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Abstract

Maji and Berg [13] have recently introduced an explicit

feature map approximating the intersection kernel. This en-

ables efficient learning methods for linear kernels to be ap-

plied to the non-linear intersection kernel, expanding the

applicability of this model to much larger problems.

In this paper we generalize this idea, and analyse a

large family of additive kernels, called homogeneous, in

a unified framework. The family includes the intersection,

Hellinger’s, and χ2 kernels commonly employed in com-

puter vision. Using the framework we are able to: (i)

provide explicit feature maps for all homogeneous addi-

tive kernels along with closed form expression for all com-

mon kernels; (ii) derive corresponding approximate finite-

dimensional feature maps based on the Fourier sampling

theorem; and (iii) quantify the extent of the approximation.

We demonstrate that the approximations have indistin-

guishable performance from the full kernel on a number of

standard datasets, yet greatly reduce the train/test times of

SVM implementations. We show that the χ2 kernel, which

has been found to yield the best performance in most appli-

cations, also has the most compact feature representation.

Given these train/test advantages we are able to obtain a

significant performance improvement over current state of

the art results based on the intersection kernel.

1. Introduction

Recent advances have made it possible to learn linear

support vector machines (SVMs) in time linear with the

number of training examples [10], extending the applica-

bility of these models to large scale datasets, on-line learn-

ing, and structural problems. Since non-linear SVMs can

be seen as linear SVMs operating in an appropriate feature

space, there is at least the theoretical possibility of extend-

ing such efficient learning methods to a much more general

class of models. The success of this idea requires that (i) the

feature map can be efficiently computed, and (ii) the corre-

sponding feature space is sufficiently low dimensional.

Many computer vision representations, such as bag of

visual words [3, 19] and spatial pyramids [8, 12], can be re-

garded as probability distributions. To use them in the con-

text of SVMs, one needs to define an appropriate similar-

ity function K(x,y) between finite probability distributions

x,y (i.e. normalized histograms). The only requirement is

that K must be a positive definite (PD) function. The latter

property also guarantees the existence of a feature map, but

this is usually difficult to compute and high dimensional.

The subfamily of additive PD kernels, which includes the

intersection, χ2, and Hellinger’s kernels, has consistently

been found to give good performances in applications. Re-

cently Maji et al. [15] showed that such kernels yield SVM

classifiers with a greatly reduced test cost, leading to a 103-

fold speed-ups in certain applications. In [13], Maji and

Berg proposed an approximate, closed form finite feature

map for the intersection kernel, one member of the addi-

tive subfamily. As suggested above, such a feature map was

shown to speed-up training substantially.

In this work we seek finite dimensional feature maps for

additive kernels. Our aim is to obtain compact and simple

representations that are efficient in both training and testing,

have excellent performance, and have a satisfactory theoret-

ical support.

To this end, inspired by [9], we present a novel unified

analysis of a large family of additive kernels, known as ho-

mogeneous kernels (Sect. 2). This class includes the inter-

section as well as the χ2 and Hellinger’s (Battacharyya’s)

kernels, and many others. We show that any such kernel can

be described by a function of a scalar variable, which we

call the kernel signature. The signature is a powerful tool

that enables: (i) the derivation of closed form feature maps

based on 1D Fourier analysis (the 1D following from the

scalar variable); (ii) the computation of finite, low dimen-

sional, tight approximations of these feature maps for all

common kernels (Sect. 3); and (iii) the analysis of the error

the approximation (Sect. 4). We then generalise the kernels

to their γ-homogeneous variants and study the related prob-

lem of histogram normalisation (Sect. 5). We conclude the

theoretical analysis by contrasting our method to the one of

Maji and Berg (MB) [13] (Sect. 6).

