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Abstract

Joint data alignment is often regarded as a data simplifi-
cation process. This idea is powerful and general, but raises
two delicate issues. First, one must make sure that the use-
ful information about the data is preserved by the alignment
process. This is especially important when data are affected
by non-invertible transformations, such as those originating
from continuous domain deformations in a discrete image
lattice. We propose a formulation that explicitly avoids this
pitfall. Second, one must choose an appropriate measure
of data complexity. We show that standard concepts such
as entropy might not be optimal for the task, and we pro-
pose alternative measures that reflect the regularity of the
codebook space. We also propose a novel and efficient al-
gorithm that allows joint alignment of a large number of
samples (tens of thousands of image patches), and does not
rely on the assumption that pixels are independent. This is
done for the case where the data is postulated to live in an
affine subspaces of the embedding space of the raw data. We
apply our scheme to learn sparse bases for natural images
that discount domain deformations and hence significantly
decrease the complexity of codebooks while maintaining the
same generative power.

1. Introduction

Alignment is a preprocessing element of many decision
as well as compression procedures involving complex data.
It serves to remove nuisance transformations in the data
that are either irrelevant to the decision, or that can be rep-
resented explicitly in a generative model. Usually align-
ment is performed with respect to group (invertible) trans-
formations as a pre-processing step. For instance, the im-
age range (values) can be normalized for affine transfor-
mations (contrast and scaling) to gain insensitivity to il-
lumination changes in image classification, while the im-
age domain can be normalized with respect to transforma-

tions (e.g. translations or affine warps) that are applied di-
rectly by the compression algorithm (e.g. in MPEG). Here
we study in particular the problem of joint data alignment,
where the goal is to align simultaneously a large collection
of data.

A popular approach to joint alignment is to transform
the data in order to simplify their ensemble. In doing so,
however, one may remove from the data not only irrelevant
variability, but also useful information. Take the example
of a scaling of the image domain. While diffeomorphic do-
main deformations, and in particular scalings, form a group
in the continuum, invertibility is lost once we consider the
discrete nature of digital images: The cascade of lattice-
interpolation, domain deformation and resampling is in gen-
eral not invertible. This problem is present in any image
alignment problem, and has been sometimes neglected in
the literature, where the algorithms are often illustrated on
simple transformations such as translation by integer pixel
values [15]. We explicitly address this issue and formulate
the problem of joint data alignment in the presence of non-
information-preserving transformations.

A second problem with this view of joint alignment is
the choice of an appropriate measure of complexity of the
data ensemble. It is tempting to use off-the-shelf measures
such as entropy and mutual information, and to regard joint
alignment as a compression problem (Sect. 1.1 and [9, 15]).
However, complexity in Shannon’s sense (as captured for
instance by vector quantization (VQ)) essentially reflects
the number of prototypes, or codewords, required to rep-
resent the data with a given accuracy. The structure of the
codewords themselves is disregarded. So, while multiple
data may be aligned to a given codeword, and hence one an-
other, there is a-priori no reason for codewords to be glob-
ally aligned.

We propose a novel approach that measures complexity
relative to the regularity of the space where the codebook
lives, hence derives a codebook that is optimal relative to
the postulated structure of the data space. We also propose
a new cost functional for alignment, and point out the re-
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lationship to VQ, image congealing [9] (IC), transformed
component analysis [5] (TCA), as well as other alignment
schemes recently proposed in the literature and classical
rate-distortion theory. We also propose a novel and effi-
cient algorithm that allows joint alignment of a large num-
ber of samples (tens of thousands of image patches), and
does not rely on the assumption – implicit in many other ap-
proaches – that pixels are independent. This is done for the
case where the data is postulated to live in affine subspace
of the embedding space of the raw data (Sect. 1.2). The
fact that we work with real-valued (as opposed to discrete)
data enables us to use gradient-based optimization that is
fast and efficient.

Finally, in Sect. 2 and 3 we show how our approach can
be applied to learn “transformation-hypercolumns,” sparse
bases for natural images that discount domain deformations
and hence significantly decrease the complexity of code-
books for natural images while maintaining the same gen-
erative power.

1.1. Joint alignment as compression

In this section we first review a few concepts from the
theory of lossy compression and then show how they can be
adapted to the task of joint data alignment.

