
Overview
Linear kernel vs additive kernel:

Linear kernels yield fast training/testing of classifiers and 
compact representations. However, additive kernels are 
more accurate. We propose a simple and efficient closed 
form data preprocessing step that enables using an 
additive kernel as if it was linear.

The idea is to approximate the function  as the 

product of two small vectors , . For instance for 
the  kernel:
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 is given in closed form. For instance, a 3x 
approximation is given by:

The coefficients are obtained in closed form for all kernels 
and approximation orders.

Theory
• Closed form feature maps  for all common 

additive kernels   (Χ2, 
intersection, ...).

Hellinger’s Intersection Χ2

 

• Finite approximations with full characterization of the 
approximation error.

Practice
To kernelize a linear algo(x):

1. Download  VLFeat toolbox http://www.vlfeat.org

2. Preprocess data
psix = vl_homkermap(x, .5, 1, ‘chi2’) ;

3. Run algo(psix).

Additive and homogeneous kernels

• additive decomposition: 

•  is itself a PD kernel

•  is homogeneous: 

For any homogeneous kernel, by setting  one 

obtains

where we call

the kernel signature. This is a scalar function that fully 
characterizes the kernel.
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Figure 1: Common kernels, their signatures, and their closed-form feature maps. Top: closed form expressions for the
χ2, intersection, and Hellinger’s (Battacharyya’s) kernel, their signatures K(ω) (Sect. 2), the inverse Fourier transform of the
signatures κ(λ), the feature maps [Ψ(x)]λ (Sect. 3), and the γ-homogeneous variant of the kernels (Sect. 5). Bottom: Plots
of the various functions. On the left the χ2 kernel is a smoother function than the intersection kernel. This is reflected in a
faster fall off of the inverse Fourier transform of the signature k(λ) (while the fall-off of the signature K(ω) is fast for both
kernels), and ultimately in a better low-dimensional approximation (Fig. 2 and Sect. 4).
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Figure 2: Approximation error. (a): The approximated kernel signature K̂(ω) is obtained from the original kernel signature
K(ω) by convolution with a periodic sinc (Sect. 4). (b): The normalized error ε(x, y) is obtained, as a function of the

logarithmic ratio ω = log(y/x), by subtracting the exact signature K(ω) from the approximated signature K̂(ω). The
approximation is good in the region |ω| < π/L (shaded area). (c): optimal sampling period L obtained by minimizing
the approximation error for a given number of samples n and a given validity range |ω| ≤ M . Results are shown for the
intersection and χ2 kernels, n = 0, . . . , 3 and M = 0, 10, 100. (d): Corresponding approximation errors (as suggested in
Fig. 1 the χ2 kernel is easier to approximate than the intersection kernel).

This can be rewritten as
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−∞

e−iλ log y

x κ(λ) dλ. (4)

Comparing this equation to (3) shows that the kernel sig-
nature K(ω) must be equal to the Fourier transform of the
measure κ(λ), i.e.

K(ω) =

∫ +∞

−∞

e−iλωκ(λ) dλ. (5)

Analytic form of feature maps. We can rewrite (4) as

k(x, y) =

∫ +∞

−∞

[Ψ(x)]∗λ[Ψ(y)]λ dλ

where we defined the complex function of the real variable
λ

[Ψ(x)]λ = e−iλ log x
√

xκ(λ) . (6)

This is a key result as it gives an explicit form for the feature
map as an infinite dimensional vector. Here λ ∈ R can be

γ-homogeneous variants
A kernel is γ-homogeneous if . Given 

any signature  we get a γ-homogeneous kernel by:

The linear kernel is ! = 2. Empirically, using ! < 1 can 
improve bag-of-words models.

Kernel normalization
In applications it is useful to normalize a kernel so that 

. For γ-homogeneous additive kernels this 
amounts to normalizing  in  norm.

RBF variants
Our method can be combined with [Rahimi and Recht 07] 
to obtain feature maps for RBF-homogeneous kernels, such 
as the exponential Χ2 kernel .

From signatures to feature maps

Exact feature maps
For any homogeneous kernel there exists [Hein and 
Bousquet 2005] a measure  such that

 

I.e.  is the Fourier transform of the signature .

This yields a feature map for any homogeneous kernel:

Verification:

For common kernels the computation is in closed form.

Approximate compact feature maps
A finite approximated feature map  can be obtained 
by taking 2n+1 samples from .

Error analysis
The error of the finite representation can be analyzed by 
using the Fourier sampling theory. The normalized 
approximation error is given by the formula:

The error depends only on the ratio . The 
distortion function  is a periodic sinc:
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Analytic form of feature maps. We can rewrite (4) as
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where we defined the complex function of the real variable
λ

[Ψ(x)]λ = e−iλ log x
√

xκ(λ) . (6)

This is a key result as it gives an explicit form for the feature
map as an infinite dimensional vector. Here λ ∈ R can be

Conditions for a good approximation
The error is small for  if

-  for ;

-  for .