Empirically (Sect. 7) we compare our approximations to
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the exact kernels, and obtain virtually the same performance

despite using extremely compact feature maps and requir-

ing a fraction of the training time. In this regime, we do

either as well or better than the MB approximations. While

the MB approximation can be used efficiently with a larger

number of dimensions (at the cost of modifying the learning

algorithms), this does not seem necessary as performance is

already saturated. As an additional example of the flexibil-

ity of our compact feature maps, we show how they can be

used in learning a χ2 sliding window HOG detector in the

context of the structural SVMs, and how they can be used

to speedup testing as well.

We test our method on the DaimlerChrysler pedestrian

dataset [16], the Caltech-101 dataset [6], and the INRIA

pedestrian dataset [4]. In all cases we obtain results better

than the ones reported by Maji et al. [13, 15]. In particu-

lar, our baseline INRIA detector has performance compa-

rable to the state of the art on this dataset (and could be

further enhanced by using an the improved HOG features

of [17]), and our kernel map yields a larger performance

improvement than that obtained by the intersection kernel

map of [15].

Efficient code to compute our feature maps is available

as part of the open source VLFeat library [20]. This code

can be used to kernelise most linear models with minimal

or no changes to their implementation.

2. Signature of an homogeneous kernel

For finite dimensional distributions (histograms) x, y, an

additive kernel is given by

K(x,y) =

B∑

b=1

k(xb,yb). (1)

where b is the bin index. Here k : R
+
0 ×R

+
0 → R

+
0 is itself a

PD kernel on the non-negative reals. We focus our attention

on the cases in which k(x, y) is homogeneous, i.e.

∀c ≥ 0 : k(cx, cy) = ck(x, y). (2)

Examples: computer vision kernels. All common addi-

tive kernels used in computer vision, such as the intersec-

tion, χ2, and Hellinger’s kernels, are homogeneous kernels.

Their expression is given in Fig. 1. These and other known

kernels, such as the symmetrized Kullback-Leibler kernel,

are member of a parametric family of homogeneous kernels

introduced in [9].

Signature. By setting c =
√

xy in (2), we can decompose

any homogeneous kernel as

k(x, y) =
√

xy k

(√
x

y
,

√
y

x

)
=

√
xyK

(
log

y

x

)
(3)

where we call

K(ω) = k
(
e−ω/2, eω/2

)
, ω = log

y

x

the kernel signature. Notice that the signature K(ω) fully

characterizes an homogeneous kernel and depends only on

the scalar variable ω, equal to the logarithmic ratio log(y/x)
of the kernel arguments x, y. As we will show next, the

signature can be used to analyse the kernel properties, in-

cluding computing explicit feature map representations and

evaluating the error of finite approximations.

A note on the χ2 kernel. Some authors define the additive

χ2 kernel as the negative of the χ2 distance, i.e. K(x,y) =
−χ2(x,y). Such a kernel is only conditionally PD [18].

Here we use instead the definition of Fig. 1, which makes

the additive χ2 kernel PD. If the histograms x,y are l1-

normalised, the two definitions differ by a constant offset.

A note on the Hellinger’s kernel. The Hellinger’s kernel

k(x, y) =
√

xy is the simplest homogeneous kernel, as its

signature is the constant K(ω) = 1. Any other kernel can be

obtained from it by multiplying by an appropriate signature.

This kernel is also known as Bhattacharyya’s coefficient and

takes his name from the fact that the corresponding metric

is the Hellinger’s distance.

3. From signatures to feature maps

A feature map Ψ(x) for a kernel k(x, y) is a function

mapping x into a vector space with an inner product 〈·, ·〉
such that

∀x, y : k(x, y) = 〈Ψ(x),Ψ(y)〉.

In principle, a feature map can be used to convert the data

into a format suitable for linear SVM solvers, which are

much more efficient than generic kernelised solvers. Un-

fortunately, while all PD kernels have an associated feature

map (the reproducing kernel Hilbert space), this is usually

difficult to compute and high dimensional.

We introduce here a simple technique to analytically

construct a feature map for the homogeneous kernels. This

construction results in closed form feature maps for all com-

monly used kernels. In this sense, it is much more general

than the method proposed in [13], which is restricted to the

intersection kernel.

