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Kernels for Recognition

Goal:  capture systematically recent kernels 
for bag-of-features representations which 
exploit spatial information. Introduce new ker-
nels. 

Beyond Bag of Features
ln

dn

bn

✘

hk(b)

• Visual features 

• Locations l1, . . . , lN ∈ R2

• Descriptors d1, . . . , dN ∈ F

• Quantization (visual words) b1, . . . , bN ∈ B

• Bag-of-features 
histograms of visual words: h

k(b), k = 1, 2

• Comparison
K(h1, h2) =

∑

b∈B

min{h1(b), h2(b)}

Beyond bag-of-features:

• Pyramid Matching Kernels (PMK). 
Hierarchical visual words

• Spatial Pyramid Matching Kernels (SPMK).
Locations + descriptors → visual words

• Proximity Distribution Kernels (PDK).
Pairs of nearby descriptors → visual words

Relaxed Matching Kernels
Relaxed Matching Kernels (RMK) generalize PMK, 
SPMK and PDK. They also include many other ker-
nels. Basic idea:

• No optimal quantization

• Consider multiple, hierarchical quantizations
perform those and previously published sate-of-the-art re-
sults in some cases.

1.1. Bag-of-Features and Beyond
Constructing the Bag-of-Features (BoF) representa-

tion [2] of an image starts from the extraction of local image
features. First, the image I is decomposed in a number of
interest regions. To this end, several operators (feature de-
tectors) are available, ranging from the selection of random
patches [16] to the extraction of scale or affine covariant
blobs and corners [15]. This results in a list l1, . . . , lN of
feature locations (and the associated regions). Then the ap-
pearance of each region is encoded by a compact but dis-
criminative statistic (feature descriptor). Again, several op-
erators can be used, many of which are based on computing
an histogram of the image intensities or gradients [14]. This
results in a second list d1, . . . , dN of feature descriptors.

The locations l1, . . . , lN are then disregarded and the
image is represented by the distribution of the feature de-
scriptors d1, . . . , dN alone. The distribution is estimated by
quantizing the descriptor space F and then computing an
histogram1 h(b) of the occurrence of the quantized descrip-
tors (it is also possible to avoid quantizing altogether [17]).
The quantization B ⊂ 2F may be obtained by a variety of
methods, such as K-means or regular partitioning [7, 21].
By analogy with the bag-of-words model of text analysis,
the quantized descriptors b1, . . . , bN ∈ B are also called
visual words and the quantization B visual dictionary.

Comparing two images I1 and I2 is then reduced to
evaluating the similarity K(h1, h2) of the respective bag-
of-features hk(b), k = 1, 2 representations. Recently [25]
has shown that the χ2 Radial Basis Function (RBF) ker-
nel (Sect. 2) yields particularly good performances in object
categorization with the advantage of being directly operable
in an SVM classifier.

A problem with the dictionary approach to BoF is the
choice of the resolution of the visual dictionary B. An ex-
cessively fine quantization causes features from two images
to never match (overfitting), while an excessively coarse
quantization yields non-discriminative histograms (bias).
Grauman et al. [7] proposed Pyramid Matching Kernel to
overcome this issue. The idea is to work with a sequence of
R progressively coarser dictionaries B0, B1, . . . , BR−1 and
to define a similarity measure as a positive combination of
the BoF similarities at the various levels. The formulation
yields a proper Mercer (positive definite) kernel.

While BoF is a powerful paradigm, disregarding com-
pletely the image geometry limits the discriminative power
of the representation. Several attempts have been made to
extend BoF to account for geometric information. The eas-
iest way is to append the interest point locations to the de-

1We assume that histograms are normalized to one.
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Figure 1: RMK construction: agglomerative tree. Left.
The feature spaceF and a sequence of three relaxations B0,
B1 and B2. Right. The agglomerative tree represents the
merging operations transforming a relaxation to the next.
Each relaxation Br corresponds to a cut of the tree (dotted
boxes).

scriptors (Sect. 4 of [7]). Lazebnik et al. [11] extend this
idea and introduce the Spatial Pyramid Matching Kernel
(SPMK): They propose to use quantized pairs (li, di) of in-
terest point location-descriptor as element of the base vi-
sual dictionary B0. The pyramid B0, B1, . . . , BR−1 is then
formed by coarsening the quantization of the location com-
ponent l only. In this way, the representation captures the
distribution of both the appearance and location of the in-
terest points.

