
Overview
In many tasks the goal is to learn a function that varies 
predictably with transformations of the input. Examples:
• Pose-invariant classification. Recognize an object 

category regardless of the object translation, rotation, and 
scale.

   
• Pose regression. Detect an object and estimate its 

translation, rotation, and scale.

   
• Detection. Find an object location (center), without 

estimating its orientation and scale.

   

Toy Example: Rotation-invariant classification
Learn three classes of 2D points (red o, green +, blue x). 
starting from just one example point per class and gradually 
enforcing invariance to larger rotations.
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Learn a function parametrized by w
f(·;w) : R2 ! {�,+,⇥} 

trading-off its prediction accuracy and smoothness:
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[yi 6= f(xi;w)]

If it is known that the class of a point is invariant to rotations 
of [�✓0, ✓0] radians, this can be enforced by taking the 
maximum classification error of the transformed data:
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[yi 6= f(R(✓)xi;w)]

Contributions
1. A method to enforce equivariance of the function (and 

invariance as a special case).
2. Instantiation as a structured output SVM to efficiently 

handle arbitrary output spaces.
3. An application of constraint generation that can be 

interpreted as selecting useful virtual samples.

Formulation

A function f : X ! Y is equivariant if its output varies with 
its input in a predictable way for given transformations T :

8t 2 T : f(tx;w) ⇡ tf(x;w)

The effect of t on the input and output spaces X  and Y can 
be chosen arbitrarily. Invariance is obtained when t acts as 
the identity on the output (ty = y).

Example (co-variance). Let y = f(x;w) be the location of a 
butterfly in an image x. If tx is the rotated image, then the 
butterfly location ty = f(tx;w) should track the motion. 
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Encoding equivariance in the loss
For each example (xi, yi), maximize the loss with respect to 
all possible equivariant variations (txi, tyi) of input and 
output:
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�(t, yi, f(txi;w))

Note: the loss depends on the pair (t, yi) rather than the 
application tyi to enable weighting the transformations. 
Example: weighted equivariant 01-loss

�(t, yi, f(txi;w)) = W (t)[tyi 6= f(txi;w)].

Convex formulation: Equivariant structured SVM
Specialize the formulation as a structured output SVM to 
obtain a convex learning problem by:
1. Parametrizing 

f(x;w) as
f(x;w) = argmax

y2Y
hw, (x, y)i

2. Making the loss convex by margin (or slack) rescaling:
sup

t2T ,y2Y
�(t, yi, by) + hw, (xi, by)� (xi, tyi)i

Algorithm
The learning problem is a quadratic program with a 
(potentially) ∞ number of constraints:

min
w
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8i, t, by : ⇠i � �(t, yi, by) + hw, (xi, by)� (xi, tyi)i

Constraint generation and virtual sampling
Constraint generation automatically and iteratively 
identifies a small subset of constraints active at the global 
optimum.
Since spanning transformations is the same as generating a 
large set of virtual samples, constraint generation selects 
relevant virtual samples.

Example: Co-variant object detection

• Input: aerial image.
• Output: location of a car.
• Loss: 01-loss at 50% PASCAL VOC overlap.
• Equivariance: the detector must output the roto-

translation of the image plane, but it does not need to 
estimate the car rotation (faster inference).

Linear kernel on HOG features
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Fast non-linear kernel: slots
Linear HOG kernels blur rotating cars. We use instead slot 
kernels, a mixture of linear kernels indexed by a fast 
hashing function of the patch itself.
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This is the same as a hashed mixture of linear SVMs.

Results
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Example: Invariant learning to rank

  

• Input: images of pedestrians and clutter.
• Output: ranking of images, pedestrians first.
• Loss: 1 - ROC area.
• Invariance: ranking is invariant to small jitters and/or 

articulation of the walking pedestrian.

Natural transformations
Samples are not i.i.d. if pedestriants are tracked through 
walking cycles. Idea: treat each cycle as a single example, 
from which the transformation t selects a frame.
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Results
Equal-error rate (EER) as grouping becomes more 
aggressive for standard and ranking SVMs and the invariant 
versions.
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Number of samples, including virtual samples, selected by 
constraint generation in each case.
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Conclusion: invariant learning to rank achieves the same 
performance by activating only a fraction of virtual samples.
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