The derivation starts from Corollary 3.1 of [9], which

states that, for any homogeneous kernel k(x, y), there ex-

ists a symmetric non-negative measure κ(λ)dλ on R (we

assume for simplicity that the measure has a density func-

tion) such that

k(x, y) =

∫ +∞

−∞

xγ+iλyγ−iλκ(λ) dλ, γ =
1

2
.



kernel k(x, y) K(ω) κ(λ) feature [Ψ(x)]λ γ-homogeneous variant

Hellinger’s
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π
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Figure 1: Common kernels, their signatures, and their closed-form feature maps. Top: closed form expressions for the

χ2, intersection, and Hellinger’s (Battacharyya’s) kernel, their signatures K(ω) (Sect. 2), the inverse Fourier transform of the

signatures κ(λ), the feature maps [Ψ(x)]λ (Sect. 3), and the γ-homogeneous variant of the kernels (Sect. 5). Bottom: Plots

of the various functions. On the left the χ2 kernel is a smoother function than the intersection kernel. This is reflected in a

faster fall off of the inverse Fourier transform of the signature k(λ) (while the fall-off of the signature K(ω) is fast for both

kernels), and ultimately in a better low-dimensional approximation (Fig. 2 and Sect. 4).
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Figure 2: Approximation error. (a): The approximated kernel signature K̂(ω) is obtained from the original kernel signature

K(ω) by convolution with a periodic sinc (Sect. 4). (b): The normalized error ǫ(x, y) is obtained, as a function of the

logarithmic ratio ω = log(y/x), by subtracting the exact signature K(ω) from the approximated signature K̂(ω). The

approximation is good in the region |ω| < π/L (shaded area). (c): optimal sampling period L obtained by minimizing

the approximation error for a given number of samples n and a given validity range |ω| ≤ M . Results are shown for the

intersection and χ2 kernels, n = 0, . . . , 3 and M = 0, 10, 100. (d): Corresponding approximation errors (as suggested in

Fig. 1 the χ2 kernel is easier to approximate than the intersection kernel).

This can be rewritten as

k(x, y) =
√

xy

∫ +∞

−∞

e−iλ log
y

x κ(λ) dλ. (4)

Comparing this equation to (3) shows that the kernel sig-

nature K(ω) must be equal to the Fourier transform of the

measure κ(λ), i.e.

K(ω) =

∫ +∞

−∞

e−iλωκ(λ) dλ. (5)

Analytic form of feature maps. We can rewrite (4) as

k(x, y) =

∫ +∞

−∞

[Ψ(x)]∗λ[Ψ(y)]λ dλ

where we defined the complex function of the real variable

λ

[Ψ(x)]λ = e−iλ log x
√

xκ(λ) . (6)

This is a key result as it gives an explicit form for the feature

map as an infinite dimensional vector. Here λ ∈ R can be



though of as the index of the feature vector Ψ(x) (and in fact

in it will be converted into a discrete index in Sect. 4). The

function κ(λ) can be computed analytically as the inverse

Fourier transform of the signature K(ω). In fact, from (5)

we have

κ(λ) =
1

2π

∫ +∞

−∞

eiλωK(ω) dω. (7)

Closed form feature maps. For the common computer vi-

sion kernels, the density κ(λ), and hence the feature map

[Ψ(x)]λ, can be computed in closed form. Fig. 1 lists the

expressions.

4. Approximated finite feature maps

The infinite dimensional feature map (6) can be approx-

imated by a finite number of samples, and this then defines

a finite dimensional vector that can be used with a linear

kernel. In this section we first use standard sampling the-

ory to compute the error in the kernel resulting from this

finite approximation, and then discuss choices of the sam-

pling parameters (the number of samples n and the period

L) which give an optimal approximation. This choice is

important as we are interested in feature maps that are both

easy to compute and low dimensional.

