
Flexible discriminative learning with
structured output support vector machines

A short introduction and tutorial

Andrea Vedaldi
University of Oxford

Slides and code at
http://www.vlfeat.org/~vedaldi/teach.html

January 2013

1 / 85

http://www.vlfeat.org/~vedaldi/teach.html

Abstract

This tutorial introduces Structured Support Vector Machines (SSVMs) as a
tool to effectively learn functions over arbitrary spaces. For example, one can
use a SSVM to rank a set of items by decreasing relevance, to localise an
object such as a cat in an image, or to estimate the pose of a human in a
video. The tutorial reviews the standard notion of SVM and shows how this
can be extended to arbitrary output spaces, introducing the corresponding
learning formulations. It then gives a complete example on how to design and
learn a SSVM with off-the-shelf solvers in MATLAB. The last part discusses
how such solvers can be implemented, focusing in particular on the cutting
plane and BMRM algorithms.

2 / 85

Classification

sea horse pigeon

scissor wild cat

Caltech-101 (101 classes, 3k images)

E.g. [Weber et al., 2000, Csurka et al., 2004, Fei-Fei et al., 2004, Sivic and Zisserman, 2004]

2 / 85

Classification on a large scale

mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

ImageNet (80k classes, 3.2M images)

E.g. [Deng et al., 2009, Sánchez and Perronnin, 2011, Mensink et al., 2012]

3 / 85

Classification with an SVM

is there a cat?

x

4 / 85

Classification with an SVM

is there a cat?

x

4 / 85

Classification with an SVM

is there a cat?

x

4 / 85

Classification with an SVM

is there a cat?

x

4 / 85

Classification with an SVM

is there a cat?

x

F (x;w) = hw, xi

w

4 / 85

Support vector machines can do classification.

What about ...

5 / 85

Object category detection

Find objects of a given type (e.g. bicycle) in an image.

E.g. [Leibe and Schiele, 2004, Felzenszwalb et al., 2008, Vedaldi et al., 2009]

6 / 85

Pose estimation

E.g. [Ramanan et al., 2005, Ramanan, 2006, Ferrari et al., 2008]

7 / 85

Relative attributes

(a) Smiling (b) ? (c) Not smiling

(d) Natural (e) ? (f) Manmade

Figure 1. Binary attributes are an artificially restrictive way to describe
Sometimes it is less ambiguous to rank rather than to classify objects.

[Parikh and Grauman, 2011]

8 / 85

Segmentation

image classify leaves pylon model ground truth

E.g. [Taskar et al., 2003] (image [Lempitsky et al., 2011])
9 / 85

Learning to handle complex data

◮ Algorithms that can “understand” images, videos, etc. are too complex to be
designed entirely manually.

◮ Machine learning (ML) automatises part of the design based on empirical
evidence:

algorithmic class + example data + optimisation
learning
−−−−→ algorithm.

10 / 85

Support Vector Machines

◮ There are countless ML methods:
◮ Nearest neighbors, perceptron, bagging, boosting, AdaBoost, logistic regression,

Support Vector Machines (SVMs), random forests, metric learning, ...
◮ Markov random fields, Bayesian networks, Gaussian Processes, ...
◮ E.g. [Schölkopf and Smola, 2002b, Hastie et al., 2001]

We will focus on SVMs and their generalisations.

1. Good accuracy (when applicable).

2. Clean formulation.

3. Large scale.

Structured output SVMs

Extending SVMs to handle arbitrary output spaces, particularly ones with
non-trivial structure (e.g. space of poses, textual translations, sentences in a
grammar, etc.).

11 / 85

Outline

Support vector classification

Beyond classification: structured output SVMs

Learning formulations

Optimisation

A complete example

Further insights on optimisation

12 / 85

Outline

Support vector classification

Beyond classification: structured output SVMs

Learning formulations

Optimisation

A complete example

Further insights on optimisation

13 / 85

Scoring function and classification

w

◮ The input x ∈ R
d is a vector to be classified.

◮ The parameter w ∈ R
d is a vector.

◮ The score is 〈x,w〉.

