
Online Clustered Codebook

Chuanxia Zheng Andrea Vedaldi
Visual Geometry Group, University of Oxford

{cxzheng, vedaldi}@robots.ox.ac.uk

Abstract

Vector Quantisation (VQ) is experiencing a comeback in
machine learning, where it is increasingly used in represen-
tation learning. However, optimizing the codevectors in ex-
isting VQ-VAE is not entirely trivial. A problem is codebook
collapse, where only a small subset of codevectors receive
gradients useful for their optimisation, whereas a majority
of them simply “dies off” and is never updated or used. This
limits the effectiveness of VQ for learning larger codebooks
in complex computer vision tasks that require high-capacity
representations. In this paper, we present a simple alterna-
tive method for online codebook learning, Clustering VQ-
VAE (CVQ-VAE). Our approach selects encoded features as
anchors to update the “dead” codevectors, while optimis-
ing the codebooks which are alive via the original loss. This
strategy brings unused codevectors closer in distribution to
the encoded features, increasing the likelihood of being cho-
sen and optimized. We extensively validate the generaliza-
tion capability of our quantiser on various datasets, tasks
(e.g. reconstruction and generation), and architectures (e.g.
VQ-VAE, VQGAN, LDM). CVQ-VAE can be easily inte-
grated into the existing models with just a few lines of code.

1. Introduction
Vector Quantisation (VQ) [12] is a basic building block

of many machine learning techniques. It is often used to
help learning unsupervised representations for vision and
language tasks, including data compression [1, 39, 36],
recognition [26, 3, 44, 24, 23], and generation [37, 31, 11,
32, 47, 34, 33]. VQ quantises continuous feature vectors
into a discrete space by embedding them to the closest vec-
tors in a codebook of representatives or codevectors. Quan-
tisation has been shown to simplify optimization problems
by reducing a continuous search space to a discrete one.

Despite its success, VQ has some drawbacks when ap-
plied to deep networks [37]. One of them is that quanti-
sation stops gradients from back-propagating to the code-
vectors. This has been linked to codebook collapse [36],

(a) VQ-VAE [37] (b) SQ-VAE [36] (c) CVQ-VAE
Usage: 9.96% Usage: 49.02% Usage: 100%

(d) Codebook Perplexity (e) Reconstruction error

Figure 1: Codebook usage and reconstruction error. The
setting is the same as VQ-VAE [37], except for the differ-
ent quantisers. All models are trained and evaluated on the
CIFAR10 [20] dataset. VQ-VAE has many “dead” vectors
(green points) which are not used. CVQ-VAE updates these
unoptimized vectors by using online sampled feature an-
chors, leading to a 100% usage of the codebook. CVQ-VAE
achieves substantially higher codebook perplexity and bet-
ter reconstruction results than with the fixed initialization.

which means that only a small subset of active codevec-
tors are optimized alongside the learnable features, while
the majority of them are not used at all (see the green
“dead” points in Fig. 1(a)). As a result, many recent meth-
ods [11, 10, 44, 32, 6, 47] fail to utilise the full expressive
power of a codebook due to the low codevector utilisation,
especially when the codebook size is large. This signifi-
cantly limits VQ’s effectiveness.

To tackle this issue, we propose a new alternative quan-
tiser called Clustering VQ-VAE (CVQ-VAE). We observe
that classical clustering algorithms, such as refined initial-
ization k-means [4] and k-means++ [2], use a dynamic clus-
ter initialization approach. For example, k-means++ ran-
domly selects a data point as the first cluster centre, and



then chooses the next new centre based on a weighted prob-
ability calculated from the distance to the previous cen-
tres. Analogously, CVQ-VAE dynamically initializes un-
optimized codebooks by resampling them from the learned
features (Fig. 2). This simple approach can avoid codebook
collapse and significantly enhance the usage of larger code-
books by enabling optimization of all codevectors (achiev-
ing 100% codebook utilisation in Fig. 1(c)).

While CVQ-VAE is inspired by previous dynamic clus-
ter initialization techniques [4, 2], its implementation in
deep networks requires careful consideration. Unlike tradi-
tional clustering algorithms [25, 4, 14, 2] where source data
points are fixed, in deep networks features and their corre-
sponding codevectors are mutually and incrementally op-
timized. Thus, simply sampling codevectors from a single
snapshot of features would not work well because any mini-
batch used for learning cannot capture the true data distribu-
tion, as demonstrated in our offline version in Tab. 3. To fix
this issue, we propose to compute running averages of the
encoded features across different training mini-batches and
use these to improve the dynamic reinitialization of the col-
lapsed codevectors. This operation is similar to an online
feature clustering method that calculates average features
across different training iterations (Fig. 2). While this may
seem a minor change, it leads to a very significant improve-
ment in terms of performance (Fig. 1(e)).

As a result of these changes, CVQ-VAE significantly
outperforms the previous models VQ-VAE [37] and SQ-
VAE [36] on various datasets under the same setting, and
with no other changes except for swapping in the new quan-
tiser. Moreover, we conduct thorough ablation experiments
on variants of the method to demonstrate the effectiveness
of our design and analyse the importance of various design
factors. Finally, we incorporate CVQ-VAE into large mod-
els (e.g. VQ-GAN [11] and LDM [32]) to further demon-
strate its generality and potential in various applications.

2. Related Works
VQ-VAE [37] learns to quantise the continuous features

into a discrete space using a restricted number of codebook
vectors. By clustering features in the latent space, VQ-VAE
can automatically learn a crucially compact representation
and store the domain information in the decoder that does
not require supervision. This discrete representation has
been applied to various downstream tasks, including im-
age generation [31, 44, 6, 22, 17], image-to-image transla-
tion [11, 30, 10, 32], text-to-image synthesis [30, 9, 29, 18],
conditional video generation [28, 40, 42], image comple-
tion [11, 10, 46], recognition [26, 3, 44, 24, 23] and 3D
reconstruction [27, 34, 33].

Among them, VQ-GAN [11], ViT-VQGAN [44], RQ-
VAE [22], and MoVQ [46] aim to train a better discrete
representation through deeper network architectures, addi-

tional loss functions, multichannel or higher resolution rep-
resentations. However, none of them tackle the codebook
collapse issue for the unoptimized “dead” point.