The finite dimensional feature map Ψ̂(x) which approx-

imates Ψ(x) can be obtained by sampling (6) at points

λ = −nL, (−n + 1)L, . . . ,+nL. By exploiting the sym-

metry of Ψ(x) and by assigning the real parts to the odd

components of Ψ̂(x) and the imaginary parts to the even

components, the vector Ψ̂(x) ∈ R
2n+1 can be defined as

[Ψ̂(x)]j√
xL

=






√
κ(0), j = 0,√
2κ( j+1

2
L) cos

(
j+1

2
L log x

)
j > 0 odd,√

2κ( j
2
L) sin

(
j
2
L log x

)
j > 0 even,

(8)

where j = 0, 1, . . . , 2n. For the common kernels, (8) yields

closed form feature maps which are very simple and effi-

cient to compute (see Fig. 1).

Definition (8) can be justified by analysing the corre-

sponding kernel k̂(x, y), and how this approximates the ex-

act kernel k(x, y). By using the symmetry of κ(λ), we ob-

tain, after a short computation,

k̂(x, y) = 〈Ψ̂(x), Ψ̂(y)〉

=
√

xy

n∑

j=−n

L κ(jL) cos

(
jL log

x

y

)

=
√

xy K̂
(
log

y

x

)
(9)

where the approximated signature K̂(ω) is given by

K̂
(
log

y

x

)
=

n∑

j=−n

L κ(jL)e−ijL log
y

x (10)

The approximated signature K̂(ω) can be computed from

the exact signature K(ω) in a simple way (Fig. 2). In fact,

as (5) states that the signature K(ω) is the Fourier transform

of κ(λ), so (10) states that the approximated signature K̂(ω)
is the Fourier transform of the sampled and truncated signal

κ(nL), j = −n − 1, . . . , n + 1. In the Fourier domain,

subsampling and truncation correspond to convolution by

the periodic sinc function

w(ω) =
L

2π

sin((2n + 1)Lω/2)

sin(Lω/2)
,

i.e. K̂ = w ∗ K. Substituting this relation into (3) yields an

analytical expression for the approximation error:

ǫ(x, y) =
k̂(x, y)√

xy
− k(x, y)√

xy
= ((w − δ) ∗ K)

(
log

y

x

)
.

(11)

Notice that (i) the expression of the error is normalized by√
xy and that (ii) the function ǫ(x, y) depends on the ratio

y/x only.

Conditions for a good approximation. In order to un-

derstand the structure of the error (11), notice that the

sinc function w(ω) has two effects (Fig. 2.a): it smooths

K(ω) and makes it periodic. The period is 2π/L and the

smoothing corresponds to a truncation in the λ domain by

a window of length (2n + 1)L. Hence K̂(ω) ≈ K(ω)
for |ω| ≤ π/L (shaded area in Fig. 2.b) provided that (i)

K(ω) falls off quickly outside the range |ω| > π/L, and (ii)

κ(λ) falls off quickly outside the range |λ| > (n + 1/2)L.

Correspondingly, the normalized error ǫ(x, y) is small for

| log(y/x)| = |ω| ≤ π/L.

For instance, as it can be seen in Fig. 1 and Fig. 2.d,

the χ2 kernel is easier to approximate than the intersection

kernel, as it has fast fall off (exponential) in both domains λ
and ω, while the intersection kernel fall off in the λ domain

is slow (polynomial). An intuitive reason for this behaviour

is that the χ2 kernel is smoother than the intersection one.

Intrinsic limitations of a finite representation. Even if

conditions (i) and (ii) are satisfied, the normalized error

ǫ(x, y) may still be large (although bounded) for |ω| > π/L
(Fig. 2.b). This corresponds to the case in which either x
is much larger than y, or vice-versa. Fortunately, in these

cases the actual error
√

xy ǫ(x, y) is still small (for instance

the actual error for x = 0 is zero). In applications, it suf-

fices to have a good approximation in a limited range of

ratios | log(y/x)| = |ω| ≤ M , outside which either y or x
can effectively be considered null. This yields the condition



π/L ≥ M , which is usually satisfied by a relatively coarse

sampling step L due to the logarithmic dependency of M
on the ratio y/x (Fig. 2).