◮ The output ŷ(x;w) is either
+1 (relevant) or
−1 (not relevant).

The “machine” part of an SVM is a simple classification rule that test the sign
of the score:

ŷ(x;w) = sign〈x,w〉

E.g. [Schölkopf and Smola, 2002a].

14 / 85

Feature maps

x Φ(x) 2 R
d

feature map

◮ In the SVM 〈x,w〉 the input x is a vectorial representation of a datum.

◮ Alternatively, one can introduce a feature map:

Φ : X → R
d , x 7→ Φ(x).

The classification rule becomes

ŷ(x;w) = sign〈Φ(x),w〉.

With a feature map, the nature of the input x ∈ X is irrelevant (image, video,
audio, ...).

15 / 85

Learning formulation

◮ The other defining aspect of an SVM is the objective function used to learn it.

◮ Given example pairs (x1, y1), . . . , (xn, yn), the objective function is

E (w) =
λ

2
‖w‖2 +

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}.

◮ Learning the SVM amounts to minimising E (w) to obtain the optimal
parameter w∗.

16 / 85

Learning formulation

◮ The other defining aspect of an SVM is the objective function used to learn it.

◮ Given example pairs (x1, y1), . . . , (xn, yn), the objective function is

E (w) =
λ

2
‖w‖2 +

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}.

◮ Learning the SVM amounts to minimising E (w) to obtain the optimal
parameter w∗.

An aside: support vectors

One can show that the minimiser has a sparse decomposition

w∗ = β1x1 + · · ·+ βnxn

where only a few of the βi 6= 0. The corresponding xi are the support vectors.

16 / 85

Hinge loss

E (w) =
λ

2
‖w‖2 +

average loss
︷ ︸︸ ︷

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}

Intuition

When the hinge loss is small, then the scoring function fits the example data well,
with a “safety margin”.

17 / 85

Hinge loss

E (w) =
λ

2
‖w‖2 +

average loss
︷ ︸︸ ︷

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}

Intuition

When the hinge loss is small, then the scoring function fits the example data well,
with a “safety margin”.

Hinge loss

Li (w) = max{0, 1− yi 〈xi ,w〉}.

max{0, 1− z}

1

margin

17 / 85

Hinge loss

E (w) =
λ

2
‖w‖2 +

average loss
︷ ︸︸ ︷

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}

Intuition

When the hinge loss is small, then the scoring function fits the example data well,
with a “safety margin”.

Hinge loss

Li (w) = max{0, 1− yi 〈xi ,w〉}.

max{0, 1− z}

1

margin

Margin condition

Li (w) = 0 ⇒

margin condition
︷ ︸︸ ︷

yi 〈xi ,w〉 ≥ 1

⇒ sign〈xi ,w〉 = yi .

17 / 85

Hinge loss

E (w) =
λ

2
‖w‖2 +

average loss
︷ ︸︸ ︷

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}

Intuition

When the hinge loss is small, then the scoring function fits the example data well,
with a “safety margin”.

Hinge loss

Li (w) = max{0, 1− yi 〈xi ,w〉}.

max{0, 1− z}

1

margin

Margin condition

Li (w) = 0 ⇒

margin condition
︷ ︸︸ ︷

yi 〈xi ,w〉 ≥ 1

⇒ sign〈xi ,w〉 = yi .

Convexity

The hinge loss is a convex function!

17 / 85

The regulariser

E (w) =

regulariser
︷ ︸︸ ︷

λ

2
‖w‖2 +

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}

Intuition

If the regulariser ‖w‖2 is small, then the scoring function 〈w, x〉 varies slowly.

18 / 85

The regulariser

E (w) =

regulariser
︷ ︸︸ ︷

λ

2
‖w‖2 +

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}

Intuition

If the regulariser ‖w‖2 is small, then the scoring function 〈w, x〉 varies slowly.

To see this:

1. The regulariser is the norm of the derivative of the scoring function:

‖∇x〈x,w〉‖
2 = ‖w‖2.