A limitation of this approach is that, since the location
l is expressed in absolute coordinates, the representation
is unsuitable for objects which present large variations in
pose. To address this issue, Ling et al. [13] introduced
the Proximity Distribution Kernel (PDK). The idea is to
start from triplets (di, dj , ρij), where di and dj are inter-
est points descriptors and ρij is their (nearest neighbors)
distance. Successive relaxations merge increasing values of
the ρ component (Sect. 2). Since ρ is a relative quantity, the
limitation of SPMK is removed.

2. Relaxed Matching Kernels
In this section we introduce the “relaxed matching ker-

nels” which generalize PMK, SPMK and PDK.

Construction. Let B0 ⊂ 2F a quantization of the feature
space F (base visual dictionary). To obtain coarser quan-
tizations Br, we recursively merge bins b ∈ B0 (Fig 1).
The result of this process is an agglomerative tree, whose
nodes are bins and parents are obtained from children by
merging.2

The base dictionary B0 corresponds to the leaves of the
agglomerative tree and the coarser dictionaries Br corre-

2In practice the tree might be a forest if one stops merging before all
bins are merged into one (but one can always assume that the latter is the
case).

• Multiple quantizations

• Tree: hierarchy of visual words
• Relaxation: tree cut

• Comparison

• similarity score at level r:  Fr = K(h1
r, h

2
r)

• overall similarity  
K(I1, I2) =

R−1∑

r=0

wrFr

On the Base Kernel
How do we choose the base kernel K(h1, h2) ?
[19] introduced a large family of kernels for probabil-
ity distributions that can readily be used in the RMK 
framework.

K(h1
r, h

2
r) =

∑

b∈Br

k(h1
r(b), h

2
r(b))

• L1 kernel k(a, b) = min{a, b}

• Chi2 kernel k(a, b) = 2(ab)/(a + b)

• Hellinger’s kernel k(a, b) =
√

ab

Radial Basis Function versions of all RMKs are de-
fined up to a scaling parameter

 KRBF(I1, I2) = exp{−λK(I1, I2)}

Lemma:  All such base kernels yield positive 
definite (PD) RMKs. The RBF versions are PD as 
well.

On the Weights
• Are relaxations redundant?

• Are we double-counting features?

• What is the meaning of the weights?

Theorem.  Fr is a non decreasing function of the 
relaxation order r for all choices of the base ker-
nel.

Fr can be thought as a distribution over relaxations 
and an RMK as the expected values of the weights 
wr. RMKs can also be rewritten as:

K(I1, I2) =
R−1∑

r=0

wrFr =
R−1∑

r=0

(WR−1 −Wr−1)fr

• fr = Fr − Fr−1 is the variation of the similarity 
score at level r

•
Wr =

r∑

q=0

wq

 are the integral weights
• WR−1 −Wr−1 decreases monotonically to zero

Interpretation: An RMK searches for the 
smaller relaxation order for which the data 
match well.

Efficient Calculation
All RMKs can be efficiently computed by a single pass 
on through finest quantization level.

Key idea: Visit bins by traversing all visual words 
once. This is possible because visual words are organ-
ized hierarchically.

B0 B1 B2

Figure 3: RMK computation: feature visit order. The
figure shows the feature space F and the quantization B0,
B1 and B2 of Fig. 1. The dots represents the features fk

i

and the dotted arrows a possible visiting order. Notice that
the visit traverses all the features of a bin b ∈ Br before
passing to the successive bin b′ ∈ Br, for all relaxations
r = 0, 1, 2.

rewritten as

K =
R−1∑

r=0

wrFr =
R−1∑

r=0

(WR−1 −Wr−1)fr. (3)