Lossy compression, clustering, and joint alignment. Let
x ∈ Rn be a continuous random variable (datum). In lossy
compression we search for another (continuous or discrete)
r.v. y ∈ Rn (code) with conditional density p(y|x) that
represents x concisely and accurately. Formally, we look
for p(y|x) that minimizes

E(y) = D(x, y) + λC(x, y). (1)

The distortion D(x, y) reflects the average error of the ap-
proximation, the complexity C(x, y) is the average number
of symbols required to encode y, and the parameter λ ≥ 0
trades off the two terms. This general idea has been pur-
sued in various forms in the literature. In VQ [10], y is
restricted to K <∞ codewords, all encoded with the same
number of symbols. Thus C(x, y) ∝ logK and VQ trades
off the number of codewords for the average distance of the
code y to the datum x. Entropy-Constrained Vector Quan-
tization (ECVQ) [3, 2] generalizes this idea and represents
codewords with a variable number of symbols. The opti-
mal variable-length code uses an average number symbols
equal to the entropy H(y), so that C(x, y) = H(y). There
also exist relaxations of VQ and ECVQ based on determin-
istic annealing (DA) [13] that use a regularized complexity
term which depends jointly on x and y. Rate-Distortion
(RD) [14] is a further generalization to the problem of com-
pressing long sequences of data. Shannon [14] reduced this
problem to the one of encoding a single instance x by a code
y (which in this case can be a continuous r.v.) and complex-
ity measure C(x, y) = I(x, y). This complexity gives also

the rate (i.e. the average number of symbols per component
of the sequence).

Notice that VQ and ECVQ are useful not only for com-
pression, but also for clustering. Next, we look for choices
of the distortion and complexity measures that are useful for
the problem of joint alignment. In particular, let G be a set
of transformations g : Rm → Rn. Our goal is to remove
the effects of G on the datum x. We do so by searching
for a code that represents x “up to the action of G” and is
“as simple as possible”. We do so by expanding upon our
previous work [15].

Distortion for alignment. We choose a distortion measure
for which x is represented by y up to the action of the trans-
formations G. Starting from an arbitrary point-wise distor-
tion measure d0 : Rn × Rn → R+, we simply consider the
expected invariant distortion

D(x, y) = E[d(x, y)], d(x, y) = inf
g∈G

d0(x, gy). (2)

Notice that the transformations g ∈ G need not have a spe-
cial structure and, in particular, they are not requires to form
a group.

Complexity for alignment. In VQ, ECVQ, and RD com-
plexity essentially reflects the average number of symbols
needed to index codewords. Unfortunately, this is not well
suited for alignment because it is insensitive to the actual
values of the codewords and cannot capture any of their
“structural” regularities. In particular, there is no natural
way of encouraging the mutual alignment of the codewords.

In order to do this, we restrict our attention to indexing
mechanisms (and corresponding complexity measures) that
are efficient precisely when y exhibits the desired regular-
ity. For example, in IC the code y is a (random) binary
image whose complexity C(x, y) is defined as the average
entropy of its pixels, regarded as independent random vari-
ables. This gives the number of symbols required to index
the codewords y if we disregard the dependencies among
pixels. This description is efficient if the pixels of y are
mostly constant (across different codewords y). Thus mini-
mizing this complexity encourages the mutual alignment of
the codewords.

The method we propose follows this philosophy: We use
as complexity measure the (properly normalized) entropy of
a Gaussian distribution fitting the code y. This corresponds
to describing the code y by exploiting only to the linear de-
pendencies between its components. Such a description is
concise only if y spans a low dimensional subspace of Rn
(Sect. 1.2).

Comparison to IC and TCA. As noted in [15], IC min-
imizes the complexity of the code y but does not directly
enforce the requirement that y is still a good approximation
to the original data. This fact requires restricting a-priori



the class of transformations G to a set that is guaranteed not
too loose too much information (i.e., “not too lossy”). Our
approach naturally trades off compression and reconstruc-
tion accuracy. When applied to continuous data, moreover,
approaches such as IC and [15] may be affected by an addi-
tional degeneracy which we discuss in Sect. 1.2.

TCA [6, 5] is an approach to joint alignment different
from IC and to the method we propose here. TCA aligns im-
ages by fitting a generative model that captures foreground
and background appearance and transformation parameters.
While TCA can handle non-invertible transformations as
we do, differently from it (and from IC) we enforce a spe-
cific property of the aligned data (low dimensionality) and
have an explicit approximation error (distortion). Moreover
we do not need a prior distribution on the class of transfor-
mationsG (we only need to know the class), nor to make as-
sumptions on the distribution of the data (we fit a Gaussian
model, but this is only used to extract the dimensionality of
the data, regardless of their actual distribution). Finally, we
can deal with relatively complicated transformations, while
TCA on large data is practically limited to handle transla-
tions [8]. An advantage of TCA over the proposed method
and IC is the ability to automatically segment the images
into foreground (to which transformations are applied) and
background (modeled as noise).

