored as:

p(xt+1, χt+1|xt, χt) = p(xt+1|xt)p(χt+1|χt) (A.4)

under the assumptions we make in the previous section, and the transition prob-
ability p(χt+1|χt)

.
= πij can be further specified as part of the model (A.1).

Unfortunately, computing the integral above in the most general case is out of
the question because p(xt, χt|yt) depends on the entire history χt of χt, via yt,
and is therefore a mixture of Gaussians with an exponential number of modes in
both time t and the number of observation N . This is where we need to introduce
approximations, and several options are available, from “sum-of-Gaussian” filters
[AS72] to “interactive multiple models” [BL98], to various forms of generalized
pseudo-Bayesian filters (e.g. GPB1, [BL98] p. 445). Each of these filters is based
on a different heuristic, and it is impossible to prove general properties or approx-
imation bounds in general. These filters arose in radar signal processing, where
switches occur rarely between a small number of models (targets), and are not
well suited to our application where the set of possible subsets of inliers is large.

A.2.2 Sampling of filters

Given any choice of putative inliers χ̃t, one could easily (i.e. using linear opera-
tions) solve equation (A.3) in the state xt by employing a classical Kalman filter.
In fact, given χ̃t, the posterior density p(xt+1|yt, χ̃t) stays Gaussian. This suggests
concentrating on the easier problem of getting the distribution on the continuous
state xt for a point estimate of the discrete state χ̂t. A natural criterion for the
choice of χ̂t is to maximize the posterior density

x̂t, χ̂
t .
= arg max

xt,χt

p(xt, χ
t|yt). (A.5)

Note that the function p(xt, χt|yt) is proportional to p(xt|yt, χt)p(χt|yt). Once χt

is given as χ̃t, our system (A.1) reduces to a simple linear system. Therefore, the
maximum likelihood estimator for x̂t(χ̃t) = arg maxxt p(xt, χ̃t|yt) is given by the
Kalman filter [Jaz70]. Unfortunately maximizing in the whole history χt is still
a doubly exponential problem.
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Algorithm 5 Sampling of filters.

1: Initialization: Randomly choose a set of assignments Υ ⊂ {0, 1}N of in-
liers/outliers among the the measurements.

2: for all assignments χ, in Υ do
3: Fix χ̂t to χ̂0 = ... = χ̂t = χ,.
4: Estimate x̂t using the Kalman filter.
5: Compute the MAP score of the assignment χ, as p(yt, x̂t, χ̂t) which is

proportion to p(x̂t, χt|yt).
6: end for
7: Validation: Choose x̂t and χ, that yield the maximum score.

The complexity can be reduced drastically by assuming χt to be constant over
time, i.e. χ0 = ... = χt, which is acceptable as long as the observations tend to
preserve their inlier/outlier status. Still the possible assignments of χt are expo-
nential in the number of observations. This can be addressed by sampling ran-
domly the solution space, leading to the procedure summarized in Algorithm 5.

The three major shortcomings of Algorithm 5 are: (i) the constancy of χ0, ...,χt

is too stringent, especially for large time t; (ii) naively sampling the space of as-
signments for χt, although in the limit provably solves the problem, is in practice
too slow; (iii) the complexity is not constant but grows linearly with t. These
issues will be addressed by the KALMANSAC procedure described in the next
section.

A.3 KALMANSAC

In this section, we present an approximate solution that improves Algorithm 5
by (i) letting χt change over time, (ii) using an efficient sampling scheme and (iii)
limiting the computational complexity to be constant for all times t.

We start from equation (A.3) and make our assumption explicit. We are
going to assume that, at every instant of time, a best estimate of the inliers χ̂t

is available, as part of the solution of x̂t, χ̂t = arg max p(xt, χt|yt). Compounding
these choices over time we get the best causal estimate χ̂t up to time t. We
re-write p(xt, χt|yt) ∝ p(xt|χt, yt)p(χt|yt). Now we assume that

p(χt|yt) = δ(χt − χ̂t), (A.6)
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Algorithm 6 KALMANSAC.
1: Initialization: We are given the best choice of inliers uptime to time t, χ̂t,

and the current best estimate of the state conditional density p(xt|χ̂t, yt).
Extract a subset Υ ⊂ {0, 1}N of the minimal set of assignments of
inliers/outliers among the measurements.

2: for all χ,
t+1 in the set Υ do

3: Initialize χt+1 with χ,
t+1.

4: repeat {Alternating maximization in χt+1 and xt+1}
5: Fix χt+1 and compute arg maxxt+1 p(xt+1|χt+1, yt+1) by reading off the

updated state x̂(χt+1) from one step of the Kalman filter.
6: Fix xt+1 = x̂t+1 and estimate χ̂t+1 = arg maxχt+1 p(xt+1, χt+1|yt+1)
7: Set χt+1 = χ̂t+1

8: until maximum amount of iterations has been reached or until the
estimated state x̂t+1 and estimated indicator χ̂t+1 do not change.

9: end for
10: Validation Select x̂t+1 and χ̂t+1 that yield the maximum score

p(yt+1, xt+1, χt+1).

and equation (A.3) reduces to

p(xt+1, χt+1|yt+1) ∝ p(yt+1|xt+1, χt+1)p(χt+1|χ̂t)

×
∫

p(xt+1|xt)dP (xt|χ̂t, y
t). (A.7)

From equation (A.7), it is easy to check (recursively) that p(xt|χ̂t, yt) stays as a
Gaussian.

The maximization of equation (A.7) jointly in xt+1 and χt+1 is still problematic
because of the exponential number of possible assignments of χt+1. In the next
section we will show an efficient sampling scheme that solves this problem.

A.3.1 Searching for inliers

We use equation (A.7) as the basis for our sampling filter. We start with an initial
choice of inliers χ̂0 and with an initial density p̂0 ∼ p(x0|∅). Now, at a generic
time t, we assume we are given χ̂t and p̂t

.
= p(xt|χ̂t, yt). We now want to generate

the new maximum a-posteriori estimate χ̂t+1, x̂t+1
.
= arg max p(xt+1, χt+1|yt+1),

or more in general χ̂t+1 and the entire mode p(xt+1|χ̂t+1, yt+1) since that will
come for free from the Kalman filter and we will need it at the next step t + 1.

Once the indicator χt+1 is fixed, we can compute from equation (A.7) the
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maximum a-posteriori state as a function of our choice

x̂t+1(χt+1)
.
= arg max

xt+1

p(xt+1, χt+1|yt+1)

using the Kalman filter. Now, we notice that in addition to the optimal choice
of inliers χ̂t+1, there will be many more that yield nearly identical score, in
particular all subsets of the optimal set of inliers. On the other hand, the
presence of even a single outlier will severely affect the posterior. This sug-
gests (i) to choose χt+1 from the minimal set5, thus increasing the chance of
picking a good indicator, i.e. a choice of inliers that does not include any out-
liers; (ii) since p(x̂t+1(χt+1), χt+1|yt+1) B p(x̂t+1(χ̃t+1), χt+1|yt+1) as long as χt+1

and χ̃t+1 are good indicators, we can estimate x̂t+1 using either one; (iii) we
can then improve the likelihood p(yt+1|x̂t+1(χt+1), χt+1) by maximizing χ̂t+1 =
arg maxχt+1 p(x̂t+1, χt+1|yt+1). These three observations above, which are at the
core of any RANSAC algorithm, yield our KALMANSAC algorithm, summarized
in Algorithm 6.

One limitation of the KALMANSAC algorithm is that it relies completely on
the previous estimate χ̂t (because of the assumption (A.6)). Since the recovered
χ̂t is obtained from an approximate solution, this might prevent the algorithm
from converging to the optimal solution. However, by relaxing the assumption
on p(χt|yt), we face a problem of exponential complexity as we have seen in
Section A.2.1. We address this problem by using a limited memory filter, which
trades off optimality for constant complexity, as we discuss in the next section.