To address this issue, additional training heuristics are
proposed in recent works. SQ-VAE [36] improves VQ-VAE
with stochastic quantisation and a trainable posterior cate-
gorical distribution. VQ-WAE [38] builds upon SQ-VAE
by directly encouraging the discrete representation to be a
uniform distribution via a Wasserstein distance. The most
related works are HVQ-VAE [39] and Jukebox [8] that use
codebook reset to randomly reinitialize unused or low-used
codebook entries. However, they only assign a single sam-
pled anchor to each unoptimized codevector. In contrast,
our CVQ-VAE considers the changing of features in deep
networks and designs an online clustering algorithm by run-
ning average updates across the training mini-batch. Addi-
tionally, our work bridges codebook reset in Jukebox for
music generation to the more general class of running av-
erage updates that are applicable to image compression and
generation problems in computer vision.

3. Method

VQ is in the context of unsupervised representation
learning. Our main goal is to learn a discrete codebook that
efficiently utilizes all codebook entries within it. To achieve
this, our quantisation method, as illustrated in Fig. 2, is con-
ceptually similar to VQ-VAE [37], except that our code-
vectors are dynamically initialized rather than being sam-
pled from a fixed uniform or Gaussian distribution. In the
following sections, we provide a general overview of VQ
(Sec. 3.1), followed by our proposed CVQ-VAE (Sec. 3.2).

3.1. Background: VQ-VAE

Given a high dimensional image x ∈ RH×W×c, VQ-
VAE [37] learns to embed it with low dimensional code-
vectors zq ∈ Rh×w×nq , where nq is the dimensionality of
the vectors in the codebook. Then, the feature tensor can
be equivalently described as a compact representation with
h × w indices corresponding to the codebook entries zq .
This is done via an autoencoder

x̂ = Gθ(zq) = Gθ(q(ẑ)) = Gθ(q(Eϕ(x))). (1)

Here Eϕ and Gθ refer to the encoder and decoder, respec-
tively. The encoder embeds images into the continuous la-
tent space, while the decoder inversely maps the latent vec-
tors back to the original image. q(·) is a quantisation oper-
ation that maps the continuous encoded observations ẑ into
the discrete space by looking up the closest codebook entry
ek for each grid feature ẑi using the following equation:

zqi = q(ẑi) = ek, where k = argmin
ek∈Z

∥ẑi − ek∥, (2)



VQ-VAE [37]

CVQ-VAE
(offline)

CVQ-VAE
(online)

(a1) Distribution (b1) Code vector update (c1) Updated codebook (a2) Distribution (b2) Code vector update

Figure 2: Codebook optimization. The Red points indicate the encoded features, while the Green and Peach points denote
the unoptimized and active vectors in the codebook, respectively. 1) In VQ-VAE [37] (row 1), only the active “lucky” seeds
(in Peach) are optimized alongside the encoded features (in Red) during training. The other “dead” vectors (in Green) are
not given attention and remain fixed. 2) In our CVQ-VAE (offline) (row 2), we reinitialize the codevectors based on the
anchors sampled from the encoded features (in Red), encouraging the “dead” ones to be closer to the features in distribution.
3) To address the difficulty of covering all samples by single sampling in mini-batch learning, we further propose an online
learning variant (row 3), where the anchor is obtained by calculating the moving average of the encoded features in different
batches. We highlighted the difference between various methods in the blue thickened border.

where Z = {ek}Kk=1 is the codebook that consists of K en-
tries ek ∈ Rnq with dimensionality nq . During training, the
encoder Eϕ, decoder Gθ and codebook Z are jointly opti-
mized by minimizing the following objective:

L = ∥x− x̂∥22 + ∥sg[Eψ(x)]− zq∥22 + β∥Eψ(x)− sg[zq]∥22,
(3)

where sg denotes a stop-gradient operator, and β is the hy-
perparameter for the last term commitment loss. The first
term is known as reconstruction loss, which measures the
difference between the observed x and the reconstructed
x̂. The second term is the codebook loss, which encour-
ages the codevectors to be close to the encoded features.
In practice, the codebook Z is optimized using either the
codebook loss [37] or using an exponential moving average
(EMA) [31]. However, these methods work only for the
active codevectors, leaving the “dead” ones unoptimized.

3.2. Clustering VQ-VAE (CVQ-VAE)

The choice of initial points is a crucial aspect of unsuper-
vised codebook learning. Classical clustering methods like
refined k-means [4] and k-means++ [2] are dynamically-
initialized, which means that each new clustering centre is
initialized based on previously calculated distance or points.
This leads to a more robust and effective clustering result,
as reported in comparative studies [5].

Analogously, we build a dynamically-initialized vector
quantized codebook in deep networks. However, unlike
traditional clustering settings, the data points, i.e. the en-
coded features ẑ in the deep network, are also updated dur-
ing training instead of being fixed. Therefore, a dynamical
initialization strategy should take into account the changing
feature representations during training.
Running average updates. To build the online initializa-
tion for a codebook, we start by accumulatively counting the
average usage of codevectors in each training mini-batch:

N
(t)
k = N

(t−1)
k · γ +

n
(t)
k

Bhw
· (1− γ), (4)

where n
(t)
k is the number of encoded features in a training

mini-batch that will be quantised to the closest codebook
entry ek, and Bhw denotes the number of features on Batch,
height, and width. γ is a decay hyperparameter with a value
in (0, 1) (default γ = 0.99). N (0)

k is initially set as zero.
We then select a subset Z̄ with K vectors from the en-

coded features ẑ, which we denote as anchors. Instead of
directly using the anchors to reinitialize the unoptimized
codevectors, we expect that codevectors that are less-used
or unused should be modified more than frequently used
ones. To achieve this goal, we compute a decay value a

(t)
k

for each entry ek using the accumulative average usage N (t)
k



and reinitialize the features as follows:

α
(t)
k = exp−N

(t)
k K 10

1−γ −ϵ, (5)

e
(t)
k = e

(t−1)
k · (1− α

(t)
k ) + ẑ

(t)
k · α(t)

k , (6)

where ϵ is a small constant to ensure the entries are as-
signed with the average values of features along different
mini-batches, and ẑ

(t)
k ∈ Z̄K×zq is the sampled anchor.