1.2. Structural complexity: The linear case

In this section we introduce a complexity term C(x, y)
that characterizes the linear dimensionality (the number of
dimensions of the linear subspace spanned by y) of the
code y ∈ Rn. We do so by constructing a description
of y which is efficient when y spans a low-dimensional
affine subspace of Rn. To do this, first we approximate the
density p(y) of the code y with a Gaussian density g(y),
which captures the linear statistics of p(y). Then, as if y
had density g(y), we use standard tools from rate-distortion
theory to devise the optimal description of y and estimate
its length (rate). The Gaussian density g ∈ N (µg,Σg)
which is closer to p(y) in Kullback-Leibler (KL) divergence
kl(p||g) = Ep[− log g(y)] − h(p) is the one that matches
the mean and the variance of y, i.e. µg = µp = Ep[y],
and Σg = Σp = Ep[yy>] − µpµ

>
p . This Gaussian g

yields an upper bound on the rate R(ε; p) (number of bits
per symbol) required to describe y with some accuracy1 ε:
R(ε; p) ≤ R(ε; g). The rate-distortion function of a Gaus-
sian source is known analytically [4], but in general its cal-
culation requires computing the eigenvalues of Σg . If, how-
ever, we add to y a small Gaussian noise of variance ε2 [16],
the formula is simply R(ε; g) = 1

2 log det ε
2I+Σg

ε2 and we

1The slack between R(ε; p) and R(ε; g) is irrelevant, as our goal is to
characterize the linear dimensionality of the code y.

obtain

C(x, y) =
1
2

log det
(
I +

Σp
ε2

)
. (3)

Degenerate solutions and normalization. It is easy to see
that (3) decreases not only with the dimensionality of y, but
also with its variance. Thus, if the transformations g ∈ G
enable reducing the variance of y without increasing the dis-
tortion of the reconstruction gy, then minimizing (3) yields
a degenerate code (see also Fig. 1).

We remark that the same problem affects all similar for-
mulations in which the code y is a continuous r.v. (for in-
stance, it applies to some versions of IC [9]). The reason is
that the mere fact of measuring the complexity of the con-
tinuous r.v. y requires approximating it, as reflected by the
error term ε in (3). Thus ε is an additional distortion which
is not accounted for in (2). While it is possible to map the
error ε back to the distortion d(x, gy) through the transfor-
mation g ∈ G, doing so is cumbersome. Fortunately, there
is a simple shortcut that works well in practice. The idea
is to tune ε adaptively as a fraction of the average variance
E[‖y − µ‖2] = tr Σp of the code itself. This yields the
corrected complexity term

C′(x, y) =
1
2

log det
(
I +

Σp
ε2 tr Σp

)
. (4)

Notice that (3) can still be used in place of (4) when the
particular problem prevents the degenerate solution to be
found (for instance, (3) works well for aligning images).

A first example: Removing planar transformations.
Consider g : R2 → R2 acting on a set of K 2-D points
x1, . . . , xK ∈ R2 (Fig. 1). We compute the transformations
g1, . . . , gK ∈ G and codes y1, . . . , yK ∈ R2 by minimizing
the cost function

E({gk, yk}) = D(x, y) + λC′(x, y)

=
1
K

K∑
k=1

‖xk − gkyk‖2 +
λ

2
log det

(
I +

Y Y >

ε2 trY Y >

)
(5)

where Y =
[
y1 − µ . . . yK − µ

]
is the matrix of the

centered codes and µ =
∑K
k=1 yk/K is the sample average.

This can be done by gradient descent. In Fig. 1 we use this
method to remove rotations around the origin G1 = SE(2)
and scalings G2 = R respectively. The latter case clearly
illustrates the importance of the normalization in (4), lest all
points collapse to the origin.