A.3.2 Back-tracing: limited memory filter

The algorithm presented in Section A.3.1 provides an approximation of the max-
imum likelihood estimate of xt together with an approximation of its covariance
(from the Kalman filter) following a myopic estimate of the set of inliers χt based
only on the current observations. Our main observation is that the best estimate
x̂t available at time t may be affected by the approximations of our procedure,
and therefore at the time step t + 1 we choose to re-estimate it by using also the
new measurements. More in general, we can do so for τ steps back in time. This
leads to a limited memory filter ([Jaz70], p. 318). The steps of the algorithm
are exactly the ones described in the previous section, except that the samples
to be drawn are not for χt+1, but for χt+1

t−τ for some τ ≥ 0, and the computa-
tional step involves a τ -step prediction and update for the process xt, which are

5The minimal set is the set made of all assignments inlier/outlier with the minimum number
of inliers so that the unknown parameters of the model can be unambiguously recovered. In our
context, minimality is naturally connected to the selection of measurements that are sufficient
to make the system observable [Kai80].
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both standard for the Kalman filter, and the Viterbi algorithm for the process
χt. As for the sampling of χt, we exploit the observation of Section A.2.2 that
the inlier/outlier state tends to be preserved, and we let the samples χt+1

t−τ to be
constant across the time frame and equal to χ̂t (line 1 of Algorithm 6). Notice
that in the subsequent steps the assignment may change within the time-frame
[t− τ, t + 1].

Another benefit of using more steps of back-tracing is that each observation is
checked for consistency with the inlier model across consecutive time step, making
more accurate its classification as inlier or outlier. This only requires setting the
transition probability P (χt|χt−1) to a function which penalizes switches of state
(i.e. inliers becoming outliers and vice-versa).

Since sampling sets of inliers that can change arbitrarily, using a long interval
τ is an overkill. Therefore, in the experimental section we have tested a version
of the limited memory filter with τ = 2.

A.3.3 Extension to non-linear models

Equation (A.7) is valid for models far more general than (A.1). The advantage
of a linear model is to allow computing (A.7) using linear operations to evolve
conditional mean and covariance. However, the sampling scheme proposed in Sec-
tion A.3.1 is valid for any type of model, provided one has at least an approximate
procedure to integrate (A.7). These include various types of approximations, from
the extended Kalman filter (EKF, [Jaz70] p. 332) to numerical integration, even
to particle filters. In the experimental section we will illustrate the performance
of our sampling scheme with an EKF used to estimate structure from motion.

A.3.4 Accelerating the convergence

Although KALMANSAC samples minimal assignments of the inlier process χt,
the number of samples required to find at least one good assignment with a
certain probability is still large for large amounts of outliers. See for instance
[TZ00] for a discussion on how to choose the right number of samples based on
the percentage of the outliers and the size of minimal set. One way to reduce
such number of samples is to employ a non-uniform sampling strategy that selects
good assignments with high probability.

Our method is similar in spirit to [TM02, CM05b]. The basic idea is to
extract the same set of M samples that the vanilla RANSAC would choose, but
in an order that focuses first on the observations that we believe are inliers. The
advantage of this approach is that one can use any sort of information to define
the likely candidates, while being in the worst case equivalent to RANSAC when
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Figure A.1: Accelerating the convergence. The figure shows the function f(j),
j = 1, ..., N (see text) for various orderings: (dashed curve) ideal ordering with
all inliers first; (dotted curve) random order; (solid curves) order obtained by the
singleton inlier probability for the first 10 iterations of the filter. This figure is
obtained based on the tracking problem with 1000 features and 85% outliers (see
Section A.4).

all M samples have been drawn [CM05b]. We use the prediction of the filter to
infer the ordering of the observations.

One way of evaluating an ordering (σ1, ...,σN) ∈ S(N), S(N) being the sym-
metric group of order N , is to consider the function f(j) =

∑j
i=1 χt(σj), j =

1, ..., N (see Figure A.1) which counts how many inliers are encountered while
visiting the observations in the specified order. The best possible order goes first
through all inliers, then through all outliers. Then, we formulate the choice of
the ordering as the N optimization problems (for j = 1, ..., N)

max
σ1,...,σj

E[f(j)|yt, χ̂
t−1] = max

σ1,...,σj

j∑

i=1

St(σj), (A.8)

where N is the number of observations and St(i) = P [χt(i)|yt, χ̂t−1] is the sin-
gleton inlier probability. The N problems are solved simultaneously by simply
ordering the observations by decreasing St(i), which can be computed as

St(i) ∝
∫

p(yt|χj
t , χ̂t−1, xt)p(xt|yt, χ̂t−1) dxt (A.9)

Although this integral is computationally expensive, it can be approximated by
setting p(xt|yt, χ̂t−1) = δ(xt − x′t), x′t being the prediction of the filter at time
t. This results in the score S̃t(i) ∝ P (χt(j)|χ̂t−1)p(yt|χj

t , χ̂t−1, x′t), which is very
quick to compute and in practice yields excellent ordering results, as one can see
in Figure A.1.
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A.4 Experiments

In this section we illustrate the various features of our algorithm on two examples:
an 2-D tracker, where the model used is a second-order random walk that fits
equation (A.1), and structure from motion, where we adopt a model borrowed
from [AP95, CFJ02], which is non linear. In this case, the computation of the
maximum a-posteriori desnities be approximated by an extended Kalman filter,
but the structure of the algorithm presented in Section A.3.1 is unaltered. In order
to perform systematic and controlled test, we employ simulation for the first case.
For the more complex case of SFM we show results with both synthetic and real
image sequences. We do so for the benefit of the skeptical reviewers, although
the performance of our sampling scheme is best tested on simulation where the
parameters of the experiment, which include a large variety of factors depending
on the applications, can be carefully controlled.

A.4.1 Tracking

In this first set of experiments we choose to test the KALMANSAC on a simple 2-
D object tracker. We consider tracking a group of 2-D points yi ∈ R2, i = 1, . . . , N
that evolve in time according to a similarity transformation, i.e. that satisfy the
following model:

yi
t = stRt(y

i
0 + Tt) i = 1, 2, . . . , N (A.10)

where st ∈ R is the isotropic scaling, Rt ∈ SO(2) is the 2D rotation and Tt ∈ R2

is the translation. Rather than representing the state as the vector containing
s, R and T , we use an equivalent alternative representation that yields a linear
system of equations. We define two variables at ∈ R2 and bt ∈ R2, such that

at = stRtTt and bt = stRt [ 1
0 ] + at. (A.11)

Then, it is immediate to obtain the expressions of st, Rt and Tt as a function of
at and bt. By substituting these expressions into equation (A.10) we obtain that

yi
t = (I −Q(yi

0))at + Q(yi
0)bt i = 1, 2, . . . , N (A.12)

where Q(yi
0) = [yi

0 (yi
0)
⊥]. Now, let Pt = [aT

t bT
t ]T ∈ R4. We then choose a

second-order random walk as a model for the dynamics, i.e.

Pt+1 = Pt + Vt and Vt+1 = Vt + nt (A.13)
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Figure A.2: 2D tracking experiment. Left: performance comparison between
the classic Kalman Filter (KF) (dotted), the robust KF (dot-dashed) and the
KALMANSAC (solid). As one can see the KALMANSAC can produce very
accurate estimates of the state up to 85% outliers, while the robust KF fails at
50% outliers and the classic KF as soon as outliers appear in the measurements.
Right: a zoomed-in version of the plot highlight the difference in performance
between the robust KF and KALMANSAC.

where nt ∼ N (0, R). As a consequence, the dynamical system corresponding to
equation (A.1) is defined as follows:






A = [ I I
0 I ] ∈ R8×8

C = [CT
1 , . . . , CT

N ]T

where Ci
.
=

[
I−Q(yi(0)) Q(yi(0))

0 0

]
∈ R4×8

(A.14)

and the state xt
.
= [P T

t V T
t ]T ∈ R8 with initial conditions x0 = [0 0 1 0 0 0 0 0]T .

To evaluate the performance of KALMANSAC on this dynamical system, we
compare it with a classic Kalman filter (KF), and with the Robust KF [KY98].
The robust KF is a modification of the Kalman filter that uses a robust model
of the observations [Hub81] to obtain an M-estimate of the state rather than the
usual MAP-estimate. Contrary to our algorithm, the robust KF is capable of
detecting outliers only based on the current estimate of the measurement predic-
tion error, and, because of the weighing scheme used, is not completely resilient
to the detected outliers. Moreover, it does not provide an explicit estimation of
the process χt.

