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ABSTRACT
MatConvNet is an open source implementation of Con-
volutional Neural Networks (CNNs) with a deep integra-
tion in the MATLAB environment. The toolbox is de-
signed with an emphasis on simplicity and flexibility. It
exposes the building blocks of CNNs as easy-to-use MAT-
LAB functions, providing routines for computing convolu-
tions with filter banks, feature pooling, normalisation, and
much more. MatConvNet can be easily extended, often
using only MATLAB code, allowing fast prototyping of new
CNN architectures. At the same time, it supports efficient
computation on CPU and GPU, allowing to train complex
models on large datasets such as ImageNet ILSVRC con-
taining millions of training examples.

Categories and Subject Descriptors
D.0 [Software]: General; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding

General Terms
Algorithm, design, prototyping

Keywords
Computer vision, image understanding, machine learning,
deep learning, convolutional neural networks

1. INTRODUCTION
MatConvNet is a MATLAB toolbox implementing Con-

volutional Neural Networks (CNN) for computer vision ap-
plications. Since the breakthrough work of [4], CNNs have
had a major impact in computer vision, and image under-
standing in particular, essentially replacing traditional im-
age representations such as the ones implemented in our own
VLFeat [8] open source library.

While most CNNs are obtained by composing simple lin-
ear and non-linear filtering operations such as convolution
and rectification, their implementation is far from trivial.
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% install and compile MatConvNet (run once)
untar(['http://www.vlfeat.org/matconvnet/download/' ...

'matconvnet−1.0−beta12.tar.gz']) ;
cd matconvnet−1.0−beta12
run matlab/vl_compilenn

% download a pre−trained CNN from the web (run once)
urlwrite(...
'http://www.vlfeat.org/matconvnet/models/imagenet−vgg−f.mat', ...
'imagenet−vgg−f.mat') ;

% setup MatConvNet
run matlab/vl_setupnn

% load the pre−trained CNN
net = load('imagenet−vgg−f.mat') ;

% load and preprocess an image
im = imread('peppers.png') ;
im_ = imresize(single(im), net.normalization.imageSize(1:2)) ;
im_ = im_ − net.normalization.averageImage ;

% run the CNN
res = vl_simplenn(net, im_) ;

% show the classification result
scores = squeeze(gather(res(end).x)) ;
[bestScore, best] = max(scores) ;
figure(1) ; clf ; imagesc(im) ;

bell pepper (946), score 0.704

title(sprintf('%s (%d), score %.3f',...
net.classes.description{best}, best, bestScore)) ;

Figure 1: A complete example including download,
installing, compiling and running MatConvNet to
classify one of MATLAB stock images using a large
CNN pre-trained on ImageNet.

The reason is that CNNs need to be learned from vast
amounts of data, often millions of images, requiring very
efficient implementations. As most CNN libraries, Mat-
ConvNet achieves this by using a variety of optimisations
and, chiefly, by supporting computations on GPUs.

Numerous other machine learning, deep learning, and
CNN open source libraries exist. To cite some of the most
popular ones: CudaConvNet,1 Torch,2 Theano,3 and Caffe4.
Many of these libraries are well supported, with dozens of
active contributors and large user bases. Therefore, why
creating yet another library?

1
https://code.google.com/p/cuda-convnet/

2
http://cilvr.nyu.edu/doku.php?id=code:start

3
http://deeplearning.net/software/theano/

4
http://caffe.berkeleyvision.org
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The key motivation for developing MatConvNet was to
provide an environment particularly friendly and efficient
for researchers to use in their investigations.5 MatCon-
vNet achieves this by its deep integration in the MAT-
LAB environment, which is one of the most popular de-
velopment environments in computer vision research as well
as in many other areas. In particular, MatConvNet ex-
poses as simple MATLAB commands CNN building blocks
such as convolution, normalisation and pooling (section 2);
these can then be combined and extended with ease to cre-
ate CNN architectures. While many of such blocks use opti-
mised CPU and GPU implementations written in C++ and
CUDA (section 4), MATLAB native support for GPU com-
putation means that it is often possible to write new blocks
in MATLAB directly while maintaining computational effi-
ciency. Compared to writing new CNN components using
lower level languages, this is an important simplification that
can significantly accelerate testing new ideas. Using MAT-
LAB also provides a bridge towards other areas; for instance,
MatConvNet was recently used by the University of Ari-
zona in planetary science, as summarised in this NVIDIA
blogpost.6