This running average operation differs from the expo-
nential moving average (EMA) used in VQ-VAE [31]. Our
equation is applied to reinitialize unused or low-used code-
vectors, instead of updating the active ones. Furthermore,
our decay parameter in Eq. (5) is computed based on the
average usage, which is not a pre-defined hyperparameter.
Choice of the anchors. Next, we describe several ver-
sions of the anchor sampling methods. Interestingly, exper-
imental results (Tab. 4c) show that our online version is not
sensitive to these choices. However, the different anchor
sampling methods have a direct impact on the offline ver-
sion, suggesting that our running average updates behaviour
is the primary reason for the observed improvements.

• Random. Following the codebook reset [8, 39], a nat-
ural choice of anchors is randomly sampled from the
encoded features.

• Unique. To avoid repeated anchors, a random permu-
tation of integers within the number of features (Bhw)
is performed. Then, we select the first K features.

• Closest. A simple way is inversely looking up the clos-
est features of each entry, i.e. i = argmin

ẑi∈Eϕ(x)

∥ẑi − ek∥.

• Probabilistic random. We can also sample anchors
based on the distance Di,k between the codevectors
and the encoded features. In this paper, we consider
the probability p =

exp (−Di,k)∑Bhw
i=1 exp (−Di,k)

.

Contrastive loss. We further introduce a contrastive loss
− log esim(ek,ẑ

+
i

)/τ∑N
i=1 e

sim(ek,ẑ
−
i

)/τ
to encourage sparsity in the code-

book. In particular, for each codevector ek, we directly se-
lect the closest feature ẑ+i as the positive pair and sample
other farther features ẑ−i as negative pairs using the Di,k.
Relation to prior work. To mitigate the codebook col-
lapse issue, several methods have been proposed, like nor-
malized codevectors in ViT-VQGAN [44]. However, these
methods only optimize the active entries, rather than the en-
tire codebook. Recently, SQ-VAE [36], SeQ-GAN [13], and
VQ-WAE [38] assume that the codebook follows a fixed
distribution. Although these methods achieve high per-
plexity, the reconstruction quality is not always improved
(Tab. 4). The most relevant work to ours is codebook re-
set, which randomly reinitializes the unused or low-used
codevectors to high-usage ones [39] or encoder outputs [8].

However, these methods rely only on a temporary single
value for initialization and miss the opportunity of exploit-
ing online clustering across different training steps.

4. Experiments: Image Quantisation
4.1. Experimental Details

Implementation. CVQ-VAE can be easily implemented
by a few lines of code in Pytorch, where the gradient for the
selected codevectors is preserved. The code is available at
https://github.com/lyndonzheng/CVQ-VAE.

Our implementation is built upon existing network archi-
tectures. We set all hype-parameters following the original
code, except that we replace these quantisers with our on-
line clustering codebook. In particular, we first demonstrate
our assumption on small datasets with the officially released
VQ-VAE [37] implementation 1,2. Then, we verify the gen-
erality of our quantiser on large datasets using the officially
released VQ-GAN [11] architecture 3.
Datasets. We evaluated the proposed quantiser on vari-
ous datasets, including MNIST [21], CIFAR10 [20], Fash-
ion MNIST [41], and the higher-resolution FFHQ [19] and
the large ImageNet [7].
Metrics. Following existing works [11, 47, 13], we eval-
uated the image quality between reconstructed and origi-
nal images on different scales, including patch-level struc-
ture similarity index (SSIM), feature-level Learned Per-
ceptual Image Patch Similarity (LPIPS) [45], and dataset-
level Fréchet Inception Distance (FID) [15]. We also re-
port the perplexity score for the codebook ablation study
as in SQ-VAE [36] and VQ-WAE [38]. It is defined as
e−

∑K
k=1 pek log pek , where pek = nk∑K

i=i nk
, and nk is the

number of encoded features associated with codevector ek.

4.2. Main Results

Quantitative Results: We first evaluated our CVQ-VAE
and various quantisers, including VQ-VAE [37]NeurIPS’2017,
HVQ-VAE [39]NeurIPS’2020, and SQ-VAE [36]ICML’2022, un-
der the identical experimental settings in Tab. 1. All in-
stantiations of our model outperform the baseline variants
of previous state-of-the-art models. Although the latest SQ-
VAE [36] optimizes all code entries by explicitly enforcing
the codebook to be a defined distribution, this assumption
may not hold for all datasets. For instance, code entries that
respond to the background elements like sky and ground
should take more count than code entries that represent spe-
cific objects, such as vehicle wheels. In contrast, our quan-
tiser only encourages all code entries to be optimized, leav-
ing the association to be automatically learned.

1https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
2https://github.com/deepmind/sonnet/blob/v1/sonnet/examples/vqvae

example.ipynb
3https://github.com/CompVis/taming-transformers

https://github.com/lyndonzheng/CVQ-VAE
https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
https://github.com/deepmind/sonnet/blob/v1/sonnet/examples/vqvae_example.ipynb
https://github.com/deepmind/sonnet/blob/v1/sonnet/examples/vqvae_example.ipynb
https://github.com/CompVis/taming-transformers


In
pu

t
V

Q
G

A
N

[1
1]

C
V

Q
-V

A
E

Figure 3: Reconstructions from different models. The two models are trained under the same settings, except for the
different quantisers. Compared with the state-of-the-art baseline VQGAN [11], the proposed model significantly improves
the reconstruction quality (highlight in red box) under the same compression ratio (768×, with 16× downsampling).

Method Dataset SSIM ↑ LPIPS ↓ rFID ↓
VQ-VAE [37]

MNIST

0.9777 0.0282 3.43
HVQ-VAE [39] 0.9790 0.0270 3.17
SQ-VAE [36] 0.9819 0.0256 3.05
CVQ-VAE 0.9833 0.0222 1.80

VQ-VAE [37]

CIFAR10

0.8595 0.2504 39.67
HVQ-VAE [39] 0.8553 0.2553 41.08
SQ-VAE [36] 0.8779 0.2333 37.92
CVQ-VAE 0.8978 0.1883 24.73

Table 1: Reconstruction results on the validation sets of
MNIST (10,000 images) and CIFAR10 (10,000 images).
All models are trained with the same experimental settings,
except for the different quantisers.