We choose N = 100 and generate 100 sequences of measurements each con-
taminated with 0%, 5%, . . . , 85% of outliers. On this data we run the classic
KF, the robust KF and KALMANSAC. We compute the mean and the stan-
dard deviation of the state estimation error over the 100 trials and plot them
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Figure A.3: Mean and standard deviation error of motion estimation
versus increasing proportions of outliers. Left: The robust EKF (blue
solid line) diverges immediately as soon as measurements contain 5% of outliers.
Rather, KALMANSAC (black solid line) returns consistent motion estimates
with a very low error even up to 75% outliers. Right: We plot the frequency of
failure of both the robust EKF (blue solid line) and KALMANSAC (black solid
line). Notice that the robust EKF is confused almost immediately by outliers as
opposed to the KALMANSAC that starts to be confused half of the times when
outliers are more than 80%.

in Figure A.2. Because of the enhanced sampling scheme (Section A.3.4), only
20 to 100 samples (depending on the outlier concentration) need to be drawn at
each time step. Notice that the classic KF starts to return inconsistent results as
soon as some outliers appear in the measurements. The robust KF can instead
tolerate up to 50% outliers, but then rapidly degenerates. KALMANSAC proves
to be very resistant to outliers, maintaining consistent estimates up to 85% out-
liers. To enhance the difference in performance between the robust KF and the
KALMANSAC the plot in Figure A.2 has been repeated with a smaller range in
the position error axis.

A.4.2 Structure from motion

In this section, we carry out experiments on a non-linear system that is suited
to solve structure from motion under the assumption that (both linear and ro-
tational) accelerations are a Brownian motion in time. As mentioned above, we
adopt a model borrowed from [AP95, CFJ02].
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Figure A.4: Comparison between the robust filter and KALMANSAC based on
the camera motion estimates (the sequence has been played back and forth once).
The left column shows the translation error and the right column shows the
rotation error (expressed in exponential coordinates). Top row: Pseudo-ground
truth of the camera motion obtained by manually eliminate the outliers from
data. Middle row: camera motion estimated by the robust filter. Bottom row:
camera motion estimated by the KALMANSAC algorithm. One can see clearly
the robust filter cannot make sense of the data at all because of the outliers while
the KALMANSAC is able to estimate the camera motion.

Synthetic data. The synthetic scene is composed of 200 points. The camera
rotates around the points, with center of rotation on the center of mass of the
structure. We re-scale both translation and structure by fixing the depth coor-
dinate of one of the points to 1. In this experiments, we want to show how the
different implementations respond on average to different amounts of outliers.
We simulate outliers as 3-D points whose projections follow a random walk of
the second-order (diffusion). We choose proportions of 0%, 5%, ..., 85% of out-
liers and for each of the filters we run 100 experiments and store the estimated
motion. Then, we compute the mean and standard deviation for each outlier
proportion and for both the robust EKF (an extension of [KY98] to nonlinear
systems) and KALMANSAC and plot it in Figure A.3. As one can see, the ro-
bust EKF consistently fails to produce any sensible estimate of motion as soon as
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Figure A.5: Experiments with real data. Top row: 5 frames extracted from
the real sequence (180 frames in total). The independently moving objects are:
The car, the top checkerboard box and the blue box on the top-left corner of
the image. The camera is moving sideways while these objects are also moving
independently. Bottom row: Corresponding images with tracked features super-
imposed. The features are marked with either red or green squares. The green
squares are the features considered as inliers while the red squares are considered
outliers by the KALMANSAC.

some outliers are introduced in the measurements (Figure A.3, plot to the left).
KALMANSAC can produce a sensible estimate of motion up to 75% of outliers
(Figure A.3, plot to the left). In Figure A.3, right, we also show how frequently
both filters diverge. We do so because in the case of structure from motion the
recovery of motion parameters may be unsuccessful even when there are no out-
liers. Indeed, the same measurements (up to noise) may be generated by different
configurations of points and motion so that recovery of motion parameters is an
ambiguous process. In Figure A.3, plot to the right, one can see that while the
robust EKF fails almost always as soon as we have 5% outliers, KALMANSAC
starts to fail half of the times when we have more than 80% outliers.

Real data. In this set of experiments we test the robust EKF and KALMANSAC,
on a real sequence (Figure A.5) where 3 independent objects that are moving
within a rigid scene. These 3 objects plus additional T-junctions and reflections
generate more than 60% of outliers in our measurements. Similarly to the case
of synthetic data, in Figure A.4 we compare the performance of the two filters
by comparing the estimated motion to motion that has been estimated with a
classic EKF by manually discarding the outliers (pseudo-ground truth). As one
can see the overall performance reflects the experiments on synthetic data: While
the robust EKF fails to recover the motion parameters, KALMANSAC returns
an estimate very similar to the pseudo-ground truth.
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Discussion

We have presented an algorithm for causal robust statistical inference of the state
of a dynamical model. Since the optimal solution is computationally prohibitive,
we have proposed a random sampling approach that propagates the best cur-
rent estimate of the set of inliers χ̂t, together with the state conditional density
p(xt|χ̂t, yt). We have derived this algorithm from the optimal filter, clearly high-
lighting the assumptions that underlie our approximation. We have validated our
scheme experimentally, on both real and controlled synthetic experiments, and
shown that it can operate successfully in the presence of a large proportion of
outliers where existing robust filtering schemes fail.
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APPENDIX B

Singularities in Structure from Forward Motion

Structure From Motion (SFM), the problem of reconstructing the 3D structure
of a scene and the motion of a camera from a collection of images, can be counted
among the success stories of Computer Vision. Over the course of the past twenty
years, the geometry of the problem has been elucidated, and an extensive corpus
of analysis and algorithms has been collated in several textbooks, e.g. [HZ00].
Some have even made their way into the real-world as commercial products. How-
ever, despite all the success, forward motion still presents a challenge to existing
SFM algorithms. This problem rarely occurs in match-moving and virtual object
insertion, for which most commercial algorithms are designed, but has become
painfully patent with the recent push in autonomous driving.

The difficulties with forward motion are due in part to the limited lifetime of
point-feature tracks: The most informative features are in the peripheral vision
and they quickly move out of the visual field. This can be addressed by enlarging
the field of view, all the way to omnidirectional cameras, which explains their pop-
ularity in robotic navigation. A less-easily fixed difficulty with forward motion is
the presence of a large number of local minima in the least-squares landscape of
the reprojection error, which many existing algorithms try to minimize. These
local minima have been studied in some detail by Oliensis [Oli05] and Chiuso et
al. [CBS00], using tools first introduced by Heeger and Jepson [HJ90] and Golub
and Pereyra [GP73]. All have shown the presence of local minima correspond-
ing to well-known ambiguities (Necker-reversal, plane-translation and bas-relief)
and, more importantly for our problem, they have shown that the least-squares
reprojection error has singularities corresponding to translation in the direction
of point features, which introduce a fine-scale topology with many local minima
around the true direction of translation (see [Oli05], figures 1 and 8, or [CBS00]
figure 7). In order to overcome this problem, semi-global approaches based on
convex optimization and fractional programming have been recently proposed
[ACK06, KH05], but the resulting algorithms are too slow to run in real time for
navigation applications, and the actual hypotheses to guarantee global conver-
gence are not strictly satisfied for central projection and forward motion. Thus
we are left with finding simpler ways to handle the strange geometry of the re-
projection error surface. Is such a geometry a product of the mathematics we are
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using, for instance the choice of L2 to measure reprojection error, or is it intrinsic
to the problem? Can a different choice of norm eliminate the singularities? Is
there some reasonable assumption we can make on the scene or on the inference
process that will make the singularities vanish?