Some consequences
- The Χ2 kernel is easier to approximate than the 

intersection kernel as the fall-off in the  domain is faster.

- The normalized error must be large for , but in 
this case the absolute error is small (e.g. there is no error 
for ).
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nature K(ω) must be equal to the Fourier transform of the
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Analytic form of feature maps. We can rewrite (4) as
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where we defined the complex function of the real variable
λ

[Ψ(x)]λ = e−iλ log x
√
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This is a key result as it gives an explicit form for the feature
map as an infinite dimensional vector. Here λ ∈ R can be

Typically L = 1/2 and n =1 are sufficient to get optimal 
performances in applications!

Experiments

Caltech-101
15 training and 15 testing images, PHOW features.
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Fig. 4. ROC curves for the DaimlerChrysler dataset. χ2, inters., Hell. and linear denote the exact χ2, intersection, Hellinger’s,
and linear kernels; χ2 nD, inters. nD, and MB nD denote our approximations and the MB approximation with n-dimensional feature
maps. SHOG and MBHOG denote the two variants of HOG-like descriptors (see text). The legend reports the accuracy at equal
error rate and the training time in seconds. (a): With SHOG descriptors, all kernels do better than the baseline linear and Hellinger’s
kernels with just 3 components. Our approximation perform marginally better than the MB approximation. (b): With SHOG features
three components are sufficient to do as well as the exact kernels. (c): The SHOG features outperform significantly the MBHOG
features with all kernels. With the MBHOG features, however, the performance gap between the various kernels is more significant.
(d): Choosing the right histogram normalisation (either l1 or l2, depending on the kernel) affects significantly the MB and linear
kernels, less the Hellinger’s and approximated χ2 ones.
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acc. time acc. time

49.0±1.5 29.2±0.9 63.7±1.9 19.9±0.4

Fig. 5. Caltech-101 classification. Average class ac-
curacies are reported for 15 training images per class
according to the standard protocol. Top: Exact linear
and Hellinger’s kernels; Right: Exact χ2 and intersec-
tion kernels, our approximated feature maps, their 1/2-
homogeneous variants, and the MB feature map. Our
3D feature maps already saturate at the performance
of the exact kernels and are further improved by setting
γ = 1/2.

χ2
kernel inters. kernel

mthd. dm. acc. time acc. time

kernel – 64.2±1.7 388.4±8.7 62.2±1.8 354.7±24.4

appr. 1 62.4±1.6 20.7±0.3 62.0±1.4 22.9±0.7

appr. 3 64.2±1.5 58.4±7.2 63.9±1.2 66.5±2.3

appr. 5 64.0±1.6 101.3±0.7 64.0±1.7 105.8±6.5

appr-γ 3 65.8±1.5 54.7±6.2 65.7±1.5 52.6±7.7

MB 1 – – 55.9±0.9 26.9±0.8

MB 3 – – 60.5±1.3 25.5±1.2

MB 5 – – 61.3±1.1 22.1±3.3

imation for the low dimensionality considered, and

match/outperform the performance of the exact kernels.

The γ = 1/2 variants of the χ2
and intersection kernel

approximations perform better still, probably because
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Fig. 5. Caltech-101 classification. Average class ac-
curacies are reported for 15 training images per class
according to the standard protocol. Top: Exact linear
and Hellinger’s kernels; Right: Exact χ2 and intersec-
tion kernels, our approximated feature maps, their 1/2-
homogeneous variants, and the MB feature map. Our
3D feature maps already saturate at the performance
of the exact kernels and are further improved by setting
γ = 1/2.

χ2
kernel inters. kernel

mthd. dm. acc. time acc. time

kernel – 64.2±1.7 388.4±8.7 62.2±1.8 354.7±24.4

appr. 1 62.4±1.6 20.7±0.3 62.0±1.4 22.9±0.7

appr. 3 64.2±1.5 58.4±7.2 63.9±1.2 66.5±2.3

appr. 5 64.0±1.6 101.3±0.7 64.0±1.7 105.8±6.5

appr-γ 3 65.8±1.5 54.7±6.2 65.7±1.5 52.6±7.7

MB 1 – – 55.9±0.9 26.9±0.8

MB 3 – – 60.5±1.3 25.5±1.2

MB 5 – – 61.3±1.1 22.1±3.3

imation for the low dimensionality considered, and

match/outperform the performance of the exact kernels.