An interesting property of the successive relaxations,
proved in Theorem 1, is that Fr is a monotonically in-
creasing quantity (for a large choice of base kernels, in-
cluding all the popular ones). Moreover, if the last relax-
ation level corresponds to merging the whole feature space
into a single bin, since the base kernel is normalized we
also have FR = 1. Therefore we can interpret Fr as a cu-
mulative distribution function and the summation (3) as the
expected value K = Efr [WR−1 − Wr−1] of the function
WR−1−Wr−1 of the random variable r with (discrete) den-
sity fr. Notice that fr assigns more mass to the relaxation
levels r for which there is an abrupt increase in the match-
ing score Fr. Since WR−1 −Wr−1 decays with increasing
relaxation r (the weights are positive), this means that the
score is large if the two image statistics match early in the
relaxation sequence. In other words, the kernel is looking
for the finer relaxation level for which the statistics match
well.3

For instance the PMK and SPMK kernels have exponen-
tially decaying integral weights of the form Wr ∝ −e−λr,
λ > 0 (up to a positive factor and offset). In fact, computing
the differences Wr −Wr−1 yields wr ∝ e−λr and we have

KPMK ∝
R−1∑

r=0

(e−λr − e−λR)fr−1 ∝
R−1∑

r=0

e−λrFr.

For the PDK/RMK kernel we have wr = 1, Wr = r and

KPDK =
R−1∑

r=0

Fr =
R−1∑

r=0

(R− r)fr

3This also suggests why counting the same features at multiple relax-
ation levels do not really introduce bias in the comparison

so the weights are linearly decaying.

Computation. We show next that computing an RMK it is
a fast operation as it it is linear in the number of features
and relaxation levels.4

Let fk
i , i = 1, . . . , Nk, k = 1, 2 be the features extracted

from images I1 and I2 and quantized to the base level B0.
Let Fr, L1

r, L
2
r, r = 0, . . . , R − 1 be three accumulators

initialized to zero.
First, we show how to calculate Fr according to the def-

inition (1) for a fixed relaxation level r. To do this, we
need to compare histograms h1

Br
and h2

Br
defined over bins

Br = {br1, . . . , brM}. We start by visiting all the features
fk

i that belong to the first bin br1, incrementing the value
of the respective accumulators Lk

r . When there are no more
features in br1, we compute min{h1

Br
(br1), h2

Br
(br2)} =

min{L1
r, L

2
r} as of equation (1), accumulate the result to

Fr, set L1
r and L2

r to zero, and proceed to the next bin
br2. When all bins brm ∈ Br are exhausted, Fr holds the
value (1).

This process can be extended to work simultaneously for
all relaxation levels r = 0, . . . , R − 1. This is possible
because bins bri at level r are fully contained in bins br+1,j

at level r+1, so visiting the features belonging to br+1,j can
be done by visiting the features belonging respectively to all
the bins bri ⊂ br+1,j in order, and so on recursively (Fig. 3).
So it suffices to scan the features once (in the proper order)
accumulating their mass to Lk

1 , . . . , Lk
R−1. Whenever the

visit crosses a bin boundary at some level r, the algorithm
adds min{L1

r, L
2
r} to Fr, resets L1

r and L2
r and moves on.5

3. Two novel RMKs
To illustrate the flexibility of the RMK construction, we

introduce two new matching kernels.

Graph Matching Kernel. Graphs have been used exten-
sively for representing and matching images. Usually a
graph is constructed by connecting interest points or other
features in structures such as constellations, and sketches
(see for instance [4, 6, 12, 5] and references therein).
Matching graphs however is difficult due to the high insta-
bility of such structures and the combinatorial complexity
of the search. Roughly speaking, three approaches are used:
(i) focus on simple structures (such as small graphs, trees or
stars) that enable exhaustive search [6, 5], (ii) use statisti-
cal searching procedures (e.g. RANSAC, Swendsen-Wang

4The complexity is O(NR) where N = N1 + N2 is the number
of features from the two images to be compared and R is the number of
relaxations. The algorithm is also space efficient as it requires only O(N+
R) memory.

5A further speed-up is obtained if features are pre-merged at the finer
relaxation level B0 before running the algorithm. This is especially useful
for kernel such as PDK which compare pairs of interest point and may have
large feature sets.