In this chapter we show that the singularities are a byproduct of the math-
ematics, and can be easily eliminated. Specifically, we prove that imposing a
bound on the depth of the scene makes the least-squares reprojection error con-
tinuous. We also show how such an assumption can be easily embedded in an
iterative algorithm. It does not, however, show that local minima disappear al-
together. In fact, only continuity can be guaranteed analytically, not convexity,
and an empirical analysis shows that some local minima still exist.

B.1 CBS diagrams

In this section we will introduce the notation and rephrase some of the results of
[CBS00] and [Oli05] for completeness.

Let X1, . . . , XN ∈ R3 be points on a rigid body (the scene). Let xi = Xi/|Xi|
be the projection of the i-th point taken from a given vantage point on a spherical
imaging surface. Let v and ω be the instantaneous linear and angular velocities
of the scene (rigid body) relative to the camera. The motion causes the feature
projections xi to move on the imaging surface with velocities zi. Our goal is to
recover both the structure and motion from the measurements x1, . . . , xN and
z1, . . . , zN . To this end we note that the i-th measured velocity is given by

zi = ω × xi + λi (v − 〈v, xi〉xi) + ni (B.1)

where λi = 1/|Xi| is the inverse of the distance of the i-th feature from the camera
center and ni is measurement noise. As zi, ni and ω × xi belong to the tangent
space Txi(S2) of the spherical imaging surface, the norm of the residual does not
change if we pre-multiply by −x̂i = −xi×, obtaining

−x̂izi = x̂2
i ω − λix̂iv − x̂ini. (B.2)

As the norm and statistics of ±x̂ini and ni are the same, we set yi = −x̂izi and
define the fitting cost

E(v,ω, λ1, ...,λN) =
N∑

i=1

‖ni‖2 =
N∑

i=1

‖yi − x̂2
i ω + λix̂iv‖2. (B.3)

The goal of SFM, for the purpose of our analysis, is to find the minimizers of
the cost function E.
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B.2 Reduced CBS diagrams

Heeger and Jepson introduced subspace projection into their SFM algorithm in
1990 [HJ90]. They showed that SFM can be reduced to a two-dimensional opti-
mization problem. Their approach was later used by Chiuso et al. [CBS00] to
study local minima in SFM after noticing that the local extrema in the reduced
optimization are related to local minima in the original one. The two-dimensional
landscape can be visualized in CBS diagram. Here we re-derive some of the prop-
erties of CBS diagrams since these results will be used later in proving continuity
of the reduced cost function.

The squared residual E(v,ω, λ1, . . . ,λN) is a function of both the inverse
depths of the observed points (features) λ1, . . . ,λN (structure) and the cam-
era angular ω and linear v velocities (motion). The idea of [HJ90] is to solve
for all variables but linear velocity v. This gives a reduced function E∗(v) =
E(v, ω∗(v), λ∗1(v), . . . ,λ∗N(v)) of v only. The CBS diagram is then the function

E∗(v) = min
ω∈R3,λ1,...,λN∈R

E(v, ω, λ1, . . . ,λN) (B.4)

An algebraically simplified variant, called weighted CBS diagram, is obtained by
optimizing weighted residuals wi‖ni‖2.

B.2.1 Properties

The function (B.4) enjoys several useful properties. First we note that fixing v
turns the minimization (B.4) into a simple least-squares problem. To make this

more explicit, define y
.
=

[
yT

1 yT
2 . . . yT

N

]T
,

Φ(v)
.
=





x̂2
1 −x̂1v 0 . . . 0

x̂2
2 0 −x̂2v . . . 0
...

...
...

...
...

x̂2
N 0 0 . . . −x̂Nv




(B.5)

a
.
=

[
ωT λ1 λ2 . . . λN

]T
, so that

E∗(v) = min
a∈R3+N

E(v, a) = min
a∈R3+N

‖y − Φ(v)a‖2. (B.6)

Note that the optimal value a(v) of the linear variable a – angular velocity and
structure – for a given linear velocity v is given by

a(v) = Φ(v)†y (B.7)

where Φ(v)† is the pseudo-inverse of the matrix Φ(v).
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B.2.1.1 Singular configurations

We say that a vector u is proportional to a vector v, u ∝ v in symbols, if there
exists a number λ ∈ R such that u = λv. Note that 0 ∝ v for each v.

Proposition 5. Consider features X1, . . . , XN ∈ R3, N ≥ 1 and a vector v ∈ S2,
such that Xi $∝ v for i = 1, . . . , N . The kernel of the matrix Φ(v) is not empty
if, and only if, we can find a vector ω ∈ S2 such that

X#
i Q(v, ω)Xi = 0, (B.8)

Q(v, ω) =
1

2
(vω# + ωv# − 2〈v,ω〉I). (B.9)

for all i = 1, . . . , N .

Proof. In order for the kernel of Φ(v) not to be empty, the following condition
must hold

∃ (ω, λ1, . . . ,λn) $= 0 : X̂2
i ω − X̂ivλi = 0, i = 1, . . . , N. (B.10)

Since we assumed that X̂iv $= 0, if we choose ω = 0 then equation (B.10) is
satisfied if and only if all λi vanish, thus ω has to be different from zero. Hence,
from (B.10) we get the following condition by taking the scalar product with v.

∃ω ∈ S2 : 〈X̂2
i ω, v〉 = 0, i = 1, . . . , N. (B.11)

The reverse implication is also true. Let us assume that (B.11) holds, we
have 〈X̂2

i ω, v〉 = 0, 〈X̂2
i ω, Xi〉 = 0 and we know that Xi and v are linearly

independent, so X̂2
i ω is directed along the vector X̂iv, which means that there

exists a λi (possibly null) such that (B.10) holds.

We rewrite (B.11) by using the identity (a × b) × c = 〈a, c〉b − 〈b, c〉a to get
X̂2

i ω = 〈Xi, ω〉Xi − 〈Xi, Xi〉ω and the equivalent conditions

v#(XiX
#
i ω − (X#

i Xi)ω) =

X#
i (vω# − v#ωI)Xi = X#

i MXi = 0,
(B.12)

M = vω# − v#ωI. (B.13)

This is the equation of a quadric and is more easily studied by symmetrizing the
matrix M , obtaining the equivalent constraints

X#
i QXi = 0, i = 1, . . . , N, Q =

1

2
(M + M#). (B.14)
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If v $$= w it is easy to verify that the eigenvectors and eigenvalues of Q are
given by

z1 = v + ω, λ1 = 1
2(1− 〈v, ω〉), (B.15)

z2 = v − ω, λ2 = −1
2(1 + 〈v,ω〉), (B.16)

z3 = v × ω, λ3 = −〈v, ω〉. (B.17)

If v = ±ω, then Q = ±v̂2 and the eignevectors-eigenvalues are given by

z1 = v, λ1 = 0 (B.18)

z2,3 ∈ v⊥, λ2,3 = ∓1. (B.19)

Equation (B.8) then defines a double elliptical cone which contains v and ω,
directed either along v+ω with major axis along v−ω (if 〈v, ω〉 > 0), or directed
along v − ω with major axis along v + ω (if 〈v, ω〉 < 0). In case 〈v, ω〉 = 0 the
cone degenerates to the union of the two planes 〈X, v〉 = 0 and 〈X, ω〉 = 0.

We observe that:

• Φ(v) is 3N × 3 + N so for N = 1 the kernel is not empty. Indeed (ω, λ1) =
(X1, 0) belongs to the kernel.

• For N = 2 the kernel is also not empty. The conditions of Proposition 5
are in fact satisfied for ω ∝ (v × x1)/〈v, x2〉 − (v × x2)/〈v, x1〉+ x1 × x2.

• If N ≥ 3, then Φ(v) has full rank N +3 as long the quadratic equation (B.8)
is not satisfied for some ω ∈ S2.

The previous observations motivate the following definition:

Definition 8. The points X1, . . . , XN (N ≥ 3), are said to be in general position
for the linear velocity v $= 0 if, and only if,

1. Xi $∝ v, i = 1, . . . , N ,

2. there exists no angular velocity ω such that X#
i Q(v,ω)Xi = 0 for all i =

1, . . . , N .

We also say that the points are in general position if they are in general position
relatively to all velocities v for which point 1 above is satisfied.