The γ = 1/2 variants of the χ2
and intersection kernel

approximations perform better still, probably because

The 3!D approximated feature map is as good or better 
than the exacts kernels. The γ-homogeneous variant 
(!=1/2) performs better still.
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Figure 4: ROC curves for the DaimlerChrysler dataset.

χ2, inters., Hell. and linear denote the exact χ2, intersection,

Hellinger’s, and linear kernels; χ2 nD, inters. nD, and MB nD

denote our approximations and the MB approximation with n-

dimensional feature maps. SHOG and MBHOG denote the

two variants of HOG-like descriptors (see text). The legend

reports the accuracy at equal error rate and the training time

in seconds. (a): With SHOG descriptors, all kernels do bet-

ter than the baseline linear and Hellinger’s kernels with just

3 components. Our approximations perform marginally better

than the MB approximation. (b): With SHOG features three

components are sufficient to do as well as the exact kernels.

(c): The SHOG features outperform significantly the MBHOG

features with all kernels. With the MBHOG features, however,

the performance gap between the various kernels is more sig-

nificant. (d): Choosing the right histogram normalisation (ei-

ther l1 or l2, depending on the kernel) affects significantly the

MB and linear kernels, less the Hellinger’s and approximated

χ2 ones.
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Figure 5: Caltech-101 classification. Average class

accuracies are reported for 15 training images per class

according to the standard protocol. Top: Exact linear

and Hellinger’s kernels; Right: Exact χ2 and intersec-

tion kernels, our approximated feature maps, their 1/2-

homogeneous variants, and the MB feature map. Our 3D

feature maps already saturate at the performance of the ex-

act kernels and are further improved by setting γ = 1/2.

χ2 kernel inters. kernel
mthd. dm. acc. time acc. time

kernel – 64.2±1.7 388.4±8.7 62.2±1.8 354.7±24.4

appr. 1 62.4±1.6 20.7±0.3 62.0±1.4 22.9±0.7

appr. 3 64.2±1.5 58.4±7.2 63.9±1.2 66.5±2.3

appr. 5 64.0±1.6 101.3±0.7 64.0±1.7 105.8±6.5

appr-γ 3 65.8±1.5 54.7±6.2 65.7±1.5 52.6±7.7

MB 1 – – 55.9±0.9 26.9±0.8

MB 3 – – 60.5±1.3 25.5±1.2

MB 5 – – 61.3±1.1 22.1±3.3

uses a variant of the structured output framework proposed
by [1] and the cutting plane algorithm by [11]. Compared to
conventional SVM based detectors, for which negative de-
tection windows must be determined through retraining [4],
the structural SVM has access to a virtually infinite set of
negative data. While this is clearly an advantage, and while
the cutting plane technique [11] is very efficient with linear
kernels, its kernelised version is extremely slow. In partic-
ular, it was not feasible to train the structural SVM HOG
detector with the exact χ2 kernel in a reasonable time, but it
was possible to do so by using our low dimensional χ2 ap-
proximation in less than an hour. In this sense, our method
is a key enabling factor in this experiment.

We compare our performance to state of the art methods
on this dataset, including enhanced features and non-linear
kernels. As shown in Fig. 6, the method performs very
well. For instance, the miss rate at false positive per win-
dow rate (FPPW) 10−4 is 0.05 for the HOG descriptor from
Felzenszwalb et al. [7] with the χ2 3D approximated ker-
nel, whereas Ott and Everingham [17] reports 0.05 integrat-
ing HOG with image segmentation and using a quadratic
kernel, Wang et al. [22] reports 0.02 integrating HOG with

occlusion estimation and a texture descriptor, and Maji et

al. [15] reports 0.1 using HOG with the exact intersection
kernel (please refer to the corrected results in [14]).

Notice also that adding the χ2 kernel approximation
yields a significant improvement over the simple linear de-
tectors. The relative improvement is in fact larger than
the one observed by [15] with the intersection kernel, and
by [17] with the quadratic kernel, both exact.

Compared to Maji et al. [15], our technique also has
an edge on the testing efficiency. [15] evaluates an addi-
tive kernel HOG detector in time TlookBL, where B is the
number of HOG components, L the number of window lo-
cations, and Tlook the time required to access a look-up ta-
ble (as the calculation has to be carried out independently
for each component). Instead, our 3D χ2 features can be
precomputed once for all HOG cells in an image (by us-
ing look-up tables in time TlookL). Then the additive ker-
nel HOG detector can be computed in time TdotBL, where
Tdot is the time required to multiply two 3D feature vectors,
i.e. to do three multiplications. So typically Tdot ! Tlook,
especially because fast convolution code using vectorised
instructions can be used.
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Fig. 6. INRIA dataset. Evaluation
of HOG based detectors learned in a
structural SVM framework. DET [10]
and PASCAL-style precision-recall [11]
curves are reported for both HOG
and an extended version [17], dubbed
EHOG, detectors. In both cases the
linear detectors are shown to be im-
proved significantly by the addition of
our approximated 3D χ2 feature maps,
despite the small dimensionality.

they tend to regularize more the feature histograms, by
reducing the effect of large peaks. As expected, training
speed is much better than the exact kernels. In general,
all results are significantly better than the ones reported
in [6], also due to the use of better image features.