2. Joint alignment of images
The main application of our method is the joint align-

ment of large collections of images. In this section we spe-
cialize (3) to solve this problem.
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Figure 1: Aligning 2-D points (see text). (a) the data points x1, . . . , xK (circles), the initial codes y1, . . . , yK (stars —
they are obtained by adding a small noise to the data) and reconstructions (dots — they coincide with the codes as initially
g1 = · · · = gK = 1); (b) removing the group G1 of rotations from the data by mapping them to an affine subspace (line) —
the curves show the trajectories mapping back the codes to the data; (c) removing the group G2 of scalings from the data; (d)
same as (c), except that the un-normalized complexity term (3) is used, which causes the solution to collapse on the origin.

We start by specifying the nature of the data, of the codes
and of the transformations. The datum x(u, v) ∈ R is a
(random) discrete image defined on the two dimensional lat-
tice Ω = {−r,−r + 1, . . . , r}2 where r is a non-negative
integer. Similarly, the code y(u, v) is a (random) discrete
image defined on a lattice Ω′ = {−r′, . . . , r′}. The image
x will also be identified with a matrix in R(2r+1)×(2r+1) or
a vector in R(2r+1)2 , and similarly for the image y. Our
goal is to remove from the random image x transformations
g : R2 → R2 of the real plane. For simplicity, we con-
sider only affine transformations gα where α =

[
A T

]
,

T ∈ R2, A ∈ GL(2) and gα(u, v) = A−1 · (u, v)−A−1 ·T
(notice that α parametrizes the inverse warp, as this sim-
plifies the equations below). Applying the transformation
gα to an image y(u′, v′) yields the image (gαy)(u, v) =
y(g−1

α (u, v)), where the value y(u′, v′) at the fractional
point (u′, v′) = g−1

α (u, v) is obtained by extending y to
the real plane by bilinear interpolation and zero padding.

Given samples {x1, . . . , xK} of the random image x, the
problem is then to find transformations {α1, . . . , αK} and
codes {y1, . . . , yK} that minimize

E({αk, yk}) =

1
K

K∑
k=1

‖xk − gαk
yk‖2 + λ

1
2

log det
(
I +

Y Y >

Kε2

)
, (6)

where Y =
[
y1 − µ . . . yk − µ

]
is the matrix of cen-

tered codes yk − µ, and µ =
∑K
k=1 yk/K is the sample

average. Notice that (6) is formally identical to (5), except
that the complexity term (3) is used as the normalization is
not necessary (because warps cannot decrease the variance
of the code without affecting the reconstruction accuracy).

Dealing with image boundaries. According to (6), only

the portion of the code y which is mapped back within the
bounding box of the image x is actually constrained by the
distortion term ‖x−gαy‖2 (see Fig. 2). The other portion of
the code y is determined uniquely by minimizing the com-
plexity C(x, y). In some cases this introduces a disconti-
nuity in the estimated code y which makes the optimization
of (6) tricky. This could be alleviated for example by delim-
iting the domain of x by a Gaussian window rather than by
a bounding box. If, however, the image x can be extended
beyond its bounding box in a natural way, then that infor-
mation can be used to “fill the hole”. We will get back to
this issue in Sect. 3.

Experiments. We explore the effect of minimizing the cost
functional (6) on the NIST handwritten digits dataset. A
simple gradient descent method was used to find the optimal
set of codewords and transformation parameters {yk, αk}.
For each digit, a set of 500 samples was extracted and
aligned. The result is shown in Fig. 3 for different values
of the trade-off parameter λ. Note that increasing λ the
structure of the codewords converges to a low-dimensional
space, eventually collapsing to a zero-dimensional space (a
single template). Once the algorithm has found the optimal
codeword and transformation gα for each sample, we can
apply the reverse transformations g−1

α on the original digits
to obtain the aligned dataset, as shown in Fig. 3-(c,d). Fig-
ure 4 shows the mean of all the digits aligned in this way,
compared to the mean before alignment. The result is qual-
itatively similar to IC.

3. An efficient variant for decimated affine
transformations

In this section we derive a variant of the model (6) which
is computationally more attractive. The key idea is that, in-
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−r′−r

gαdatum x

Figure 2: Boundaries: the code y is mapped back to the datum x by a trans-
formation gα. The portion of the code which is clipped by this operation
(dashed area) needs not match x. If, however, x is extracted from a larger
image or can otherwise be extended to the real plane, then the context of x
can be used to fill the dashed area.