We can now rephrase Proposition 5 in the following remark.

Remark 10. If points X1, . . . , XN are in general position for v $= 0, then the
matrix Φ(v) has full rank.
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B.2.1.2 Correspondence of minimizers

Proposition 6. The reduced cost function E∗(v) enjoys the following properties.
Let Ω = S2 \ {x1, . . . , xN} the open subset of the imaging sphere that does not
include the feature projections and let {x1, . . . , xN} be in general position. Then:

• If v is a critical point (or global minimizer) of E∗(v) for v ∈ Ω, then (v, a(v))
is a critical point (or global minimizer) of E(v, a) for (v, a) ∈ Ω× RN+3.

• If (v, a) is a global minimizer of E(v, a), then v is a global minimizer of
E∗(v).

Proof. This kind of problems is discussed in [GP73]. The rank of Φ(v) is constant
for all v ∈ Ω. The result is then an immediate application of Thm. 2.1 therein.

Prop. 6 says that all the critical points of the reduced cost function E∗(v) (ex-
cept at most singularities corresponding to the feature projections) correspond to
critical points of the full cost function E(v, a). It also says that global minimizers
of the full and reduced cost functions correspond.

What the proposition does not say is that critical points of E(v, a) are reflected
by the reduced cost function E∗(v). This is however easily seen. Since the
points are in general position, Φ(v) never drops rank and a(v) and E∗(v) are
differentiable. Let (v, a) be a critical point of E(v, a). Then a = a(v) and
∇E(v, a(v)) = 0, so that

∂E∗

∂v
(v) =

∂E

∂v
(v, a(v)) +

∂E

∂a
(v, a(v))

∂a

∂v
(v) = 0. (B.20)

So, except for singularities or pathological cases, the local minima of the reduced
and full costs correspond.

B.2.2 Computation of the reduced functional

The reduced cost function (B.4) can be computed efficiently in two steps: Opti-
mization of the depths given the motion, optimization of the rotation given the
translation.

• Optimizing the depths given the motion. We fix ω and v in (B.3),
obtaining for each λi its optimal value

λi =
v#x̂#i

v#x̂#i x̂iv

(
x̂2

i ω − yi

)
, (B.21)
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which give the cost function

E(v,ω) =
N∑

i=1

‖ni‖2 =
N∑

i=1

∥∥∥∥

(
I − x̂ivv#x̂#i

v#x̂#i x̂iv

) (
yi − x̂2

i ω
)∥∥∥∥

2

. (B.22)

The depth λi of a feature xi parallel to the motion direction v does not
affect the cost function, is undetermined and the corresponding operator
x̂ivv#x̂#i /v#x̂#i x̂iv is null. Moreover, as v approaches xi, the limit of such
operator does not exist (the directional limit, however, is well defined).
This property of the residuals ni generates singularities in correspondence
of features in the cost function.

• Optimizing the rotation given the translation. Assume v $∝ xi for all
features xi. Recall that I = uu# − û2. Let u = x̂iv/‖x̂iv‖, so that

I − x̂ivv#x̂#i
v#x̂#i x̂iv

= −û2 (B.23)

‖ni‖2 = ‖ − û2(yi − x̂2
i ω)‖2 = ‖û(yi − x̂2

i ω)‖2. (B.24)

We now use the fact that û = (vx#i − xiv#)/‖x̂iv‖, and that the residual
yi − x̂2

i ω is orthogonal to xi to write

E(v,ω) =
N∑

i=1

‖ni‖2 =
N∑

i=1

‖xiv#(yi − x̂2
i ω)‖2

‖x̂iv‖2
=

N∑

i=1

(v#(yi − x̂2
i ω))2

‖x̂iv‖2
.

(B.25)

The latter expression is a standard least-squares estimation problem for ω.
Note that estimating the velocity v is much harder, as the weights ‖x̂iv‖
depend on it. Note also that the residual yi − x̂2

i ω is orthogonal to xi, so
that when the denominator ‖x̂iv‖ is small, because v approaches xi, the
numerator is small too. Solving for ω yields

ω =

(
N∑

i=1

x̂2
i vv#x̂2

i

‖x̂iv‖2

)−1 N∑

i=1

x̂2
i vv#yi

‖x̂iv‖2
. (B.26)

B.3 Bounded depth

In this section we extend the previous results and present the main contribution
of this chapter, which is a characterization of the reduced cost function when the
reconstructed depths are bounded.
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Singularities (discontinuities) at feature locations v = x1, . . . , xN of the re-
duced cost function E∗(v) are possible because the feature depths can be made
arbitrarily small. This is reflected in equation (B.3): when a coefficient x̂iv → 0
as v → xi, the corresponding variable (inverse depth) λi approaches infinity to
counter-balance. Thus we propose to work with a “regularized” reduced cost
function E∗

α(v) defined as

E∗
α(v) = min

ω∈R3, |λi|≤α
E(v, ω, λ1, . . . ,λN). (B.27)

The following lemmas are meant to establish the continuity of E∗
α(v) and

the correspondence of global and local minimizers, by showing results in a more
general setting (extending Proposition 6 with respect to correspondence of mini-
mizers).

B.3.1 Continuity

Consider a function E : V × A → R, where V is a topological space and A is
a subset of Rk, and let E∗(v) = mina∈A E(v, a). In general, the continuity of
E is not sufficient for E∗ to be continuous, as it is only sufficient for the upper
semicontinuity of E∗. However, if A is compact then E∗ is indeed continuous, as
shown in the following lemma.

Lemma 6. Let E and E∗ be defined as above. If E is continuous, then E∗ is
upper semicontinuous; moreover, if A is compact then E∗ is also continuous.

Proof. Consider the level sets

Ls
E∗ = {v ∈ V : E∗(v) < s} , (B.28)

Ls
E = {(v, a) ∈ V × A : E(v, a) < s} . (B.29)

Then
Ls

E∗ = πV (Ls
E) , (B.30)

where πV : V ×A → V is the canonical projection. Since the level set Ls
E is open

(E is continuous), its projection is open, too. The openness of Ls
E∗ for every s

proves the upper semicontinuity of E∗.

Now if A is compact, we consider the level sets

W s
E∗ = {v ∈ V : E∗(v) ≤ s} , (B.31)

W s
E = {(v, a) ∈ V × A : E(v, a) ≤ s} , (B.32)

we also have
W s

E∗ = πV (W s
E) , (B.33)
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since E(v, ·) attains its minimum value in A. Since the level set W s
E is closed

(E is continuous) and A is compact, the projection is closed, too. This can be
easily seen by taking a point v /∈ W s

E∗ and a covering of {v} × A with open
subsets belonging to W s

E
c, then extracting a finite covering and considering the

intersection of their projections on V to obtain a neighborhood of v in W s
E∗

c.

Thus, if A is compact E∗ is both upper and lower semicontinuous, completing
the proof.

The result stated in the last lemma applies to the regularized cost function
E∗

α defined in (B.27), since the bound on λi restricts the space of parameters to
a compact space (there is a natural bound on the parameter ω, given the bound
α on the parameters λi — see Lemma 11) . The use of the cost function (B.27)
is in this sense justified.

B.3.2 Correspondence of minimizers

Now we see which results on correspondence of local and global minima we can
obtain in this general setting.

Let a∗ be a function defined from V to A such that

E∗(v) = min
a∈A

E(v, a) = E(v, a∗(v)). (B.34)

For all the following lemmas we assume that E is continuous.

Lemma 7. v̄ is a global minimizer for E∗ if, and only if (v̄, a∗(v̄)) is a global
minimizer for E.

Proof. It follows trivially from the equation minv∈V E∗(v) = minv∈V,a∈A E(v, a).

Lemma 8. If v̄ is a local minimizer for E∗, then (v̄, a∗(v̄)) is a local minimizer
for E.

Proof. Let U H v̄ be a neighborhood such that v̄ is a minimizer for E∗ in U .
Then for v ∈ U and a ∈ A we have

E(v, a) ≥ E(v, a∗(v)) = E∗(v) ≥
≥ E∗(v̄) = E(v̄, a∗(v̄)), (B.35)

so (v̄, a∗(v̄)) is a minimizer for E in U × A.