Optimal approximation parameters. Given a kernel

k(x, y) to be approximated and the approximation param-

eters n and L, (11) can be used to quickly predict the max-

imum (or mean) error ǫ(x, y) for ω = log(y/x) in a given

range [−M,+M ]. In Fig. 2 this is used to determine op-

timal approximation parameters for the χ2 and intersection

kernels for different choices of M .

5. γ-homogeneity and normalisation

In this section we first illustrate a generalization of the

family of additive kernels discussed so far, and then con-

sider the important issue of normalization.

We generalise (3) to the case k(cx, cy) = cγk(x, y),
where γ is a real parameter, and term this a γ-homogeneous

kernel (setting γ = 1 yields an homogeneous kernel). For

instance, the linear kernel k(x, y) = xy is a 2-homogeneous

kernel. Then (3) generalises to

k(x, y) = (xy)
γ

2 k

(√
y

x
,

√
x

y

)
= (xy)

γ

2 K
(

log
x

y

)
.

(12)

It is possible to obtain a γ-homogeneous variant of any ho-

mogeneous kernel simply by plugging the corresponding

signature into (12) (see examples in Fig. 1). Moreover, the

approximations and error analysis discussed in Sect. 4 apply

unchanged to the γ-homogeneous case as they work at the

level of the signatures. Some practical advantages of using

γ 6= 1, 2 are discussed in Sect. 7.

Normalization. Empirically, it has been observed that

properly normalising a kernel K(x,y) may boost the recog-

nition performance. A way to do so is to scale the his-

tograms x so that K(x,x) = 1 for any x. Then, as long as

K is PD, one must also have K(x,x) ≥ |K(x,y)|, which

encodes a simple consistency criterion: x should be the his-

togram most similar to itself [21].

For a γ-homogeneous kernel k(x, y), (12) yields

k(x, x) = (xx)
γ

2 K (log(x/x)) = xγK(0), so that for

the corresponding additive kernel (1) one has K(x,x) =∑B
b=1 k(xb,xb) = ‖x‖γ

γ K(0) where ‖x‖γ denotes the lγ

norm of the vector x. Hence the normalisation condition

K(x,x) = 1 can be enforced by scaling the histograms x to

be lγ-normalised. For instance, for the χ2 and intersection

kernels, which are homogeneous, the histograms should be

l1 normalised, whereas for the linear kernel, which is 2-

homogeneous, the histograms should be l2 normalised.

6. Comparison with Maji and Berg method

Maji and Berg propose for the intersection kernel

k(x, y) = min{x, y} the infinite dimensional feature map

Ψ(x) given by

[Ψ(x)]λ = H(x − λ), λ ≥ 0

where H(λ) denotes the Heaviside (step) function. In fact,

as can be easily verified,

min{x, y} =

∫ +∞

0

H(x − λ)H(y − λ) dλ.

They also propose a n-dimensional approximation Ψ̃(x)j

of the type (1, . . . , 1, a, 0, . . . , 0)/
√

n (where 0 ≤ a < 1),

approximating the step function by taking its average in n
equally spaced intervals. This feature map results in the

approximated intersection kernel

k̃(x, y) =

{
min{x, y}, ⌊x⌋n 6= ⌊y⌋n,

⌊x⌋n + (x − ⌊x⌋n)(y − ⌊y⌋n)/n ⌊x⌋n = ⌊y⌋n.

where ⌊x⌋n = floor(nx)/n. We refer to this approximation

as MB, from the initials of the authors.

Approximation error and data scaling. It is interesting to

compare the MB approximated intersection kernel k̃(x, y)

to the approximation k̂(x, y) of Sect. 4. As shown in Fig. 3,

the corresponding normalised errors ǫ̃(x, y) = (k̃(x, y) −
k(x, y))/

√
xy and ǫ̂(x, y) = (k̂(x, y) − k(x, y))/

√
xy are

qualitatively quite different. As predicted in Sect. 4, our

error ǫ̂(x, y) depends only on the ratio ω = log(y/x) and

is distributed rather uniformly. In contrast, the MB error

ǫ̃(x, y) is either zero or relatively large, and is particularly

poor when x, y < 1/n (where the approximation reduces to

a linear kernel).