(a) codewords (b) codewords (c) aligned (d) aligned

Figure 3: Aligning NIST digits: (a), (b) show examples of original digits (first column) and of the codewords found by
minimizing (6) for different values of λ. From second column to last: λ = 1.5, 2, 2.5, 3, 3.5. (c), (d) show the aligned
versions of the same digits (g−1

α x) obtained by backprojection according to the optimal transformation.

stead of explicitly estimating the codes yk, one could simply
let yk = g−1

α xk and avoid estimating the codes altogether.
Unfortunately doing so requires in general to extend the im-
age x beyond its bounding box (see Fig. 2 and Sect. 2), so
this method can be used only if there is a reasonable way
of doing so. For instance, in Fig. 5 small patches x are
naturally extended by their context in the larger image and
in Fig. 6 the hand-written digits are naturally extended by
zero-padding.

By letting yk = g−1
α xk the distortion term becomes

‖x − gαy‖2 = ‖x − gα(g−1
α x)‖2, which in general is not

identically zero since the action of gα on a discrete image is
not necessarily invertible. In particular, y = g−1

α x could be
used to decimate the data by mapping the data x to a con-
stant code g−1

α x which in turn would trivially decrease the
complexity C(x, y). So the term ‖x − gα(g−1

α x)‖2 forces
the code y = g−1

α x to preserve information about the datum
x.

Notice that IC uses implicit codes too [9]. However,
in place of the distortion term ‖x − gα(g−1

α x)‖2, IC sim-
ply penalizes transformations gα that differ from the iden-
tity. This method has the advantage of speed and sim-
plicity. Motivated by this observation, we experimented
with a few surrogates of the distortion term and found
that the simple function β(x)/|det(A)| approximates well
‖x − gα(g−1

α x)‖2. Here β(x) is a constant which depends
only on the datum x and can be estimated easily during pre-
processing. Of course, this approximation is valid as long
as the bounding box of the image x is mapped within the
bounding box of the image y (Fig. 2), which can be en-
forced as a set of sixteen linear constraints Mα+ b � 0. It
is convenient to incorporate these additional constraints into

the energy function as a logarithmic barrier [1], yielding to
the formulation

E({αk}) =
1

K

KX
k=1

 
βk

detAk
− 1

γ

16X
l=1

log(−e>l (Mαk + b))

!

+ λ
1

2
log det

„
I +

Y Y >

Kε2

«
, (7)

where αk =
[
Ak Tk

]
, Y = [g−1

α1
x1 − µ, . . . , g−1

αK
xK −

µ] is the matrix of the centered implicit codes and γ is the
slope of the logarithmic barrier (we use a large value of γ
so that the barrier has an effect only at the boundaries of the
feasible region).

Optimization. We optimize (7) one image at a time, loop-
ing over the entire dataset x1, . . . , xK several times. By do-
ing this we can derive an efficient update rule for the trans-
formations αk. We start by noting that in (7) the only term
that couples the different data is the entropic term through
the covariance C = I + Y Y >/Kε2. Now fix the attention
on a particular code yk. As we vary yk while keeping the
other variables fixed, the matrix C becomes

C = C − (yk − µ)(yk − µ)>

Kε2
+

(yk − µ)(yk − µ)>

Kε2

= C̃ +
(yk − µ)(yk − µ)>

Kε2
. (8)

We can expand the entropic term to second-order around



Figure 4: Aligning NIST digits: Per-digit average of the
original data (above) and of the aligned data (below). It
can be seen that the average appears much sharper after the
alignment process despite only affine transformations being
removed.

(a) context (b) original (c) direct (d) gradient

Figure 5: Aligning bars and wedges by the efficient formulation of Sect. 3: (a) two images from which a number of patches
are sampled (in red we show the actual patch, and in blue the context used to complete the code y = g−1

α x); (b) a few such
patches; (c) alignment based on direct search of rotation and translation; (d) refinement based on gradient descent on the full
six parameters of the affine transformation. Note that in (c), (d) all bars are aligned and so are edges; the algorithm found
two “codewords” to be sufficient to represent the data with prescribed accuracy.

yk = µ, obtaining

1
2

log det
(
C̃ +

(yk − µ)(yk − µ)>

Kε2

)
≈ 1

2
(yk − µ)>

C̃−1

Kε2
(yk − µ) + const.

which is a good approximation if ‖yk − µ‖/ε
√
K is small,

i.e. when K is large. Moreover, for a large K we have
C̃ ≈ C. Adding the other terms of (7) back, we get that,
as long as only one image is changed and K is sufficiently
large, (7) can be approximated well by

E(αk) ≈
1

K

 
βk

detAk
− 1

γ

16X
l=1

log(−e>l (Mαk + b))

!