The converse is not true in general, so we consider an additional constraint
on the regularity of a∗.
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Lemma 9. If (v̄, a∗(v̄)) is a local minimizer for E and a∗ is continuous in v̄,
then v̄ is a local minimizer for E∗.

Proof. Let W H (v̄, a∗(v̄)) be a neighborhood such that (v̄, a∗(v̄)) is a minimizer
for E in W . Since the mapping φ : v ,→ (v, a∗(v)) is continuous in v̄, then φ−1(W )
contains a neighborhood U of v̄. For v ∈ U , we have

E∗(v) = E(v, a∗(v)) ≥ E(v̄, a∗(v̄)) = E∗(v̄), (B.36)

so v̄ is a minimizer for E∗ in U .

The following lemma makes it easy to assess the continuity of the function a∗,
relying on the uniqueness of the minimizer.

Lemma 10. If A is compact and a∗(v) is the unique minimizer of E(v, ·) for
each v, then a∗ is continuous.

Proof. Consider a sequence vn → v. Then for ε > 0 by continuity of E we have
that for n large enough

E(vn, a
∗(vn)) ≤ E(vn, a

∗(v)) < E(v, a∗(v)) + ε.

By contradiction, assume that a∗(vn) does not converge to a∗(v). Then, because
A is compact, there exists a subsequence a∗(vnk

) that has a limit ā ∈ A with
ā $= a∗(v). Therefore

E(v, a∗(v)) ≤ E(v, ā) = lim
k→∞

E(vnk
, a(vnk

)) < E(v, a∗(v)) + ε

for all ε > 0. Hence E(v, ā) = E(v, a∗(v)) and ā = a∗(v).

Now we apply the previous lemmas to the bounded cost function E∗
α defined

in (B.27).

Proposition 7. Let {x1, . . . , xN} be in general position. Then, the reduced cost
function E∗

α is continuous on S2. Moreover, the local minima of E∗
α on the domain

S2 \{x1, . . . , xN} are in one-to-one correspondence with the local minima of E on
S2 \ {x1, . . . , xN}× R3 × {|λi| ≤ α}.

Proof. Lemma 6 (continuity) applies to E∗
α since the cost function E defined

in (B.3) is continuous and the minimization is restricted to a minimization on
a compact space (see also Lemma 11). Lemma 10 applies since for each v in
S2\{x1, . . . , xN} the function E(v, ·) is strictly convex and has a unique minimizer,
hence both Lemmas 8, 9 hold. Together with the uniqueness of the minimizer,
Lemmas 7, 8, 9 prove the one-to-one correspondence of local and global minima
as stated.
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Figure B.1: ]
CBS diagrams with various depth constraints. Top-left: no constraint; top-right:
|Xi| > 0.5L (L is the minimum distance of features from camera); bottom-left:
|Xi| > 0.8L; bottom-right: |Xi| > L.

This sequence of lemmas constitutes the contribution of this chapter. A final
remark shows that it is not possible to extend the correspondence of minimizers
for minimizers that happen to be exactly on a feature point.

Remark 11. There are configurations of feature points {x1, . . . , xN} such that E
a has local minimum for v = xN , while E∗ does not have a local minimum in xN .

In the next section we will illustrate empirically the effect of bounded depth
on CBS diagrams.

B.4 Experiments

In this section we illustrate the behavior of the CBS diagrams when bounding
the underlying depths. Notice that this is not straightforward, because the CBS
diagrams do not depend on depth, at least not directly, because it has been elim-
inated by subspace projection [HJ90].

In figure B.1 we show the CBS diagrams computed using various bounds on
the scene depth. Each plot is divided into two parts, for each one the cost function
is represented through a mapping of the domain S2 onto a square (by projecting
onto a octahedron) and with color encoding. The left part shows just the function

171



Figure B.2: 3D representation of CBS diagrams with various depth constraints.
Top-left: no constraint; top-right: |Xi| > 0.5L; bottom: |Xi| > 0.8L.

no bound 86.2%
|Xi| > 0.01L 87.1%
|Xi| > 0.05L 87.1%
|Xi| > 0.1L 87.2%
|Xi| > 0.5L 87.1%
|Xi| > 0.9L 88.6%
|Xi| > 1.5L 69.2%

Table B.1: Percentage of successes for gradient descent algorithm with bounded
depths. L is the minimum distance of the scene points from the camera (note
that the unit of measure of distances is chosen so that the instantaneous velocity
has unit norm).

values and the feature points in green, while the right part shows the function
with simulated 3D appearance. The four plots start from no boundary (top
left) and go to an extremely high boundary value (bottom right), which actually
shows that imposing a bound on depth that is too strict eventually produces deep
changes in the structure of the cost function, as expected.

The structure of the cost function near singularities, and its modifications
with bounded depths, are better appreciated in the closeups in figure B.2, where
the opposite of the function is shown (so that minima are represented as peaks).
It is clear that the bound on depths has the effect of removing the singularities
(as proved) and also that many of the local minima disappear, even though local
peaks are still present.

We evaluated the improvement obtained by minimizing a regularized cost
function when the algorithm used for minimization is a simple gradient descent, in
order to provide a quantitative appraisal of the change in structure that the cost

172



function undergoes when considering bounded depths. For these experiments,
we generated 10000 scenes of 25 random points each, selected according to a
Gaussian distribution with standard deviation 0.5, at a distance of 2.5 from the
camera. The measurements were generated by an instantaneous motion of the
camera along the forward direction with random rotational component, and the
descent algorithm was initialized randomly. The step on the direction of greatest
descent was selected using a backtracking strategy, choosing the first point where
the cost function decreases.

As can be seen from Table B.1, the fraction of gradient descent runs that
correctly find the global minimum is consistently greater when the bound on the
depths is enforced, even for loose bounds. Eventually, imposing a very strict
boundary disrupts entirely the structure of the cost function, as shown by the
last row of the table.

Discussion

We have proven that imposing a bound on the depth of the reconstructed scene
makes the least-squares reprojection error continuous. This result shows that
many of the local minima induced by singularities in the least-squares cost func-
tion that plague existing SFM algorithms when applied to autonomous naviga-
tion, where most of the motion is forward, do not really exist and can be simply
avoided by altering the main iteration in the algorithms to enforce bounded depth.
1

Our theoretical results can be visualized on the two-dimensional CBS dia-
grams. Note that we are imposing bounds on depth, and the CBS diagram does
not depend on depth, so the reader will have to actually read the proofs to ap-
preciate how this comes about.

Because the local structure is affected by the location of feature points used in
the computation of the reduced cost, one could conceive sampling strategies where
only subsets of the available measures are chosen. This way spurious minima due
to the configuration of points change, whereas the only stable minimum under the
sampling procedure should be the one due to the actual motion. This, however,
is beyond the scope of this chapter and is the subject of ongoing work.

1An anonymous reviewer suggested that our analysis should be extended to other cost func-
tionals, such as Sampson’s distance [Sam82], that might be smooth without the need for bound-
edness or positivity constraints. However, we have focused on the least-squares reprojection
error since this is the cost functional that was used to analyze the structure of local minima.

173



B.A Details

Lemma 11. Let E be as defined in (B.3) and fix a bound α > 0 on the inverse
depths, i.e. restric the domain of E to the set S2×A, where A = R3× [−α, α]N .
Assume that there exists two features Xi and Xj which are linearly independent.
Then there exists a constant B such that, for any given unit velocity v, any
minimizer (ω, λ1, . . . ,λN) ∈ A of E(v, ·) : A → R must satisfy ‖ω‖ ≤ B.

Proof. Each summand in (B.3) satisfies ‖yi−x̂2
i ω+λix̂iv‖ ≥ ‖x̂2

i ω‖−‖yi‖−α‖x̂iv‖.
Moreover, since there are at least two linearly independent features Xi and Xj,
we can find γ > 0 such that for all ω ∈ R3 we have max{‖x̂2

i ω‖, ‖x̂2
jω‖} ≥ γ‖ω‖.