New RMKs
Graph Matching Kernels (GMK). Features are 
often arranged in graphical configurations. GMKs 
compare graphs of visual words which match 
coarsely.

• Features: pairs of visual words at graph distance 
less than r.

• Matching: count how many similar pairs there are.

Fr =
∑

(di,dj ,ρ)∈Br

k(h1
r(di, dj , ρ), h2

r(di, dj , ρ))

Observation: If the nodes have unique names 
(visual words), then a GMK is zero if, and only if, 
the graphs are identical.

Agglomerative Information Bottleneck 
Kernels (AIBMK).  Similar to PMK, but it creates 
hierarchy based on AIB.

Experiments
GMK for matching graphlets of features.

(a) (b) (c)

(d) (e) (f)
Figure 4: GMK: robustness evaluation. (a) A few images from [15]. The data consists of six image: a frontal view five
other views from, 20 to 60 degrees of slant. Here we construct a graph by downsampling the images by half, computing a
Canny edge map and running constrained Delaunay triangulation. We then compute SIFT features at nodes (fixed orientation
and window size of 20 pixels). This construction is not affine invariant and the resulting graph is highly unstable. We make
the node labels as invariant as possible by choosing a small dictionary size (64 bins). We then match each subgraph S1(li) in
the frontal view to similar graphs Sk(lj) in the other views (we do not try to remove ambiguous matches). Using the ground
truth homography, we record the graph distance from the center of the best matching subgraph to the actual reprojection. (b)
a match at graph distance 0 from the 20o views pair. (c) A match with graph distance 1 – the overlap is still very good. (d)-(f)
two matches at 30o. (f) A match at 50o. Up to 20o of slant 83% of the match are within graph distance 2. At 30o this number
reduces to 57%. After that the deformation of the descriptors is excessive and matching becomes unreliable.
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(d) Pascal-02 People

0 20 40 60 80 100
0

20

40

60

80

100

true pos. %

tr
u

e
 n

e
g

. 
%

 

 

BAS (77.8−78.2−78.5)
PDK (77.1−77.5−77.9)
NPDK (77.7−78.0−78.4)
GMK (77.7−77.7−77.8)
AIBMK (77.8−78.0−78.2)

(e) Pascal-02 Motorbikes
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(f) Pascal-02 Cars
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(g) Pascal-02 Bicycles
Figure 5: ROC curves for Pascal-05 and Graz-02. We compare the average ROCs obtained in several runs of the various
algorithms (we average ROC curves along lines from the origin; in this way the curve passes by the average equal-error-rate
point).
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Figure 4: GMK: robustness evaluation. (a) A few images from [15]. The data consists of six image: a frontal view five
other views from, 20 to 60 degrees of slant. Here we construct a graph by downsampling the images by half, computing a
Canny edge map and running constrained Delaunay triangulation. We then compute SIFT features at nodes (fixed orientation
and window size of 20 pixels). This construction is not affine invariant and the resulting graph is highly unstable. We make
the node labels as invariant as possible by choosing a small dictionary size (64 bins). We then match each subgraph S1(li) in
the frontal view to similar graphs Sk(lj) in the other views (we do not try to remove ambiguous matches). Using the ground
truth homography, we record the graph distance from the center of the best matching subgraph to the actual reprojection. (b)
a match at graph distance 0 from the 20o views pair. (c) A match with graph distance 1 – the overlap is still very good. (d)-(f)
two matches at 30o. (f) A match at 50o. Up to 20o of slant 83% of the match are within graph distance 2. At 30o this number
reduces to 57%. After that the deformation of the descriptors is excessive and matching becomes unreliable.
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Figure 5: ROC curves for Pascal-05 and Graz-02. We compare the average ROCs obtained in several runs of the various
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Figure 4: GMK: robustness evaluation. (a) A few images from [15]. The data consists of six image: a frontal view five
other views from, 20 to 60 degrees of slant. Here we construct a graph by downsampling the images by half, computing a
Canny edge map and running constrained Delaunay triangulation. We then compute SIFT features at nodes (fixed orientation
and window size of 20 pixels). This construction is not affine invariant and the resulting graph is highly unstable. We make
the node labels as invariant as possible by choosing a small dictionary size (64 bins). We then match each subgraph S1(li) in
the frontal view to similar graphs Sk(lj) in the other views (we do not try to remove ambiguous matches). Using the ground
truth homography, we record the graph distance from the center of the best matching subgraph to the actual reprojection. (b)
a match at graph distance 0 from the 20o views pair. (c) A match with graph distance 1 – the overlap is still very good. (d)-(f)
two matches at 30o. (f) A match at 50o. Up to 20o of slant 83% of the match are within graph distance 2. At 30o this number
reduces to 57%. After that the deformation of the descriptors is excessive and matching becomes unreliable.
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Figure 5: ROC curves for Pascal-05 and Graz-02. We compare the average ROCs obtained in several runs of the various
algorithms (we average ROC curves along lines from the origin; in this way the curve passes by the average equal-error-rate
point).