Then, we compared our CVQ-VAE with the state-of-
the-art methods, including VQGAN [11]CVPR’2021, ViT-
VQGAN [44]ICLR’2022, RQ-VAE [22]CVPR’2022, and MoVQ
[45]NeurIPS’2022 for the task of reconstruction. Table 2 shows
quantitative results on two large datasets. Under the same
compression ratio (768×, i.e. 256×256×3→16×16), our
model significantly outperforms the state-of-the-art mod-
els, including the baseline VQGAN [11] and the concur-
rent SeQ-GAN [13]. Interestingly, on the FFHQ dataset,
our model even outperforms ViT-VQGAN [44] and RQ-
VAE [22], which utilize 4× tokens for the representation.
This suggests that the high usage of codevectors is sig-
nificant for maintaining information during data compres-
sion. Additionally, we also run 4× tokens experiments,

Method Dataset S ↓ K ↓ Usage ↑ rFID ↓
VQGAN [11]

FF
H

Q

162 1024 42% 4.42
ViT-VQGAN [44] 322 8192 — 3.13
RQ-VAE [22] 162×4 2048 — 3.88
MoVQ [47] 162×4 1024 56% 2.26∗

SeQ-GAN [13] 162 1024 100% 3.12
CVQ-VAE (ours) 162 1024 100% 2.80
CVQ-VAE (ours) 162×4 1024 100% 2.03

VQGAN [11]

Im
ag

eN
et

162 1024 44% 7.94
ViT-VQGAN [44] 322 8192 96% 1.28
RQ-VAE [22] 82×16 16384 — 1.83
MoVQ [47] 162×4 1024 63% 1.12
SeQ-GAN [13] 162 1024 100% 1.99
CVQ-VAE (ours) 162 1024 100% 1.57
CVQ-VAE (ours) 162×4 1024 100% 1.20∗

Table 2: Reconstruction results on validation sets of Ima-
geNet (50,000 images) and FFHQ (10,000 images). S de-
notes the latent size of encoded features, and K is the num-
ber of codevectors in the codebook. Usage indicates how
many entries in a codebook are used during the quantisation
on the validation set. More evaluation metrics are reported
in Appendix Table B.2.

as in MoVQ [47]. The CVQ-VAE further achieves a rela-
tive 10.1% improvement. Although our 4× version shows a
slightly lower rFID score than the MoVQ [47] on ImageNet
dataset (1.12 vs. 1.20), we achieve better performance on
other metrics (as shown in Appendix Tab. B.2).



Method MNIST (28×28) CFAIR10 (32×32) Fashion MNIST (28×28)
SSIM ↑ LPIPS ↓ rFID ↓ SSIM ↑ LPIPS ↓ rFID ↓ SSIM ↑ LPIPS ↓ rFID ↓

A Baseline VQ-VAE [37]NeurIPS’2017 0.9777 0.0282 3.43 0.8595 0.2504 39.67 0.9140 0.0801 12.73
B + Cosine distance 0.9791 0.0266 3.06 0.8709 0.2303 35.14 0.9160 0.0764 11.40
C + Anchor initialization (offline) 0.9810 0.0253 2.78 0.8829 0.2132 31.10 0.9145 0.0773 11.92
D + Anchor initialization (online) 0.9823 0.0236 2.23 0.8991 0.1897 26.62 0.9254 0.0683 9.27
E + Contrastive loss 0.9833 0.0222 1.80 0.8978 0.1883 24.73 0.9233 0.0693 8.85

Table 3: Results on various settings. We report patch-level SSIM, feature-level LPIPS, and dataset-level FID. All evaluation
metrics are reported in Appendix Table B.3.

0 100 200 300 400 500 600 700 800
Perplexity

2

3

4

5

6

rF
ID

VQ-VAE
SQ-VAE
CVQ-VAE (Ours)

0 100 200 300 400 500 600 700 800
Perplexity

25

30

35

40

45

50

rF
ID

VQ-VAE
SQ-VAE
CVQ-VAE (Ours)

(a) Codebook size. The blobs’ size is propor-
tional to the number of codebook vectors {32,
64, 128, 256, 512, 1024}. The larger size natu-
rally leads to better results in our CVQ-VAE.

0 20 40 60 80 100 120
Dimensionality

2.0

2.5

3.0

3.5

4.0

4.5

5.0
rF

ID
VQ-VAE
SQ-VAE
CVQ-VAE (Ours)

0 20 40 60 80 100 120
Dimensionality

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

rF
ID

VQ-VAE
SQ-VAE
CVQ-VAE (Ours)

(b) Codebook dimensionality. The blob’s size
refers to the dimensionality of codebook vectors
{4,8,16,32,64,128}. The higher dimensionality
does not ensure a better representation.

Method Dataset
rFID↓

(offline) (online)

random

MNIST

3.20 2.27
unique 2.84 2.24
probability 2.78 2.23
closest 2.51 2.59

random

CIFAR10

34.49 26.04
unique 36.99 26.02
probability 31.10 26.62
closest 32.31 25.99

(c) Anchor sampling methods. The choice of an-
chor sampling method has a significant impact on of-
fline (one-time) feature initialization, while the online
clustered method is robust for various samplings.

Methods
MNIST (28×28) CIFAR10 (32×32) FFHQ (256×256)

SSIM ↑ LPIPS ↓ rFID↓ SSIM ↑ LPIPS ↓ rFID↓ SSIM ↑ LPIPS ↓ rFID↓

near codevectors [39] 0.9790 0.0270 3.17 0.8553 0.2553 41.08 0.7282 0.1085 4.31
hard encoded features [8] 0.9814 0.0243 2.25 0.8988 0.1978 29.16 0.7646 0.0870 3.91
running average (ours) 0.9823 0.0236 2.23 0.8991 0.1897 26.62 0.8193 0.0603 2.94

(d) Codebook reinitialization methods. In previous works [39, 8], each code entry is associated only with a single feature.

Table 4: Ablations for CVQ-VAE on image quantisation. We mainly train on MNIST and CIFAR10 training set, and evaluate
on the validation set unless otherwise noted.

Qualitative Results: The qualitative comparisons are
presented in Fig. 3. Our model achieves superior results
even under challenging conditions. Compared to the base-
line model VQGAN [11], our CVQ-VAE provides higher-
quality reconstructed images that retain much more details.
In particular, VQGAN struggles with reconstructing abun-
dant scene elements, as evidenced by the artifacts on the
bowls. In contrast, our CVQ-VAE shows no such arti-
facts. These fine-grained details are crucial for downstream
generation-related tasks, such as generation, completion,
and translation [47].