Hence we get the bound

E(v, ω, λ1, . . . ,λN) ≥
∑

i

‖x̂2
i ω‖ − C1 ≥ γ‖w‖ − C1

for some constant C1. Therefore lim‖ω‖→∞ E = ∞ uniformly in v and the mini-
mization problem can be restricted to a limited subset of A.
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APPENDIX C

An Open Implementation of SIFT

This appendix describes an implementation of the Scale-Invariant Transform Fea-
ture (SIFT) detector and descriptor [Low04]. The implementation is designed to
produce results compatible to Lowe’s original version.1 Designed for the MAT-
LAB environment, it is broken down into several M and MEX files that enable
running only portion of the algorithm for increased flexibility.

The SIFT detector extracts from an image a collection of frames or keypoints.
These are oriented disks attached to blob-like image structures. As the image
translates, rotates and scales, the frames track the blobs and thus the image
deformation. By canonization, i.e. by mapping the frames to a standard shape (a
canonical disk), the effect of the deformation on keypoint appearance is removed.

The SIFT descriptor is a coarse description of the edge found in the frame.
Due to canonization, descriptors are invariant to translations, rotations and scal-
ings and are designed to be robust to residual small distortions.

The SIFT detector and descriptor are discussed in depth in [Low04]. Here we
only describe the interface to our implementation and some technical details.

C.1 User reference: the sift function

The SIFT detector and the SIFT descriptor are invoked by means of the function
sift, which provides a unified interface to both.

Example 4 (Invocation). The following lines run the SIFT detector and descriptor
on the image data/test.jpg.

I = imread(’data/test.png’) ;
I = double(rgb2gray(I)/256) ;
[frames,descriptors] = sift(I, ’Verbosity’, 1) ;

The pair option-value ’Verbosity’,1 causes the function to print a detailed
progress report.

1See http://www.cs.ubc.ca/\~lowe/keypoints/
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The sift function returns a 4×K matrix frames containing the SIFT frames
and a 128 × K matrix descriptors containing their descriptors. Each frame is
characterized by four numbers which are in order (x1, x2) for the center of the
frame, σ for its scale and θ for its orientation. The coordinates (x1, x2) are relative
to the upper-left corner of the image, which is assigned coordinates (0, 0), and may
be fractional numbers (sub-pixel precision). The scale σ is the smoothing level at
which the frame has been detected. This number can also be interpreted as size
of the frame, which is usually visualized as a disk of radius 6σ. Each descriptor is
a vector describing coarsely the appearance of the image patch corresponding to
the frame (further details are discussed in Appendix C.A.3). Typically this vector
has dimension 128, but this number can be changed by the user as described later.

Once frames and descriptors of two images I1 and I2 have been computed,
siftmatch can be used to estimate the pairs of matching features. This function
uses Lowe’s method to discard ambiguous matches [Low04]. The result is a 2×M
matrix, each column of which is a pair (k1, k2) of indices of corresponding SIFT
frames.

Example 5 (Matching). Let us assume that the images I1 and I2 have been
loaded and processed as in the previous example. The code

matches = siftmatch(descriptors1, descriptors2) ;

stores in matches the matching pairs, one per column.

The package provides some ancillary functions; you can

• use plotsiftframe to plot SIFT frames;

• use plotsiftdescriptor to plot SIFT descriptors;

• use plotmatches to plot feature matches;

• use siftread to read files produced by Lowe’s implementation.

Example 6 (Visualization). Let I1, I2 and matches be as in the previous example.
To visualize the matches issue

plotsiftmatches(I1,I2,frames1,frames2,matches)

The sift function has many parameters. The default values have been chosen
to emulate Lowe’s original implementation. Although our code does not result
in frames and descriptors that are 100% equivalent, in general they are quite
similar.
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C.1.1 Scale space parameters

The SIFT detector and descriptor are constructed from the Gaussian scale space
of the source image I(x). The Gaussian scale space is the function

G(x; σ)
∆
= (gσ ∗ I)(x)

where gσ is an isotropic Gaussian kernel of variance σ2I, x is the spatial coordinate
and σ is the scale coordinate. The algorithm make use of another scale space
too, called difference of Gaussian (DOG), which is, coarsely speaking, the scale
derivative of the Gaussian scale space.

Since the scale space G(x; σ) represents the same information (the image
I(x)) at different levels of scale, it is sampled in a particular way to reduce
redundancy. The domain of the variable σ is discretized in logarithmic steps
arranged in O octaves. Each octave is further subdivided in S sub-levels. The
distinction between octave and sub-level is important because at each successive
octave the data is spatially downsampled by half. Octaves and sub-levels are
identified by a discrete octave index o and sub-level index s respectively. The
octave index o and the sub-level index s are mapped to the corresponding scale
σ by the formula

σ(o, s) = σ02
o+s/S, o ∈ omin + [0, ..., O − 1], s ∈ [0, ..., S − 1] (C.1)

where σ0 is the base scale level.

The sift function accepts the following parameters describing the Gaussian
scale space being used:

• NumOctaves. This is the number of octaves O in (C.1).

• FirstOctave. Index of the first octave omin: the octave index o varies in
omin, ..., omin +O−1. It is usually either 0 or −1. Setting omin to −1 has the
effect of doubling the image before computing the Gaussian scale space.

• NumLevels. This is the number of sub-levels S in (C.1).

• Sigma0. Base smoothing: This is the parameter σ0 in (C.1).

• SigmaN. Nominal pre-smoothing: This is the nominal smoothing level of
the input image. The algorithm assumes that the input image is actually
(gσn ∗ I)(x) as opposed to I(x) and adjusts the computations according.
Usually σn is assumed to be half pixel (0.5).
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C.1.2 Detector parameters

The SIFT frames (x, σ) are points of local extremum of the DOG scale space.
The selection of such points is controlled by the following parameters:

• Threshold. Local extrema threshold. Local extrema whose value |G(x, ; σ)|
is below this number are rejected.

• EdgeThreshold. Local extrema localization threshold. If the local extremum
is on a valley, the algorithm discards it as it is too unstable. Extrema are
associated with a score proportional to their sharpness and rejected if the
score is below this threshold.

• RemoveBoundaryPoints. Boundary points removal. If this parameter is set
to 1 (true), frames which are too close to the boundary of the image are
rejected.

C.1.3 Descriptor parameters

The SIFT descriptor is a weighed and interpolated histogram of the gradient
orientations and locations in a patch surrounding the keypoint. The descriptor
has the following parameters:

• Magnif. Magnification factor m. Each spatial bin of the histogram has
support of size mσ, where σ is the scale of the frame.

• NumSpatialBins. Number of spatial bins. Together with the next param-
eter, this number defines the extension and dimension of the descriptor.
The dimension of the descriptor (the total number of bins) is equal to
NumSpatialBins2×NumOrientBins and its extension (the patch where the
gradient statistic is collected) has radius NumSpatialBins×mσ/2.

• NumOrientBins. Number of orientation bins.

C.1.4 Direct access to SIFT components

The SIFT code is decomposed in several M and MEX files, each implementing a
portion of the algorithm. These programs can be run on their own or replaced.
Appendix C.A contains information useful to do this.

Example 7 (Computing the SIFT descriptor directly). Sometimes it is useful
to run the descriptor code alone. This can be done by calling the function
siftdescriptor (which is actually a MEX file.) See the function help for further
details.
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Symbol Description In the code
o ∈ [omin, omin + O − 1] Octave index and range o, O, omin
s ∈ [smin, smax] Scale index and range s, smin, smax
σ(o, s) = σ02o+s/S Scale coordinate formula
σ0 Base scale offset sigma0
M0, N0 Base spatial resolution (octave o = 0)
No = IN0

2o J, Mo = IM0
2o J Octave lattice size formulas

xo ∈ [0, ..., No]× [0, ...,Mo] Spatial indexes and rages
x = 2oxo Spatial coordinate formula
F (·, σ(o, ·)) Octave data octave
G(x, σ) Gaussian scale space gss
D(x, σ) DOG scale space dogss

Figure C.1: Scale space parameters. The SIFT descriptors uses two scale spaces:
a Gaussian scale space and a Difference of Gaussian scale space. Both are de-
scribed by these parameters.