INRIA pedestrians ( [10], Fig. 6). The experiment com-
pares our low-dimensional χ2 approximation to a linear
kernel in learning a pedestrian detector for the IN-
RIA benchmark [10]. Both the standard HOG descriptor
(insensitive to the gradient direction) and the version
by [17] (combining direction sensitive and insensitive
gradients) are tested. Training uses a variant of the
structured output framework proposed by [18] and the
cutting plane algorithm by [19]. Compared to conven-
tional SVM based detectors, for which negative detection
windows must be determined through retraining [10],
the structural SVM has access to a virtually infinite set
of negative data. While this is clearly an advantage, and
while the cutting plane technique [19] is very efficient
with linear kernels, its kernelised version is extremely
slow. In particular, it was not feasible to train the struc-
tural SVM HOG detector with the exact χ2 kernel in a
reasonable time, but it was possible to do so by using
our low dimensional χ2 approximation in less than an
hour. In this sense, our method is a key enabling factor
in this experiment.

We compare our performance to state of the art meth-
ods on this dataset, including enhanced features and
non-linear kernels. As shown in Fig. 6, the method per-
forms very well. For instance, the miss rate at false pos-
itive per window rate (FPPW) 10−4 is 0.05 for the HOG
descriptor from Felzenszwalb et al. [17] with the χ2 3D
approximated kernel, whereas Ott and Everingham [11]
reports 0.05 integrating HOG with image segmentation
and using a quadratic kernel, Wang et al. [20] reports
0.02 integrating HOG with occlusion estimation and a
texture descriptor, and Maji et al. [5] reports 0.1 using
HOG with the exact intersection kernel (please refer to
the corrected results in [21]).

Notice also that adding the χ2 kernel approximation
yields a significant improvement over the simple linear
detectors. The relative improvement is in fact larger than
the one observed by [5] with the intersection kernel, and
by [11] with the quadratic kernel, both exact.

Compared to Maji et al. [5], our technique also has

an edge on the testing efficiency. [5] evaluates an ad-
ditive kernel HOG detector in time TlookBL, where B
is the number of HOG components, L the number of
window locations, and Tlook the time required to access
a look-up table (as the calculation has to be carried out
independently for each component). Instead, our 3D χ2

features can be precomputed once for all HOG cells in an
image (by using look-up tables in time TlookL). Then the
additive kernel HOG detector can be computed in time
TdotBL, where Tdot is the time required to multiply two
feature vectors, i.e. to do three multiplications. So typ-
ically Tdot � Tlook, especially because fast convolution
code using vectorised instructions can be used.

Summary

Supported by a novel theoretical analysis, we derived
fast, closed form, and very low dimensional approxi-
mations of all common additive kernels, including the
intersection and χ2 kernels.

The approximations work as well as the exact kernels
and better than Maji and Berg [6]’s approximation in the
low dimensional regime. Empirically, the χ2 kernel was
shown to perform better than the intersection kernel,
and to be easier to approximate. Note that the MB
approximation applies only to the intersection kernel.

The approximations can be used to train kernelised
models with algorithms optimised for the linear case,
including standard SVM solvers such as LIBSVM [15],
stochastic gradient algorithms, on-line algorithms, and
cutting-plane algorithms for structural models [1]. Since
our feature maps are so low dimensional, it is not neces-
sary to use special encodings as in [6], which means that
the algorithms apply unchanged. As linear algorithms
scale linearly and the kernelised ones quadratically, the
speedup grows linearly with the training set size. In
particular, our technique was shown to be an enabling
factor in structural training for a state-of-the-art pedes-
trian detector on the INRIA dataset.

Finally, we evaluated a γ-homogeneous variant of the
homogeneous kernels that was shown to perform better
than the standard kernels on some tasks.

7 CONCLUSION

The conclusion goes here.

By using the feature map it is trivial to extend a HOG 
detector to use a Χ2 kernel. Scanning can then use 
convolution as usual and is very efficient.

Comparison with [Maji and Berg 09]
[Maji and Berg 09] propose an approximate feature map 
for the intersection kernel. Our method:

✓works with all homogeneous kernels, not just the 
intersection kernel,

✓ spreads the error more uniformly and yields kernels 
exactly normalized,

✓usually saturates performance with just 3!D features,

! yields a dense rather than a sparse expansion.
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