18 / 85

The regulariser

E (w) =

regulariser
︷ ︸︸ ︷

λ

2
‖w‖2 +

1

n

n∑

i=1

max{0, 1− yi 〈xi ,w〉}

Intuition

If the regulariser ‖w‖2 is small, then the scoring function 〈w, x〉 varies slowly.

To see this:

1. The regulariser is the norm of the derivative of the scoring function:

‖∇x〈x,w〉‖
2 = ‖w‖2.

2. Using the Cauchy-Schwarz inequality:

(〈x,w〉 − 〈x′,w〉)2 ≤ ‖x− x′‖2 ‖w‖2.

18 / 85

The feature map

◮ The feature map encodes a notion of similarity:

(〈Φ(x),w〉 − 〈Φ(x′),w〉)2 ≤

similarity of inputs
︷ ︸︸ ︷

‖Φ(x)− Φ(x′)‖2 ×

regularizer
︷ ︸︸ ︷

‖w‖2 .

Intuition

Inputs with similar features receive similar scores.

19 / 85

The feature map

◮ The feature map encodes a notion of similarity:

(〈Φ(x),w〉 − 〈Φ(x′),w〉)2 ≤

similarity of inputs
︷ ︸︸ ︷

‖Φ(x)− Φ(x′)‖2 ×

regularizer
︷ ︸︸ ︷

‖w‖2 .

Intuition

Inputs with similar features receive similar scores.

Note: in all cases, points whose difference Φ(x)−Φ(x′) is orthogonal to w receive
the same score. This is a d − 1 dimensional subspace of irrelevant variations!

19 / 85

SVM summary

The goal is to find a scoring function 〈w,Φ(x)〉 that:

Fits the data by a marging

The scoring function 〈w,Φ(x)〉 should fit the data by a margin:

if yi > 0 then 〈Φ(xi),w〉 ≥ 1

if yi < 0 then 〈Φ(xi),w〉 ≤ −1

20 / 85

SVM summary

The goal is to find a scoring function 〈w,Φ(x)〉 that:

Fits the data by a marging

The scoring function 〈w,Φ(x)〉 should fit the data by a margin:

if yi > 0 then 〈Φ(xi),w〉 ≥ 1

if yi < 0 then 〈Φ(xi),w〉 ≤ −1

Is regular

A small variation of the feature Φ(x) should not change the score 〈w,Φ(x)〉 too
much. The regulariser ‖w‖2 is a bound on this variation.

20 / 85

SVM summary

The goal is to find a scoring function 〈w,Φ(x)〉 that:

Fits the data by a marging

The scoring function 〈w,Φ(x)〉 should fit the data by a margin:

if yi > 0 then 〈Φ(xi),w〉 ≥ 1

if yi < 0 then 〈Φ(xi),w〉 ≤ −1

Is regular

A small variation of the feature Φ(x) should not change the score 〈w,Φ(x)〉 too
much. The regulariser ‖w‖2 is a bound on this variation.

Reflects prior information

Whether a variation of the input x is considered to be small or large depends on
the choice of the feature map Φ(x). This establishes a-priori which inputs should
receive similar scores.

20 / 85

Outline

Support vector classification

Beyond classification: structured output SVMs

Learning formulations

Optimisation

A complete example

Further insights on optimisation

21 / 85

Beyond classification

Consider now the general problem of learning a function

f : X → Y, x 7→ y,

where both the input and output spaces are general. Examples:

22 / 85

Beyond classification

Consider now the general problem of learning a function

f : X → Y, x 7→ y,

where both the input and output spaces are general. Examples:

Ranking.

◮ given a set of objects (o1, . . . , ok) as input x,

◮ return a order as output y.

22 / 85

Beyond classification

Consider now the general problem of learning a function

f : X → Y, x 7→ y,

where both the input and output spaces are general. Examples:

Ranking.

◮ given a set of objects (o1, . . . , ok) as input x,

◮ return a order as output y.

Pose estimation.

◮ given an image of a human as input x,

◮ return the parameters (p1, . . . , pk) of his/her pose as output y.

22 / 85

Beyond classification

Consider now the general problem of learning a function

f : X → Y, x 7→ y,

where both the input and output spaces are general. Examples:

Ranking.