C.A Internals

C.A.1 Scale spaces

Here a scale space is a function F (x, σ) ∈ R of a spatial coordinate x ∈ R2 and
a scale coordinate σ ∈ R+. Since a scale space F (·, σ) typically represents the
same information at various scales σ ∈ R, its domain is sampled in a particular
way in order to reduce the redundancy.

The scale coordinate σ is discretized in logarithmic steps according to

σ(s, o) = σ02
o+s/S, o ∈ Z, s = 0, ..., S − 1

where o is the octave index, s is the scale index, S ∈ N is the scale resolution
and σ0 ∈ R+ is the base scale offset. Note that it is possible to have octaves of
negative index.

The spatial coordinate x is sampled on a lattice with a resolution which is a
function of the octave. We denote xo the spatial index for octave o; this index is
mapped to the coordinate x by

x = 2oxo, o ∈ Z, xo ∈ [0, ..., No − 1]× [0, ...,Mo − 1].

where (No, Mo) is the spatial resolution of octave o. If (M0, N0) is the the reso-
lution of the base octave o = 0, the resolution of the other octaves is obtained
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as

No = IN0

2o
J, Mo = IM0

2o
J.

It will be useful to store some scale levels twice, across different octaves. We
do this by allowing the parameter s to be negative or greater than S. Formally,
we denote the range of s as [smin, smax]. We also denote the range of the octave
index o as [omin, omin + O − 1], where O ∈ N is the total number of octaves. See
Figure C.1 for a summary of these symbols.

The SIFT detector makes use of the two scale spaces described next.

Gaussian Scale Space. The Gaussian scale space of an image I(x) is the
function

G(x, σ)
∆
= (gσ ∗ I)(x)

where the scale σ = σ02o+s/S is sampled as explained in the previous section. This
scale space is computed by the function gaussianss. In practice, it is assumed
that the image passed to the function gaussianss is already pre-smoothed at a
nominal level σn, so that G(x, σ) = (g√

σ2−σ2
n
∗I)(x). As suggested in [Low04], the

pyramid is computed incrementally from the bottom by successive convolutions
with small kernels.

Difference of Gaussians scale space. The difference of Gaussians (DOG)
scale space is the scale “derivative” of the Gaussian scale space G(x, σ) along the
scale coordinate σ. It is given by

D(x, σ(s, o))
∆
= G(x, σ(s + 1, o))−G(x, σ(s, o)).

It is obtained from the Gaussian scale space by the diffss function.

Remark 12 (Lowe’s parameters). Lowe’s implementation uses the following pa-
rameters:

σn = 0.5, σ0 = 1.6 · 21/S, omin = −1, S = 3

In order to compute the octave o = −1, the image is doubled by bilinear interpo-
lation (for the enlarged image σn = 1). In order to detect extrema at all scales,
the Difference of Gaussian scale space has s ∈ [smin, smax] = [−1, S + 1]. Since
the Difference of Gaussian scale space is obtained by differentiating the Gaussian
scale space, the latter has s ∈ [smin, smax] = [−1, S + 2]. The parameter O is set
to cover all octaves (i.e. as big as possible.)

C.A.2 The detector

The SIFT frames (or “keypoints”) are a selection of (sub-pixel interpolated)
points (x, σ) of local extremum of the DOG scale-space D(x, σ), together with
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an orientation θ derived from the spatial derivative of the Gaussian scale-space
G(x, σ). For what concerns the detector (and being in general different for the
descriptor), the “support” of a keypoint (x, σ) is a Gaussian window H(x) of
deviation σw = 1.5σ. In practice, the window is truncated at |x| ≤ 4σw.

The Gaussian and DOG scale spaces are derived as in Section C.A.1. In this
Section, the parameters S, O, smin, smax, omin, σ0 refer to the DOG scale space.
The Gaussian scale space has exactly the same parameters of the DOG scale
space except for sDOG

max which is equal to smax − 1.

The extraction of the keypoints is carried one octave per time and articulated
in the following steps:

• Detection. Keypoints are detected as points of local extremum of D(x, σ)
(Section C.A.1). In the implementation the function siftlocalmax extracts
such extrema by looking at 9× 9× 9 neighborhoods of samples.

As the octave is represented by a 3D array, the function siftlocalmax returns
indexes k (in Matlabconvention) that are to be mapped to scale space
indexes (x1, x2, s) by

k − 1 = x2 + x1Mo + (s− smin)MoNo.

Alternatively, one can use ind2sub to map the index k to a subscript (i, j, l)
and then use

x1 = j − 1, x2 = i− 1, s = l − 1 + smin.

Because of the way such maxima are detected, one has always 1 ≤ x2 ≤
Mo − 2, 1 ≤ x1 ≤ No − 2 and smin + 1 ≤ s ≤ smax − 1.

Since we are interested both in local maxima and minima, the process is
repeated for −G(x, σ). (If only positive maxima and negative minima are
of interest, another option is to take the local maxima of |G(x, σ)| directly,
which is quicker.)

• Sub-pixel refinement. After being extracted by siftlocalmax, the index
(x1, x2, s) is fitted to the local extremum by quadratic interpolation. At
the same time, a threshold on the “intensity” D(x, σ) and a test on the
“peakedness” of the extremum is applied in order to reject weak points
or points on edges. These operations are performed by the siftrefinemx
function.

The edge rejection step is explained in detail in the paper [Low04]. The
sub-pixel refinement is an instance of Newton’s algorithm.
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Figure C.2: SIFT descriptor layout. The actual size of a spatial bin is mσ where
σ is the scale of the keypoint and m = 3.0 is a nominal factor.

• Orientation. The orientation θ of a keypoint (x, σ) is obtained as the
predominant orientation of the gradient in a window around the keypoint.
The predominant orientation is obtained as the (quadratically interpolated)
maximum of the histogram of the gradient orientations ∠∇G(x1, x2, σ)
within a window around the keypoint. The histogram is weighed both
by the magnitude of the gradient |∇G(x1, x2, σ)| and a Gaussian window
centered on the keypoint and of deviation 1.5σ (the Gaussian window de-
fines the region of interest as well). After collecting the data in the bins and
before computing the maximum, the histogram is smoothed by a moving
average filter.

In addition to the global maximum, each local maximum with a value above
0.8% of the maxium is retained as well. Thus for each location and scale
multiple SIFT frames might be generated.

These computations are carried by the function siftormx.

C.A.3 The descriptor

The SIFT descriptor of a keypoint (x, σ) is a local statistic of the orientations of
the gradient of the Gaussian scale space G(·, σ).

Histogram layout. The SIFT descriptor (Figure C.2) is an histogram of the
gradient orientations augmented and 2-D locations in the support of the SIFT
frame. Formally, the domain of the histogram are the tuples (x, θ) ∈ R2 × R/Z.
The bins form a three dimensional lattice with Np = 4 bins for each spatial
direction and No = 8 bins for the orientation for a total of N2

p No = 128 com-
ponents (these numbers can be changed by setting the appropriate parameters).
Each spatial bin is square with unitary edge. The window H(x) is Gaussian with
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deviation equal to half the extension of the spatial bin range, that is Np/2.

Keypoint normalization. In order to achieve invariance, the histogram layout
is projected on the image domain according to the frame of reference of the
keypoint. The spatial dimensions are multiplied by mσ where σ is the scale of
the keypoint and m is a nominal factor (equal to 3.0 by default). The layout is
also rotated so that the axis x1 is aligned to the direction θ of the keypoint.

Weighing. The histogram is weighed by the gradient modulus and a Gaussian
windowed and tri-linearly interpolated. More in detail, each sample (x1, x2, ∠∇G(x, σ))
is

• weighed by |∇G(x, σ)|;

• weighed by the gaussian window H(x);

• projected on the centers of the eight surrounding bins;

• summed to each of this bins proportionally to its distance from the respec-
tive center.

Remark 13. (Lowe’s impelmentation) In order to achieve full compatibility with
Lowe’s original implementation, one needs to pay attention to many little de-
tails as the memory layout of the descriptor and the convention for the gradient
orientations. These are detailed in the source code.
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