In applications, when k̃(xb,yb) is plugged into (1) to ap-

proximate the additive intersection kernel, and when x,y
are high dimensional histograms, the components xb,yb

tend to have varied and small dynamic ranges, so that

xb,yb < 1/n frequently unless n is very large. While

not discussed explicitly in [13], we found that in the actual

MB implementation this issue is addressed by considering

the adapted kernel k̃scaled(xb,yb) = k̃(Rbxb, Rbyb)/
√

Rb,

where Rb is estimated from the training data to fit the dy-

namic range of each histogram dimension. In the experi-

ments we also use this rescaling for fairness.

Normalisation. As discussed in Sect. 5, assuring

the proper normalisation of the kernel can be impor-

tant in applications. With the approximations proposed

in Sect. 4 we have from (9) and the definition (1)

k̂(x, x) = x
∑n+1

j=−n−1 Lκ(jL) ∝ x, so that K̂(x,y) =
∑B

b=1 k̂(xb,yb) ∝ ‖x‖1. Hence, if the data is scaled so that

the exact kernel is properly normalised, i.e. K(x,x) = 1,

then our approximation K̂(x,x) is also properly normalised

(up to a constant and irrelevant scaling factor). By contrast,

the MB approximation k̃(x, y) does not satisfy this prop-

erty.
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Figure 3: Comparison of our and MB [13] approximations. Left: The intersection kernel k(x, y) = min{x, y} for

x, y ∈ [0, 1]. Middle: The normalised error ǫ̃(x, y) of the MB approximation [13] for a three dimensional approximated

feature map Ψ̃(x) (Sect. 6). The error is large if x, y ≤ 1/n, where the approximation reduces to a linear kernel. Right: The

normalised error ǫ̂(x, y) of our approximation Ψ̂(x) (Sect. 4), also for the three dimensional case. The error depends only on

the ratio y/x.

7. Experiments

The following experiments compare the exact χ2, inter-

section, Hellinger’s, and linear kernels to our approxima-

tions and the approximation of Maji and Berg [13] in term

of accuracy and speed. Methods are evaluated on the same

data sets used by [13]. In the DaimlerChrylser pedestri-

ans comparison, we use exactly the same features as [13],

so that the kernels and their approximations can be directly

compared to the results in [13]. In the Caltech-101 exper-

iments we use a stronger feature than that used in [13] so

that results are more comparable to the state of the art, and

again compare kernels and their approximations. In the IN-

RIA pedestrian dataset, we use the standard HOG feature

and compare directly to the state of the art results on this

dataset, including those that have enhanced the descriptor

and those that use non-linear kernels. In this case we in-

vestigate also stronger (structured output) training methods

using our feature map approximations, since we can train

kernelised models with the efficiency of a linear model, and

without changes to the learning algorithm.

DaimlerChrysler pedestrians ([16], Fig. 4). The problem

is to discriminate 18 × 36 patches portraying a pedestrian

(positive samples) or clutter (negative samples). See [16]

for details on the dataset and the evaluation protocol.

Patches are described by means of either one of two

HOG-like [4] descriptors: MBHOG, the multi-scale HOG

variant of [13, 15] (downloaded from the authors’ website),

and SHOG, our own implementation of a further simplified

HOG variant which does not use the scale pyramid. Learn-

ing uses LIBLINEAR [5] as [13].

The SHOG features outperform the MBHOG features

with all tested kernels. With the SHOG features, our ap-

proximations match the performance of the exact kernels

with just three dimensions, performing better than the base-

line linear and Hellinger’s kernels, and marginally better

than the MB approximation. With the MBHOG features,

the same qualitative conclusions hold, but the differences

are much more significant. Results are consistent with the

ones reported in [13], except for the linear kernel, that

worked much better for us. Finally, Fig. 4.d shows the sig-

nificant impact of the choice of histogram normalisation on

some kernels (especially the linear one).