+
λ

2ε2K
(g−1
αk
x− µ)C−1(g−1

αk
x− µ) + const. (9)

which depends only on αk. We use two algorithms to op-
timize (9). The first, dubbed direct search, simply tries a
number of values of each parameter of the transformation
αk (this is basically the same strategy of IC). The second,
dubbed gradient search, uses the efficient Gauss-Newton
quadratic approximation of (9). In Fig. 6 we use the effi-
cient formulation (9) and the two algorithms to align NIST
digits, and we get alignment results analogous to the one
obtained from the formulation (6).

4. Aligning natural image patches
Starting from [12], there has been an emerging inter-

est in studying sparse representations of natural images.

Results from [12] show that, when a collection of natural
patches are projected onto a linear basis whose coefficients
have sparse statistics, structures such as bars, wedges and
dots emerge, which resemble receptive fields of the human
brain cortical areas V1, V2. Formally, given a collection
Y =

[
y1, . . . , yK

]
of such natural patches, the sparse de-

composition could be obtained by minimizing

E(A,B) = ‖Y −BA‖2F + η
∑
qk

log(1 + a2
qk),

subject to ‖bq‖2 = β > 0 for q = 1, . . . , Q (10)

where N is the number of pixels of each image yk, B =[
b1 . . . bQ

]
∈ RN×Q is the matrix of basis elements bq

and A = [aqk] ∈ RQ×K is the matrix of coefficients aqk
and η a parameter controlling the sparsity of the solution.
For this procedure to work well, natural images must be
appropriately whitened and contrast normalized [12]. The
result of minimizing (10) over Q = 128 basis elements on
a collection of 5000 natural image patches extracted in such
a way is shown in Fig. 8-(a).

From Fig. 8-(a) and the analogous results obtained by
many other authors, it is evident that many of the struc-
tures found are similar, differing only by geometric param-
eters such as position, orientation and scale. Recently it has
been argued by [7, 11] that these systematic transformations
could be estimated and removed, obtaining a more compact
representations which would also be invariant to such kind
of geometric distortions.

To this end [7, 11] extend the generative model (10) to
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Figure 6: Aligning NIST digits: (a),(b) and (c) have been obtained as in Fig. 5; (d) shows the singular values of the three
datasets (a),(b) and (c): notice the progressive reduction in the linear dimensionality of the data.
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Figure 7: Aligning natural image patches: We use the same conventions of Fig. 5. The alignment results may not be evident
from the patches alone, but the mean of the data (small images on the right) reveals the structure found by the algorithm. (d)
PCA analysis of (a), (b) and (c) reveals the decreasing linear complexity.

account for geometric transformations and solve for basis,
coefficients and geometric parameters (this is not dissimilar
from [5], except for the sparsity prior). Unfortunately this
results in a large computation which is unstable. Moreover,
we explicitly address the problem of boundaries, which are
an important factor even when dealing with simple transfor-
mation such as translations.

Since our alignment algorithm is capable of decreasing
the dimensionality of the linear embedding spanned by the
data (no matter whether its statistic is sparse or Gaussian)
it may be appropriate as a pre-processing step to align the
collection of natural image patches before the sparse dimen-
sionality reduction (10). The result of such alignment is
shown in Fig. 7 and Fig. 8-(b) illustrates the result of ap-
plying the very same algorithm of Fig. 8-(a) to the aligned
data. Several observations can be made. First, a few domi-
nant horizontal structures emerge, which evidently subsume
many of the other structures found in Fig. 8-(a) at different
orientations and translations. Second, such structures are
found multiple times, with exactly the same appearance and
position and orientation. To quantify this phenomenon, in
Fig. 8-(a) we collapse similar basis elements until the re-
construction error in (10) increases less than 1% (we do this
by iteratively collapsing the pair of most similar basis el-
ements). This shows quantitatively that indeed several of
the basis elements are redundant copies, created by the lo-

cal optimization procedure used to minimize (10). Third,
a number of relatively unstructured basis elements remain,
which may indicate that the variety of strong structures has
been significantly reduced by aligning the data.

5. Conclusions
We have presented a novel approach to perform align-

ment with respect to transformations of the data that are not
invertible. We show that a measure of complexity can be de-
fined that is tailored to the postulated structure of the space
where the codebook lives, and in particular we explore the
case of affine subspaces of the embedding space of the raw
data. We have presented efficient alignment algorithms that
allow aligning large collections of handwritten digits and
natural image patches, and more general real valued data.
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