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Joint alignment
Visual data is often affected by nuisance transforma-
tions (e.g. viewpoint, illumination, calibration of sen-
sors, etc.). 

Removing the irrelevant variability makes analysis 
(e.g. recognition) much easier.

Goal:  remove systematic nuisance trans-
formations from a collection of data in order 
to simplify further analysis.

Image congealing
Image congealing (IC) [CONG] is a powerful 
method for joint alignment.

g1, . . . , gN

- =
x1, . . . , xN ∼ x

g1x1, . . . , gNxN ∼ y

• Find a transformed version of the data which is “as 
simple as possible”.

• Complexity: (differential) entropy H(y)

• Formulation:
min

g1,...,gN

H{g1x1, . . . , gNxN}

What if transformations gi are lossy?

Example: Affine warps of digital images 

Must regularize!
min

g1,...,gN

H{g1x1, . . . , gNxN}+ λR{g1, . . . , gN}

But what regularizer?

Lossy Compression
Do we really need to regularize?

Idea 1:  Obtaining simple data is not enough. 
We want a simple representation of the 
original data.

reconstruction

Complexity-distortion formulation

• Invariant distortion
D(x, y) = E[min

g∈G
d0(x, gy)]

• Complexity C(x, y)

• Search for optimal trade-off
min

p(g,y|x)
D(x, y) + λC(x, y)

The formulation is reminiscent of rate-distortion, 
vector quantization, entropy constrained vector 
quantization.  Advantages:

• Finds an actual representation

• Handles naturally lossy transformations

• Similarly to IC, scales better than [TCA]

“Structural” Complexity
Differential entropy ≈ # of prototypes to approxi-
mate data with ε accuracy.

Differential entropy may not characterize well data 
alignment:

- =
Idea 2: Find measure of complexity that:
• encourages global alignment;
• captures meaningful properties.

Example: Affine complexity

C(x, y) =
1
2

log det
(

I +
Σp

ε2

)

    

Interpretation and Scaling
• Continuous data ⇒ differential entropy.

• Differential entropy is meaningful only up to a 
quantization error,  which is relative to the scale of 
the data.

• If transformations include data scalings, minimizing 
differential entropy may become meaningless.

Idea 3: Differential entropy can be made 
meaningful by fixing the scale of the data.

C(x, y) =
1
2

log det
(

I +
Σp

ε2tr Σp

)
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Figure 1: Aligning 2-D points (see text). (a) the data points x1, . . . , xK (circles), the initial codes y1, . . . , yK (stars —
they are obtained by adding a small noise to the data) and reconstructions (dots — they coincide with the codes as initially
g1 = · · · = gK = 1); (b) removing the group G1 of rotations from the data by mapping them to an affine subspace (line) —
the curves show the trajectories mapping back the codes to the data; (c) removing the group G2 of scalings from the data; (d)
same as (c), except that the un-normalized complexity term (3) is used, which causes the solution to collapse on the origin.

We start by specifying the nature of the data, of the codes
and of the transformations. The datum x(u, v) ∈ R is a
(random) discrete image defined on the two dimensional lat-
tice Ω = {−r,−r + 1, . . . , r}2 where r is a non-negative
integer. Similarly, the code y(u, v) is a (random) discrete
image defined on a lattice Ω′ = {−r′, . . . , r′}. The image
x will also be identified with a matrix in R(2r+1)×(2r+1) or
a vector in R(2r+1)2 , and similarly for the image y. Our
goal is to remove from the random image x transformations
g : R2 → R2 of the real plane. For simplicity, we con-
sider only affine transformations gα where α =

[
A T

]
,

T ∈ R2, A ∈ GL(2) and gα(u, v) = A−1 · (u, v)−A−1 ·T
(notice that α parametrizes the inverse warp, as this sim-
plifies the equations below). Applying the transformation
gα to an image y(u′, v′) yields the image (gαy)(u, v) =
y(g−1

α (u, v)), where the value y(u′, v′) at the fractional
point (u′, v′) = g−1

α (u, v) is obtained by extending y to
the real plane by bilinear interpolation and zero padding.

Given samples {x1, . . . , xK} of the random image x, the
problem is then to find transformations {α1, . . . ,αK} and
codes {y1, . . . , yK} that minimize

E({αk, yk}) =

1
K

K∑

k=1

‖xk − gαkyk‖2 + λ
1
2

log det
(

I +
Y Y $

Kε2

)
, (6)

where Y =
[
y1 − µ . . . yk − µ

]
is the matrix of cen-

tered codes yk − µ, and µ =
∑K

k=1 yk/K is the sample
average. Notice that (6) is formally identical to (5), except
that the complexity term (3) is used as the normalization is
not necessary (because warps cannot decrease the variance
of the code without affecting the reconstruction accuracy).

Dealing with image boundaries. According to (6), only

the portion of the code y which is mapped back within the
bounding box of the image x is actually constrained by the
distortion term ‖x−gαy‖2 (see Fig. 2). The other portion of
the code y is determined uniquely by minimizing the com-
plexity C(x, y). In some cases this introduces a disconti-
nuity in the estimated code y which makes the optimization
of (6) tricky. This could be alleviated for example by delim-
iting the domain of x by a Gaussian window rather than by
a bounding box. If, however, the image x can be extended
beyond its bounding box in a natural way, then that infor-
mation can be used to “fill the hole”. We will get back to
this issue in Sect. 3.

Experiments. We explore the effect of minimizing the cost
functional (6) on the NIST handwritten digits dataset. A
simple gradient descent method was used to find the optimal
set of codewords and transformation parameters {yk, αk}.
For each digit, a set of 500 samples was extracted and
aligned. The result is shown in Fig. 3 for different values
of the trade-off parameter λ. Note that increasing λ the
structure of the codewords converges to a low-dimensional
space, eventually collapsing to a zero-dimensional space (a
single template). Once the algorithm has found the optimal
codeword and transformation gα for each sample, we can
apply the reverse transformations g−1

α on the original digits
to obtain the aligned dataset, as shown in Fig. 3-(c,d). Fig-
ure 4 shows the mean of all the digits aligned in this way,
compared to the mean before alignment. The result is qual-
itatively similar to IC.

3. An efficient variant for decimated affine
transformations

In this section we derive a variant of the model (6) which
is computationally more attractive. The key idea is that, in-

Algorithms
How do we align very large dataset?

1
K

K∑

k=1

‖xk − gkyk‖2 +
λ

2
log det

(
I +

Y Y !

ε2Y Y !

)

Observation: It is easy to compute the ap-
proximate variation of the energy when a single 
point is moved.

Three algorithms (all optimize one point per time):

1. Coordinate descent.
2. Gradient descent.
3. Efficient gradient descent by approximating the 

reconstruction error.

D(x, y) ≈ 1
K

K∑

k=1

βk

det Ak
− 1

γ

16∑

t=1

log(−e!l (Mαk + b))

Images and their boundaries. Often ne-
glected, boundaries are an important problem. Solved 
by padding or by natural extension for image patche.

Experiment 1: NIST digits
NIST digits (hand-written digits)
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Experiment 2: Natural Patches

    

      

Conclusions
• Complexity-distortion regularizes IC automatically.

• Complexity can encode and encourage meaningful 
properties of the data.

• Algorithms can align large dataset efficiently, even if 
the the data structure is subtle.
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