Caltech-101 ([6], Fig. 5). The problem is to classify the

102 classes of the Caltech-101 benchmark dataset. Stronger

image descriptors are used compared to those of Maji

and Berg [13] to see if the homogeneous kernels can im-

prove upon an already good representation (in the Daimler-

Chrysler experiment the advantage of the homogeneous ker-

nels is limited with the stronger SHOG descriptors). Specif-

ically, PHOW descriptors [2] are extracted to obtain 1200-

dimensional visual word histograms with four spatial sub-

divisions [12]. Learning uses LIBLINEAR as before.

The linear kernel performs poorly. The Hellinger’s ker-

nel is better but outperformed by the χ2 kernel. Our ap-

proximations do better that the MB approximation for the

low dimensionality considered, and match the performance

of the exact kernels. In a few cases, the approximations

actually outperform the exact kernels, probably because of

the additional smoothing caused by sampling the features

(Sect. 4). The γ = 1/2 variants of the χ2 and intersec-

tion kernel approximations perform better still, probably be-

cause they tend to reduce the effect of large peaks in the

histograms. As expected, training speed is much better than

for the exact kernels.

INRIA pedestrians ([4], Fig. 6). The experiment compares

our low-dimensional χ2 approximation to a linear kernel in

learning a pedestrian detector for the INRIA benchmark [4].

Both the standard HOG descriptor (insensitive to the gra-

dient direction) and the version by [7] (combining direc-

tion sensitive and insensitive gradients) are tested. Training
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Figure 4: ROC curves for the DaimlerChrysler dataset.

χ2, inters., Hell. and linear denote the exact χ2, intersection,

Hellinger’s, and linear kernels; χ2 nD, inters. nD, and MB nD

denote our approximations and the MB approximation with n-

dimensional feature maps. SHOG and MBHOG denote the

two variants of HOG-like descriptors (see text). The legend

reports the accuracy at equal error rate and the training time

in seconds. (a): With SHOG descriptors, all kernels do bet-

ter than the baseline linear and Hellinger’s kernels with just

3 components. Our approximations perform marginally better

than the MB approximation. (b): With SHOG features three

components are sufficient to do as well as the exact kernels.

(c): The SHOG features outperform significantly the MBHOG

features with all kernels. With the MBHOG features, however,

the performance gap between the various kernels is more sig-

nificant. (d): Choosing the right histogram normalisation (ei-

ther l1 or l2, depending on the kernel) affects significantly the

MB and linear kernels, less the Hellinger’s and approximated

χ2 ones.

linear kernel Hellinger’s kernel

acc. time acc. time

49.0±1.5 29.2±0.9 63.7±1.9 19.9±0.4

Figure 5: Caltech-101 classification. Average class

accuracies are reported for 15 training images per class

according to the standard protocol. Top: Exact linear

and Hellinger’s kernels; Right: Exact χ2 and intersec-

tion kernels, our approximated feature maps, their 1/2-

homogeneous variants, and the MB feature map. Our 3D

feature maps already saturate at the performance of the ex-

act kernels and are further improved by setting γ = 1/2.