MatConvNet can learn large CNN models such
AlexNet [4] and the very deep networks of [6] from millions
of images. Pre-trained versions of several of these powerful
models can be downloaded from the MatConvNet home
page. (section 3). While powerful, MatConvNet remains
simple to use and install. The implementation is fully self-
contained, requiring only MATLAB and a compatible C++
compiler (using the GPU code requires the freely-available
CUDA DevKit and a suitable NVIDIA GPU). As demon-
strated in figure 1 and section 1.1, it is possible to down-
load, compile, and install MatConvNet using three MAT-
LAB commands. Several fully-functional examples demon-
strating how small and large networks can be learned are
included. Importantly, several standard pre-trained network
can be immediately downloaded and used in applications. A
manual with a complete technical description of the toolbox
is maintained along with the toolbox.7 These features make
MatConvNet useful in an educational context too.8

MatConvNet is open-source released under a BSD-like
license. It can be downloaded from http://www.vlfeat.

org/matconvnet as well as from GitHub.9

1.1 Getting started
MatConvNet is simple to install and use. Figure 1 pro-

vides a complete example that classifies an image using a
latest-generation deep convolutional neural network. The
example includes downloading MatConvNet, compiling the
package, downloading a pre-trained CNN model, and evalu-
ating the latter on one of MATLAB’s stock images.

5While from a user perspective MatConvNet currently
relies on MATLAB, the library is being developed with a
clean separation between MATLAB code and the C++ and
CUDA core; therefore, in the future the library may be ex-
tended to allow processing convolutional networks indepen-
dently of MATLAB.
6
http://devblogs.nvidia.com/parallelforall/

deep-learning-image-understanding-planetary-science/
7
http://www.vlfeat.org/matconvnet/matconvnet-manual.pdf

8An example laboratory experience based on MatConvNet
can be downloaded from http://www.robots.ox.ac.uk/~vgg/
practicals/cnn/index.html.
9
http://ww.github.com/matconvnet

The key command in this example is vl_simplenn, a
wrapper that takes as input the CNN net and the pre-
processed image im_ and produces as output a structure res

of results. This particular wrapper can be used to model
networks that have a simple structure, namely a chain of
operations. Examining the code of vl_simplenn (edit ←↩
vl_simplenn in MATLAB) we note that the wrapper trans-
forms the data sequentially, applying a number of MATLAB
functions as specified by the network configuration. These
function, discussed in detail in section 2, are called “building
blocks” and constitute the backbone of MatConvNet.

While most blocks implement simple operations, what
makes them non trivial is their efficiency (section 4) as
well as support for backpropagation (section 2.2) to allow
learning CNNs. Next, we demonstrate how to use one of
such building blocks directly. For the sake of the example,
consider convolving an image with a bank of linear filters.
Start by reading an image in MATLAB, say using im ←↩
= single(imread('peppers.png')), obtaining a H ×W ×D
array im, where D = 3 is the number of colour channels
in the image. Then create a bank of K = 16 random fil-
ters of size 3× 3 using f = randn(3,3,3,16,'single'). Finally,
convolve the image with the filters by using the command
y = vl_nnconv(x,f,[]). This results in an array y with K
channels, one for each of the K filters in the bank.

While users are encouraged to make use of the blocks di-
rectly to create new architectures, MatConvNet provides
wrappers such as vl_simplenn for standard CNN architec-
tures such as AlexNet [4] or Network-in-Network [5]. Fur-
thermore, the library provides numerous examples (in the
examples/ subdirectory), including code to learn a variety
models on the MNIST, CIFAR, and ImageNet datasets. All
these examples use the examples/cnn_train training code,
which is an implementation of stochastic gradient descent
(section 2.1). While this training code is perfectly service-
able and quite flexible, it remains in the examples/ subdirec-
tory as it is somewhat problem-specific. Users are welcome
to implement their optimisers.

2. BUILDING BLOCKS
At the core of MatConvNet there is a library of CNN

building blocks, such as the convolution operator vl_nnconv
seen above. This section discusses in detail these building
blocks and their design.

2.1 Overview of the available blocks
In order to understand the design of the building blocks,

it is necessary to first review the fundamentals of CNNs.
On the outset, a Convolutional Neural Network (CNN) is
a function f mapping data x, for example an image, to an
output vector y. The function f = fL ◦ · · · ◦ f1 is the com-
position of a sequence of simpler functions fl, which we call
computational blocks or layers. Let x1,x2, . . . ,xL be the
outputs of each layer in the network, and let x0 = x denote
the network input. Each output xl = fl(xl−1; wl) is com-
puted from the previous output xl−1 by applying the func-
tion fl with parameters wl. The data flowing through the
network has a spatial structure; namely, xl ∈ RHl×Wl×Dl

is a 3D array whose first two dimensions are interpreted as
spatial coordinates (it therefore represents a feature field).
A fourth non-singleton dimension in the array allows pro-
cessing batches of images in parallel, which is important for
efficiency. The network is called convolutional because the

http://www.vlfeat.org/matconvnet
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functions fl act as local and translation invariant operators
(i.e. non-linear filters).