4.3. Ablation Experiments

We ran a number of ablations to analyse the effects of
core factors in codebook learning. Results are reported in
Tabs. 3, 4, B.3 and B.4.

Core Factors. We evaluated core components in our re-
designed online clustering quantiser in Tab. 3, which shows
that the new quantiser considerably enhances the recon-
struction quality. We started by implementing the baseline
configuration (A) from VQ-VAE [37]. Next, we explored
different distance metrics, which are used to look up the
closest entry for each encoded feature. We found that us-



ing cosine similarity (B) improved performance on some
datasets, which is consistent with the findings in previous
works such as ViT-VQGAN [44]. In configuration (C), we
reinitialized the unoptimized code entries with the selected
anchors, but only in the first training batch, which we re-
fer to as the offline version. This improved the usage of the
codebook, resulting in slightly better gains. Significantly,
when we applied the proposed running average updates
across different training mini-batches in configuration (D),
the performance on all metrics in various datasets improved
substantially. This suggests that our proposed online clus-
tering is significant for handling the changing encoded fea-
ture representation in deep networks. Finally, we naturally
introduced contrastive loss to each entry based on its simi-
larity to features (E), which further improved the results.

Codebook Size. VQ embeds the continuous features into
a discrete space with a finite size, i.e. K codebook entries.
The codebook size has significant effects on traditional clus-
tering. In Tab. 4a, we showed the performances of vari-
ous quantisers with different codebook sizes. Our CVQ-
VAE benefits greatly from a larger number of codebook en-
tries, while SQ-VAE [36] shows smaller improvements. It
is worth noting that not all quantizers automatically bene-
fit from a larger codebook size, such as VQ-VAE’s perfor-
mance on the CIFAR10 dataset shown in Tab. 4a (bottom).

Perplexity vs. rFID. Recent concurrent studies [36, 13,
38] have explicitly promoted a large perplexity by opti-
mizing a perplexity-related loss. However, as illustrated
in Tab. 4a, a larger perplexity does not always guarantee
a lower rFID. This suggests that a uniform distribution of
perplexity, represented by the highest score, may not be the
optimal solution for the codebook.

Codebook Dimensionality. Table 4b presents the results
on various codebook dimensionalities. Interestingly, the
performance of the quantizers does not exhibit a straight-
forward positive correlation with the number of codebook
dimensionality. In fact, some smaller codebook dimen-
sionalities yield better results than larger ones, indicating
that the choice of codebook dimensionality should be care-
fully considered depending on the specific application and
dataset. Based on this observation, a low-dimensional code-
book can be employed to represent images and used in
downstream tasks, as demonstrated in the latent diffusion
model (LDM) [32]. The relevant downstream applications
on generation can be found in Sec. 5.

Anchor Sampling Methods. An evaluation of various
anchor sampling methods is reported in Tab. 4c. The results
indicate that the offline version with only one reinitialization
is highly sensitive to the anchor sampling methods. Interest-
ingly, the random, unique, closest, and probabilistic random
versions perform similarly for online version, up to some
random variations (rFID from 2.23 to 2.59 on MNIST, and

Methods FID↓
Churches Bedrooms

StyleGAN [19] 4.21 2.35
DDPM [16] 7.89 4.90
ImageBART [10] 7.32 5.51
Projected-GAN [35] 1.59 1.52

LDM [32]-8∗ 4.02 -
LDM [32]-4 - 2.95

LDM [32]-8 (reproduced) 4.15 3.57
CVQ-VAE-LDM [32]-8 3.86 3.02

Table 5: Quantitative comparisons on unconditional im-
age generation. The better quantiser can improve the gen-
eration quality without modifying the training settings in
the second stage. ∗: trained in KL-regularized latent space,
instead of the VQ discrete space.

from 25.99 to 26.62 on CIFAR10). As discussed in Sec. 3.2,
different anchor sampling methods have significant effects
on traditional clustering [4, 14]. However, our experiments
demonstrate that the codebook reinitialization needs to con-
sider the fact that the encoded features change along with
the deep network is trained. The results highlight the ef-
fectiveness of our online version with the running average
updates, which is insensitive to the different instantiations.

Reinitialization Methods. Some latest works [39, 8]
also consider updating the unoptimized codevectors, called
codebook reset. In Tab. 4d, we compare these methods
with VQ-VAE’s architecture [37] under the same experi-
mental setting, except for the different quantisers. As dis-
cussed in Sec. 3.2, HVQ-VAE [39] resets the low usage
codevectors using the high usage ones, which learns a nar-
row space codebook, resulting in limited improvement. The
hard encoded features presented in [8] achieve better re-
sults (3.17→2.25, 41.08→29.16, and 4.31→3.91) than the
HVQ-VAE [39] by adding noise signal to ensure the inde-
pendent anchors for each codebook entry. In contrast, our
CVQ-VAE calculates the running average updates, result-
ing in a significant improvement. This further suggests that
the online clustering centre along with the different training
mini-batches is crucial for proper codebook reinitialization.

5. Experiments: Applications

Except for data compression, our CVQ-VAE can also
be easily applied to downstream tasks, such as generation
and completion. Following existing works [11, 32, 47], we
conduct a simple experiment to verify the effectiveness of
the proposed quantisers. Although this simple yet effective
quantiser can be applied to more applications, it is beyond
the main scope of this paper.



(a) LSUN-Bedrooms (b) LSUN-Churches (c) ImageNet

Figure 4: Unconditional image generation on LSUN [43], and class-conditional image generation on Imagenet [7]. Fol-
lowing the baseline LDM [32], our results are generated on 256×256 resolution. Our training parameters are the same as in
LDM, except for the different quantisers and 8× downsampling for the latent representations.

Model FFHQ ImageNet
Steps FID↓ Steps FID↓

RQVAE [22]CVPR’2022 256 10.38 1024 7.55
MoVQ [44]NeurIPS’2022 1024 8.52 1024 7.13
SQ-VAE [33]ICML’2022 200 5.17 250 9.31
LDM-4 [31]CVPR’2022 200 4.98 250 10.56
CVQ-VAE (ours) 200 4.46 250 6.87

Table 6: Quantitative results for unconditional generation
on FFHQ and class-conditional generation on ImageNet.