(a) (b) (c)

(d) (e) (f)
Figure 4: GMK: robustness evaluation. (a) A few images from [15]. The data consists of six image: a frontal view five
other views from, 20 to 60 degrees of slant. Here we construct a graph by downsampling the images by half, computing a
Canny edge map and running constrained Delaunay triangulation. We then compute SIFT features at nodes (fixed orientation
and window size of 20 pixels). This construction is not affine invariant and the resulting graph is highly unstable. We make
the node labels as invariant as possible by choosing a small dictionary size (64 bins). We then match each subgraph S1(li) in
the frontal view to similar graphs Sk(lj) in the other views (we do not try to remove ambiguous matches). Using the ground
truth homography, we record the graph distance from the center of the best matching subgraph to the actual reprojection. (b)
a match at graph distance 0 from the 20o views pair. (c) A match with graph distance 1 – the overlap is still very good. (d)-(f)
two matches at 30o. (f) A match at 50o. Up to 20o of slant 83% of the match are within graph distance 2. At 30o this number
reduces to 57%. After that the deformation of the descriptors is excessive and matching becomes unreliable.
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(a) Graz-02 Bicycles
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(b) Graz-02 Cars
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(c) Graz-02 People

0 20 40 60 80 100
0

20

40

60

80

100

true pos. %

tr
u

e
 n

e
g

. 
%

 

 

BAS (71.2−71.4−71.7)
PDK (71.9−72.1−72.3)
NPDK (71.7−72.1−72.5)
GMK (72.1−72.3−72.5)
AIBMK (71.3−72.0−72.7)

(d) Pascal-02 People
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(e) Pascal-02 Motorbikes

0 20 40 60 80 100
0

20

40

60

80

100

true pos. %

tr
u

e
 n

e
g

. 
%

 

 

BAS (78.4−79.0−79.6)
PDK (78.1−78.6−79.1)
NPDK (75.8−77.0−78.2)
GMK (76.4−76.9−77.3)
AIBMK (76.1−76.4−76.7)

(f) Pascal-02 Cars
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Figure 5: ROC curves for Pascal-05 and Graz-02. We compare the average ROCs obtained in several runs of the various
algorithms (we average ROC curves along lines from the origin; in this way the curve passes by the average equal-error-rate
point).

• Test robustness of in graph matching. Graphs: Delaunay Tri-
angulation, SIFT features at vertices coarsely quantized

• Robust matching up to 40-50 degrees.

RMKs for object categorization.
• BAS: Baseline Bag-of-features 

method

• PDK: Proximity Distribution 
Kernel

• NPDK: Normalized PDK

• GMK: Graph Matching Kernel

• AIBMK: Agglo. Info. Kernel

• PDK.O: PDK (our implementa-
tion)

• PA5: Pascal05 Winner

• TU: Tuytelaars 07
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In order: Graz-02 Bikes, Cars, People, Pascal-05 Bikes, 
Cars, People, Motorbikes

Conclusions
• RMKs generalize previous matching kernels for 

image comparison. 

• RMKs highlight common properties and provide 
an universal algorithm.

• Careful experimentation reveals that current for-
mulations may be insufficient to exploit spatial in-
formation.