MatConvNet includes a variety of building blocks, con-
tained in the matlab/ directory, such as vl_nnconv (con-
volution), vl_nnconvt (convolution transpose or deconvo-
lution), vl_nnpool (max and average pooling), vl_nnrelu

(ReLU activation), vl_nnsigmoid (sigmoid activation),
vl_nnsoftmax (softmax operator), vl_nnloss (classification
log-loss), vl_nnbnorm (batch normalization), vl_nnspnorm

(spatial normalization), vl_nnnormalize (cross-channel nor-
malization), or vl_nnpdist (p-distance). The library of
blocks is sufficiently extensive that many interesting state-
of-the-art network can be implemented and learned using
the toolbox, or even ported from other toolboxes such as
Caffe.

CNNs are used as classifiers or regressors. In the example
of figure 1, the output ŷ = f(x) is a vector of probabilities,
one for each of a 1,000 possible image labels (dog, cat, trilo-
bite, ...). If y is the true label of image x, we can measure
the CNN performance by a loss function `y(ŷ) ∈ R which as-
signs a penalty to classification errors. The CNN parameters
can then be tuned or learned to minimise this loss averaged
over a large dataset of labelled example images.

Learning generally uses a variant of stochastic gradient
descent (SGD). While this is an efficient method (for this
type of problems), networks may contain several million pa-
rameters and need to be trained on millions of images; thus,
efficiency is a paramount in MatConvNet design, as fur-
ther discussed in section 4. SGD requires also to compute
the CNN derivatives, as explained in the next section.

2.2 Backpropagation
The fundamental operation to learn a network is comput-

ing the derivative of the loss with respect to the network
parameters (as this is required for gradient descent). This is
obtained using an algorithm called backpropagation, which
is an application of the chain rule for derivatives:

d

dw>l
`y(f(x; w1, . . . ,wL))

=
d[`y ◦ fL ◦ . . . fl+1](xl)

dx>l

dfl(xl−1; wl)

dw>l

where for notational simplicity that data and parameters
are identified with vectors (which is always possible up to
stacking). Note that the formula involves computing the
derivative of parts of the network with respect to the data;
these are obtained in a similar manner, and require com-
puting the derivative “one level up”. Overall derivatives are
computed by backtracking from the last layer (output) to
the first (input).

Since the loss function output is scalar, the dimension of
all the intermediate derivatives is the same as the corre-
sponding parameter. For example, d[`y ◦ fL ◦ . . . fl+1]/dx>l
has HlWlDl components, equal to the number of elements
of xl. Compare this to a Jacobian such as dfl/dx

>
l−1 that

has HlWlDlHl−1Wl−1Dl−1 components instead.
The key in implementing backpropagation efficiently is

to store only the smaller derivatives, leaving the interme-
diate calculations of the larger Jacobians implicit. This is
best illustrated with an example. Consider a layer f such
as the convolution operator implemented by vl_nnconv. In
the so called “forward” mode, one calls the function as y ←↩
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Figure 2: Training AlexNet on ImageNet ILSVRC:
dropout vs batch normalisation.

= vl_nnconv(x,w,[]) to convolve input x and obtain output
y. In the “backward mode”, one calls [dzdx, dzdw] = ←↩
vl_nnconv(x,w,[],dzdy). To understand this syntax, imagine
that f is connected to the “rest of the network”, denoted
z(·), terminating in a scalar loss:

x f z(·) z ∈ R

w

y

Here dzdy is the derivative dz/dy of the downstream sub-
network z(·), dzdx the derivative d[z◦f ]/dx of the upstream
subnetwork (i.e. prefixed by f), and dzdx and dzdw the cor-
responding derivatives w.r.t. x and w.

As explained above, dzdx, dzdw, and dzdy have the same
dimension of x, w, and y. In this manner, the computation
of larger Jacobians is encapsulated in the function call and
never carried explicitly. Another way of looking at this is
that, instead of computing a derivative such as dy/dw, one
always computes a projection of the type 〈dz/dy, dy/dw〉.

3. DOCUMENTATION AND EXAMPLES
There are three main sources of information about Mat-

ConvNet. First, the website contains descriptions of all
the functions and several examples and tutorials.10 Second,
there is a PDF manual containing a great deal of technical
details about the toolbox, including detailed mathematical
descriptions of the building blocks. Third, MatConvNet
ships with several examples (section 1.1).