Implementation Details. We made minor modifications
to the baseline LDM [32] system when adapting it with our
quantiser for the downstream tasks. We first replace the
original quantiser from VQGAN [11] with our proposed
CVQ-VAE’s quantiser. Then, we trained the models on
LSUN [43] and ImageNet [7] for generation (8× downsam-
pling). Following the setting in LDM [32], we set the sam-
pling step as 200 during the inference.

5.1. Unconditional Generation

Tables 5 and 6 compares our proposed CVQ-VAE to the
state-of-the-art methods on LSUN and ImageNet datasets
for unconditional and class-conditional image generation.
The results show that our model consistently improves the
generated image quality under the sample compression ra-
tio, as in the reconstruction. This confirms the advantages of
using a better codebook for downstream tasks. Our CVQ-
VAE also outperforms the LDM-8∗ that is trained with KL-
regularized latent space, indicating that exploring a better
discrete codebook is worth pursuing for unsupervised rep-
resentation learning. Our CVQ-VAE also achieves compa-

rable results to LDM-4 (3.02 vs. 2.95), whereas the LDM-4
uses a 4× higher resolution representation, requiring more
computational costs.

Example results are presented in Fig. 4. As we can see,
even with 8× downsampling, the proposed CVQ-VAE is
still able to generate reasonable structures for these com-
plicated scenes with various instances. Although there are
artifacts on windows in the two scenarios, the other high-
frequency details are realistic, such as the sheet on the bed.

6. Conclusion and Limitation
We have introduced CVQ-VAE, a novel codebook reini-

tialization method that tackles the codebook collapse issue
by assigning the online clustered anchors to unoptimized
code entries. Our proposed quantiser is a simple yet ef-
fective solution that can be integrated into many existing
architectures for representation learning. Experimental re-
sults show that our CVQ-VAE significantly outperforms the
state-of-the-art VQ models on image modeling, yet with-
out increasing computational cost and latent size. We hope
this new plug-and-play quantiser will become an important
component of future vector methods that use VQ in their
learned architecture.
Ethics. We use the MNIST, Fashion-MNIST, CIFAR10,
LSUN, and ImageNet datasets in a manner compatible with
their terms. While some of these images contain personal
information (e.g., faces) collected without consent, algo-
rithms in this research do not extract biometric informa-
tion. For further details on ethics, data protection, and copy-
right please see https://www.robots.ox.ac.uk/

˜vedaldi/research/union/ethics.html.
Acknowledgements. This research is supported by ERC-
CoG UNION 101001212.

https://www.robots.ox.ac.uk/~vedaldi/research/union/ethics.html
https://www.robots.ox.ac.uk/~vedaldi/research/union/ethics.html


References
[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V
Gool. Soft-to-hard vector quantization for end-to-end learn-
ing compressible representations. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems (NeurIPS), volume 30, 2017. 1

[2] D ARTHUR. k-means++: the advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, New Orleans, Louisiana, 2007,
pages 1027–1035. Society for Industrial and Applied Math-
ematics, 2007. 1, 2, 3

[3] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
Bert pre-training of image transformers. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2022. 1, 2

[4] Paul S Bradley and Usama M Fayyad. Refining initial points
for k-means clustering. In ICML, volume 98, pages 91–99.
Citeseer, 1998. 1, 2, 3, 7

[5] M Emre Celebi, Hassan A Kingravi, and Patricio A Vela. A
comparative study of efficient initialization methods for the
k-means clustering algorithm. Expert systems with applica-
tions, 40(1):200–210, 2013. 3

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T. Freeman. Maskgit: Masked generative image
transformer. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2022. 1, 2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition (CVPR), pages 248–255. Ieee, 2009. 4,
8

[8] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook
Kim, Alec Radford, and Ilya Sutskever. Jukebox: A gen-
erative model for music. arXiv preprint arXiv:2005.00341,
2020. 2, 4, 6, 7

[9] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, et al. Cogview: Mastering text-to-image gen-
eration via transformers. Advances in Neural Information
Processing Systems (NeurIPS), 34, 2021. 2

[10] Patrick Esser, Robin Rombach, Andreas Blattmann, and
Bjorn Ommer. Imagebart: Bidirectional context with multi-
nomial diffusion for autoregressive image synthesis. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
volume 34, 2021. 1, 2, 7

[11] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition (CVPR), pages 12873–12883, 2021.
1, 2, 4, 5, 6, 7, 8, 11, 12

[12] R. Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4–
29, 1984. 1

[13] Yuchao Gu, Xintao Wang, Yixiao Ge, Ying Shan, Xiaohu
Qie, and Mike Zheng Shou. Rethinking the objectives
of vector-quantized tokenizers for image synthesis. arXiv
preprint arXiv:2212.03185, 2022. 4, 5, 7, 12

[14] Greg Hamerly and Charles Elkan. Alternatives to the k-
means algorithm that find better clusterings. In Proceedings
of the eleventh international conference on Information and
knowledge management, pages 600–607, 2002. 2, 7

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Proceedings of the 31st International Conference
on Neural Information Processing Systems (NeurIPS), pages
6626–6637, 2017. 4

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems (NeurIPS), 33:6840–6851, 2020. 7

[17] Minghui Hu, Yujie Wang, Tat-Jen Cham, Jianfei Yang, and
Ponnuthurai N Suganthan. Global context with discrete dif-
fusion in vector quantised modelling for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11502–11511,
2022. 2

[18] Minghui Hu, Chuanxia Zheng, Heliang Zheng, Tat-Jen
Cham, Chaoyue Wang, Zuopeng Yang, Dacheng Tao, and
Ponnuthurai N Suganthan. Unified discrete diffusion for
simultaneous vision-language generation. arXiv preprint
arXiv:2211.14842, 2022. 2

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 4, 7

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1, 4

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
4

[22] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11523–11532, 2022. 2, 5, 12

[23] Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao Liu,
Jiachen Liu, Hua Wu, and Haifeng Wang. Unimo-2: End-to-
end unified vision-language grounded learning. In Findings
of the Association for Computational Linguistics: ACL 2022,
pages 3187–3201, 2022. 1, 2

[24] Alex Liu, SouYoung Jin, Cheng-I Lai, Andrew Rou-
ditchenko, Aude Oliva, and James Glass. Cross-modal dis-
crete representation learning. In Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 3013–3035, 2022. 1,
2