χ2 kernel inters. kernel

mthd. dm. acc. time acc. time

kernel – 64.2±1.7 388.4±8.7 62.2±1.8 354.7±24.4

appr. 1 62.4±1.6 20.7±0.3 62.0±1.4 22.9±0.7

appr. 3 64.2±1.5 58.4±7.2 63.9±1.2 66.5±2.3

appr. 5 64.0±1.6 101.3±0.7 64.0±1.7 105.8±6.5

appr-γ 3 65.8±1.5 54.7±6.2 65.7±1.5 52.6±7.7

MB 1 – – 55.9±0.9 26.9±0.8

MB 3 – – 60.5±1.3 25.5±1.2

MB 5 – – 61.3±1.1 22.1±3.3

uses a variant of the structured output framework proposed

by [1] and the cutting plane algorithm by [11]. Compared to

conventional SVM based detectors, for which negative de-

tection windows must be determined through retraining [4],

the structural SVM has access to a virtually infinite set of

negative data. While this is clearly an advantage, and while

the cutting plane technique [11] is very efficient with linear

kernels, its kernelised version is extremely slow. In partic-

ular, it was not feasible to train the structural SVM HOG

detector with the exact χ2 kernel in a reasonable time, but it

was possible to do so by using our low dimensional χ2 ap-

proximation in less than an hour. In this sense, our method

is a key enabling factor in this experiment.

We compare our performance to state of the art methods

on this dataset, including enhanced features and non-linear

kernels. As shown in Fig. 6, the method performs very

well. For instance, the miss rate at false positive per win-

dow rate (FPPW) 10−4 is 0.05 for the HOG descriptor from

Felzenszwalb et al. [7] with the χ2 3D approximated ker-

nel, whereas Ott and Everingham [17] reports 0.05 integrat-

ing HOG with image segmentation and using a quadratic

kernel, Wang et al. [22] reports 0.02 integrating HOG with

occlusion estimation and a texture descriptor, and Maji et

al. [15] reports 0.1 using HOG with the exact intersection

kernel (please refer to the corrected results in [14]).

Notice also that adding the χ2 kernel approximation

yields a significant improvement over the simple linear de-

tectors. The relative improvement is in fact larger than

the one observed by [15] with the intersection kernel, and

by [17] with the quadratic kernel, both exact.

Compared to Maji et al. [15], our technique also has

an edge on the testing efficiency. [15] evaluates an addi-

tive kernel HOG detector in time TlookBL, where B is the

number of HOG components, L the number of window lo-

cations, and Tlook the time required to access a look-up ta-

ble (as the calculation has to be carried out independently

for each component). Instead, our 3D χ2 features can be

precomputed once for all HOG cells in an image (by us-

ing look-up tables in time TlookL). Then the additive ker-

nel HOG detector can be computed in time TdotBL, where

Tdot is the time required to multiply two 3D feature vectors,

i.e. to do three multiplications. So typically Tdot ≪ Tlook,

especially because fast convolution code using vectorised

instructions can be used.
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Figure 6: INRIA dataset. Evalua-

tion of HOG based detectors learned in

a structural SVM framework. DET [4]

and PASCAL-style precision-recall [17]

curves are reported for both HOG and an

extended version [7], dubbed EHOG, de-

tectors. In both cases the linear detectors

are shown to be improved significantly

by the addition of our approximated 3D

χ2 feature maps, despite the small dimen-

sionality.

Summary

Supported by a novel theoretical analysis, we derived

fast, closed form, and very low dimensional approximations

of all common additive kernels, including the intersection

and χ2 kernels.

The approximations work as well as the exact kernels

and better than Maji and Berg [13]’s approximation in the

low dimensional regime. Empirically, the χ2 kernel was

shown to perform better than the intersection kernel, and to

be easier to approximate. Note that the MB approximation

applies only to the intersection kernel.

The approximations can be used to train kernelised mod-

els with algorithms optimised for the linear case, including

standard SVM solvers such as LIBSVM [5], stochastic gra-

dient algorithms, on-line algorithms, and cutting-plane al-

gorithms for structural models [10]. Since our feature maps

are so low dimensional, it is not necessary to use special en-

codings as in [13], which means that the algorithms apply

unchanged. As linear algorithms scale linearly and the ker-

nelised ones quadratically, the speedup grows linearly with

the training set size. In particular, our technique was shown

to be an enabling factor in structural training for a state-of-

the-art pedestrian detector on the INRIA dataset.

Finally, we evaluated a γ-homogeneous variant of the

homogeneous kernels that was shown to perform better than

the standard kernels on some tasks.
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