Most examples are fully self-contained. For exam-
ple, in order to run the MNIST example, it suffices
to point MATLAB to the MatConvNet root direc-
tory and type addpath examples followed by cnn_mnist.
Due to the problem size, the ImageNet ILSVRC exam-
ple requires some more preparation, including download-
ing and preprocessing the images (using the bundled script
utils/preprocess−imagenet.sh). Several advanced exam-
ples are included as well. For example, figure 2 illustrates
the top-1 and top-5 validation errors as a model similar to
AlexNet [4] is trained using either standard dropout regu-
larisation or the recent batch normalisation technique of [3].
The latter is shown to converge in about one third of the

10See also http://www.robots.ox.ac.uk/~vgg/practicals/cnn/
index.html.
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epochs (passes through the training data) required by the
former.

The MatConvNet website contains also numerous pre-
trained models, i.e. large CNNs trained on ImageNet
ILSVRC that can be downloaded and used as a start-
ing point for many other problems [1]. These include:
AlexNet [4], VGG-S, VGG-M, VGG-S [1], and VGG-VD-16,
and VGG-VD-19 [7]. The example code of figure 1 shows
how one such models can be used in a few lines of MATLAB
code.

4. SPEED
Efficiency is very important for working with CNNs.

MatConvNet supports using NVIDIA GPUs as it includes
CUDA implementations of all algorithms (or relies on MAT-
LAB CUDA support).

To use the GPU (provided that suitable hardware is avail-
able and the toolbox has been compiled with GPU support),
one simply converts the arguments to gpuArrays in MAT-
LAB, as in y = vl_nnconv(gpuArray(x), gpuArray(w), []).
In this manner, switching between CPU and GPU is fully
transparent. Note that MatConvNet can also make use
of the NVIDIA CuDNN library which significant speed and
space benefits.

Next we evaluate the performance of MatConvNet when
training large architectures on the ImageNet ILSVRC 2012
challenge data [2]. The test machine is a Dell server with
two Intel Xeon CPU E5-2667 v2 clocked at 3.30 GHz (each
CPU has eight cores), 256 GB of RAM, and four NVIDIA
Titan Black GPUs (only one of which is used unless oth-
erwise noted). Experiments use MatConvNet beta12,
CuDNN v2, and MATLAB R2015a. The data is prepro-
cessed to avoid rescaling images on the fly in MATLAB and
stored in a RAM disk for faster access. The code uses the
vl_imreadjpeg command to read large batches of JPEG im-
ages from disk in a number of separate threads. The driver
examples/cnn_imagenet.m is used in all experiments.

We train the models discussed in section 3 on ImageNet
ILSVRC. Table 1 reports the training speed as number of
images per second processed by stochastic gradient descent.
AlexNet trains at about 264 images/s with CuDNN, which
is about 40% faster than the vanilla GPU implementation
(using CuBLAS) and more than 10 times faster than using
the CPUs. Furthermore, we note that, despite MATLAB
overhead, the implementation speed is comparable to Caffe
(they report 253 images/s with cuDNN and a Titan – a
slightly slower GPU than the Titan Black used here). Note
also that, as the model grows in size, the size of a SGD batch
must be decreased (to fit in the GPU memory), increasing
the overhead impact somewhat.

Table 2 reports the speed on VGG-VD-16, a very large
model, using multiple GPUs. In this case, the batch size is
set to 264 images. These are further divided in sub-batches
of 22 images each to fit in the GPU memory; the latter are
then distributed among one to four GPUs on the same ma-
chine. While there is a substantial communication overhead,
training speed increases from 20 images/s to 45. Addressing
this overhead is one of the medium term goals of the library.

5. CONCLUSIONS
MatConvNet is a novel framework for experimenting

with deep convolutional networks that is deeply integrated

model batch sz. CPU GPU CuDNN
AlexNet 256 22.1 192.4 264.1
VGG-F 256 21.4 211.4 289.7
VGG-M 128 7.8 116.5 136.6
VGG-S 128 7.4 96.2 110.1
VGG-VD-16 24 1.7 18.4 20.0
VGG-VD-19 24 1.5 15.7 16.5

Table 1: ImageNet training speed (images/s).

num GPUs 1 2 3 4
VGG-16 speed 20.0 22.20 38.18 44.8

Table 2: Multiple GPU speed (images/s).

in MATLAB and allows easy experimentation with novel
ideas. MatConvNet is already sufficient for advanced re-
search in deep learning; despite being introduced less than
a year ago, it is already citied 24 times in arXiv papers,
and has been used in several papers published at the recent
CVPR 2015 conference.

As CNNs are a rapidly moving target, MatConvNet is
developing fast. So far there have been 12 ad-interim releases
incrementally adding new features to the toolbox. Several
new features, including support for DAGs, will be included
in the upcoming releases starting in August 2015. The goal
is to ensure that MatConvNet will stay current for the
next several years of research in deep learning.
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