[25] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-
actions on information theory, 28(2):129–137, 1982. 2

[26] Chengzhi Mao, Lu Jiang, Mostafa Dehghani, Carl Vondrick,
Rahul Sukthankar, and Irfan Essa. Discrete representations
strengthen vision transformer robustness. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2022. 1, 2



[27] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shub-
ham Tulsiani. Autosdf: Shape priors for 3d comple-
tion, reconstruction and generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition(CVPR), pages 306–315, 2022. 2

[28] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, De-
nis Zorin, and Evgeny Burnaev. Latent video transformer.
In 16th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications,
VISIGRAPP 2021, pages 101–112. SciTePress, 2021. 2

[29] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 2

[30] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Con-
ference on Machine Learning (ICML), pages 8821–8831.
PMLR, 2021. 2

[31] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gen-
erating diverse high-fidelity images with vq-vae-2. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
volume 32, 2019. 1, 2, 3, 4

[32] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition(CVPR), pages 10684–10695, 2022. 1, 2, 7, 8,
11

[33] Aditya Sanghi, Pradeep Kumar Jayaraman, Arianna
Rampini, Joseph Lambourne, Hooman Shayani, Evan
Atherton, and Saeid Asgari Taghanaki. Sketch-a-shape:
Zero-shot sketch-to-3d shape generation. arXiv preprint
arXiv:2307.03869, 2023. 1, 2

[34] Kyle Sargent, Jing Yu Koh, Han Zhang, Huiwen Chang,
Charles Herrmann, Pratul Srinivasan, Jiajun Wu, and Deqing
Sun. Vq3d: Learning a 3d-aware generative model on ima-
genet. arXiv preprint arXiv:2302.06833, 2023. 1, 2

[35] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas
Geiger. Projected gans converge faster. Advances in Neu-
ral Information Processing Systems (NeurIPS), 34:17480–
17492, 2021. 7

[36] Yuhta Takida, Takashi Shibuya, Weihsiang Liao, Chieh-
Hsin Lai, Junki Ohmura, Toshimitsu Uesaka, Naoki Murata,
Shusuke Takahashi, Toshiyuki Kumakura, and Yuki Mitsu-
fuji. Sq-vae: Variational bayes on discrete representation
with self-annealed stochastic quantization. In International
Conference on Machine Learning (ICML), pages 20987–
21012. PMLR, 2022. 1, 2, 4, 5, 7, 11

[37] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Sys-
tems (NeurIPS), 2017. 1, 2, 3, 4, 5, 6, 7, 11, 12

[38] Tung-Long Vuong, Trung Le, He Zhao, Chuanxia Zheng,
Mehrtash Harandi, Jianfei Cai, and Dinh Phung. Vec-
tor quantized wasserstein auto-encoder. arXiv preprint
arXiv:2302.05917, 2023. 2, 4, 7

[39] Will Williams, Sam Ringer, Tom Ash, David MacLeod,
Jamie Dougherty, and John Hughes. Hierarchical quantized
autoencoders. In Advances in Neural Information Process-
ing Systems (NeurIPS), volume 33, 2020. 1, 2, 4, 5, 6, 7,
11

[40] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,
Daxin Jiang, and Nan Duan. Nüwa: Visual synthesis pre-
training for neural visual world creation. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XVI, pages
720–736. Springer, 2022. 2

[41] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv, 2017. 4

[42] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind
Srinivas. Videogpt: Video generation using vq-vae and trans-
formers. arXiv preprint arXiv:2104.10157, 2021. 2

[43] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015. 8

[44] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang,
James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge,
and Yonghui Wu. Vector-quantized image modeling with im-
proved VQGAN. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2022. 1, 2, 4,
5, 7, 12

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 586–595, 2018. 4, 5

[46] Chuanxia Zheng, Guoxian Song, Tat-Jen Cham, Jianfei Cai,
Dinh Phung, and Linjie Luo. High-quality pluralistic im-
age completion via code shared vqgan. arXiv preprint
arXiv:2204.01931, 2022. 2

[47] Chuanxia Zheng, Long Tung Vuong, Jianfei Cai, and Dinh
Phung. Movq: Modulating quantized vectors for high-
fidelity image generation. In Proceedings of the 36st Inter-
national Conference on Neural Information Processing Sys-
tems (NeurIPS), 2022. 1, 4, 5, 6, 7, 12



Online Clustered Codebook

A. Experiment Details
For data compression, we first demonstrate our method on small datasets with the officially released VQ-VAE [37] imple-

mentation 45, and we then verify the generality of our quantiser on large datasets using the officially released VQ-GAN [11]
architecture 6. For image generation application, we apply our CVQ-VAE’s quantiser on LSUN dataset using the officially
released LDM [32] code7.

For the small datasets (MNIST, CIFAR10, and Fashion MNIST), we use the submitted code to train the model. The
training hyperparameters match the original VQ-VAE settings, and we train all models with batch size 1,024 across 4×
NVIDIA GeForce GTX TITAN X (12GB per GPU) with 500 epochs (2-3 hours).

For the high resolution datasets (FFHQ and ImageNet), we just replace the original quantiser in VQGAN with our CVQ-
VAE quantiser. The training hyperparameters also follow the original settings, and we train all models with batch size 64
across 4× NVIDIA RTX A6000 (48GB per GPU) with 4 days on FFHQ and 8 days on ImageNet until converge.

For the generation (LSUN bedrooms and Churches), we use the lSUN-beds256 config file for default setting with two
modifications: 1) we also replace the VQGAN’s quantiser with our CVQ-VAE quantiser; 2) we reduce the images’ resolution
for faster training with 8× downsampling. For stage a) codebook learning, two models are trained with batch size 32 across
2× NVIDIA RTX A4000 (48GB per GPU) with 5 days. Then, for stage b) latent diffusion model with 32×32×4 resolution,
we train the models with batch size 128 across 2× NVIDIA RTX A4000 (48GB per GPU) with 7 days. During the inference,
we follow the default settings to sample the images with 200 steps.

B. Quantitative Results

Method Dataset ℓ1loss ↓ SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓
VQ-VAE [37]

MNIST

0.0207 0.9777 26.48 0.0282 3.43
HVQ-VAE [39] 0.0202 0.9790 26.90 0.0270 3.17
SQ-VAE [36] 0.0197 0.9819 27.49 0.0256 3.05
CVQ-VAE 0.0180 0.9833 27.87 0.0222 1.80

VQ-VAE [37]

CIFAR10

0.0527 0.8595 23.32 0.2504 39.67
HVQ-VAE [39] 0.0533 0.8553 23.22 0.2553 41.08
SQ-VAE [36] 0.0482 0.8779 24.07 0.2333 37.92
CVQ-VAE 0.0448 0.8978 24.72 0.1883 24.73

Table B.1: Reconstruction results on the validation sets of MNIST (10,000 images) and CIFAR10 (10,000 images).

Table B.1 provides a comparison of our results to state-of-the-art quantisers under the same training settings, except for
the different quantisers, on the small datasets. This is an extension of Tab. 1 in the main paper. All images are normalised
to the range [0,1] for quantitative evaluation. See the code for more details. While the proposed CVQ-VAE achieve relative
small improvements on traditional pixel-level ℓ1 loss, peak signal-to-noise ration (PSNR), and patch-level structure similarity
index (SSIM), it significantly improves the feature-level LPIPS and dataset-level rFID, suggesting that our CVQ-VAE is more
capable of reconstructing the content closer to the dataset distribution.

We further compare our CVQ-VAE to the state-of-the-art methods in data compression in Tab. B.2. This is an extension of
Tab. 2 in the main paper. Here, we add the pixel-level PSNR, patch-level SSIM and feature-level LPIPS. For FFHQ dataset,
our CVQ-VAE model outperforms baseline variants of previous state-of-the-art models. As for ImageNet dataset, while our
4× channels setting does not achieve the better rFID than the latest MoVQ model, the other instantiations (PSNR, SSIM and
LPIPS) significantly outperform existing state-of-the-art models.

Tables B.3 and B.4 are the extension of Tabs. 3 and 4c in the main paper, respectively. Even reported with the different
metrics, The conclusions are still the same. For instance, the offline version is significantly affected by different anchor

4https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
5https://github.com/deepmind/sonnet/blob/v1/sonnet/examples/vqvae example.ipynb
6https://github.com/CompVis/taming-transformers
7https://github.com/CompVis/latent-diffusion

https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
https://github.com/deepmind/sonnet/blob/v1/sonnet/examples/vqvae_example.ipynb
https://github.com/CompVis/taming-transformers
https://github.com/CompVis/latent-diffusion


Method Dataset S ↓ K ↓ Usage ↑ PSNR ↑ SSIM ↑ LPIPS ↓ rFID ↓
VQGAN [11]

FFHQ

162 1024 42% 22.24 0.6641 0.1175 4.42
ViT-VQGAN [44] 322 8192 – – – – 3.13
RQ-VAE [22] 162×4 2048 – 22.99 0.6700 0.1302 3.88
MoVQ [47] 162×4 1024 56% 26.72 0.8212 0.0585 2.26
SeQ-GAN [13] 162 1024 100% – – – 3.12
CVQ-VAE (ours) 162 1024 100% 26.82 0.8313 0.0608 2.80
CVQ-VAE (ours) 162×4 1024 100% 26.87 0.8398 0.0533 2.03

VQGAN [11]

ImageNet

162 1024 44% 19.07 0.5183 0.2011 7.94
ViT-VQGAN [44] 322 8192 96% – – – 1.28
RQ-VAE [22] 82×16 16384 - – – – 1.83
MoVQ [47] 162×4 1024 63% 22.42 0.6731 0.1132 1.12
SeQ-GAN [13] 162 1024 100% – – – 1.99
CVQ-VAE (ours) 162 1024 100% 21.95 0.6612 0.1340 1.57
CVQ-VAE (ours) 162×4 1024 100% 23.37 0.7115 0.1099 1.20

Table B.2: Reconstruction results on validation sets of ImageNet (50,000 images) and FFHQ (10,000 images). S denotes
the latent size of encoded features, and K is the number of codevectors in the codebook.

Method MNIST (28×28) CFAIR10 (32×32) Fashion MNIST (28×28)
ℓ1 ↓ PSNR ↑ rFID ↓ ℓ1 ↓ PSNR ↑ rFID ↓ ℓ1 ↓ PSNR ↑ rFID ↓

A Baseline VQ-VAE [37]NeurIPS’2017 0.0207 26.48 3.43 0.0527 23.32 39.67 0.0377 23.93 12.73
B + Cosine distance 0.0200 26.77 3.06 0.0509 23.66 35.14 0.0378 24.01 11.40
C + Anchor initialization (offline) 0.0192 27.24 2.78 0.0481 24.16 31.10 0.0373 24.04 11.92
D + Anchor initialization (online) 0.0186 27.58 2.23 0.0445 24.79 26.62 0.0349 24.69 9.27
E + Contrastive loss 0.0180 27.87 1.80 0.0448 24.72 24.73 0.0344 24.66 8.85

Table B.3: Results on various settings. We add pixel-level ℓ1 and PSNR metrics.

Method Dataset
Offline Online

ℓ1loss ↓ SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓ ℓ1loss ↓ SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓

random

MNIST

0.0195 0.9802 27.11 0.0262 3.20 0.0185 0.9823 27.58 0.0236 2.27
unique 0.0191 0.9811 27.25 0.0255 2.84 0.0186 0.9820 27.51 0.0237 2.24
probability 0.0192 0.9810 27.24 0.0253 2.78 0.0186 0.9823 27.58 0.0236 2.23
closest 0.0186 0.9823 27.59 0.0242 2.51 0.0187 0.9819 27.49 0.0244 2.59

random

CIFAR10

0.0494 0.8755 23.91 0.2256 34.49 0.0440 0.9010 24.88 0.1881 26.04
unique 0.0507 0.8705 23.15 0.2346 36.99 0.0439 0.9007 24.91 0.1877 26.03
probability 0.0481 0.8829 24.16 0.2131 31.10 0.0445 0.8991 24.79 0.1898 26.62
closest 0.0487 0.8804 24.06 0.2156 32.31 0.0444 0.8994 24.83 0.1900 25.99

Table B.4: Anchor sampling methods. The choice of anchor sampling method has a significant impact on offline (one-time)
feature initialization, while the online clustered method is robust for various samplings.

sampling methods, but the online version is not sensitive to various anchor sampling methods. The online version holds very
close performance with these anchor sampling methods.