◮ given a set of objects (o1, . . . , ok) as input x,

◮ return a order as output y.

Pose estimation.

◮ given an image of a human as input x,

◮ return the parameters (p1, . . . , pk) of his/her pose as output y.

Image segmentation.

◮ given an image from Flikr as input x,

◮ return a mask highlighting the “foreground object” as output y.

22 / 85

Support Vector Regression /1

A real function R
d → R can be approximated directly by the SVM score:

f (x) ≈ 〈w,Φ(x)〉.

◮ Think of the feature map Φ(x) as a collection of basis functions. For instance,
if x ∈ R, one can use the basis of second order polynomials:

Φ(x) =
[
1 x x2

]⊤
⇒ 〈w,Φ(x)〉 = w1 + w2x + 23x

2.

23 / 85

Support Vector Regression /1

A real function R
d → R can be approximated directly by the SVM score:

f (x) ≈ 〈w,Φ(x)〉.

◮ Think of the feature map Φ(x) as a collection of basis functions. For instance,
if x ∈ R, one can use the basis of second order polynomials:

Φ(x) =
[
1 x x2

]⊤
⇒ 〈w,Φ(x)〉 = w1 + w2x + 23x

2.

◮ The goal is to find w (e.g. polynomial coefficients) such that the score fits the
example data

〈w,Φ(xi)〉 ≈ yi

by minimising the L1 error

Li (w) = |yi − 〈w,Φ(xi)〉|.

23 / 85

Support Vector Regression /2

SVR is just a variant of regularised regressions:

method loss regul. objective function

SVR l1 l2 1
n

∑n

i=1 |yi −w⊤Φ(xi)|+
λ
2 ‖w‖

2
2

least square l2 none 1
2n

∑n

i=1(yi −w⊤Φ(xi))
2

ridge regression l2 l2 1
2n

∑n

i=1(yi −w⊤Φ(xi))
2 + λ

2 ‖w‖
2
2

lassoo l2 l1 1
2n

∑n

i=1(yi −w⊤Φ(xi))
2 + λ‖w‖1

Limitation: only real functions!

24 / 85

Support Vector Regression /2

SVR is just a variant of regularised regressions:

method loss regul. objective function

SVR l1 l2 1
n

∑n

i=1 |yi −w⊤Φ(xi)|+
λ
2 ‖w‖

2
2

least square l2 none 1
2n

∑n

i=1(yi −w⊤Φ(xi))
2

ridge regression l2 l2 1
2n

∑n

i=1(yi −w⊤Φ(xi))
2 + λ

2 ‖w‖
2
2

lassoo l2 l1 1
2n

∑n

i=1(yi −w⊤Φ(xi))
2 + λ‖w‖1

Limitation: only real functions!

An aside: ǫ-insensitive L
1 loss

Actually, SVR makes use of a slightly more general loss

Li (w) = max{0, |yi − 〈w, xi 〉| − ǫ}

which is insensitive to error below a threshold ǫ. One can set ǫ = 0 though [Smola and
Scholkopf, 2004].

24 / 85

A general approach: learning the graph

Use a binary SVM to classify which pairs (x, y) ∈ X × Y belongs to the graph of
the function (treat the output as an input!):

y = f (x) ⇔ 〈w,Ψ(x, y)〉 > 0.

Joint feature map

In order to classify pairs (x, y), these must be encoded as vectors. To this end, we
need a joint feature map:

Φ : (x, y) → Φ(x, y) ∈ R
d

As long as this feature can be designed, the nature of x and y is irrelevant.

25 / 85

Example: learning the graph of a real function /1

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1
learned function f

y

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1
scoring function

x

Algorithm:

1. Start from the true pairs (xi , yi) (green squares) where the graph should pass.

2. Add many false pairs (xi , yi) (red dots) where the graph should not pass.

26 / 85

Example: learning the graph of a real function /1
learned function f

y

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1
scoring function

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Algorithm:

1. Start from the true pairs (xi , yi) (green squares) where the graph should pass.

2. Add many false pairs (xi , yi) (red dots) where the graph should not pass.

3. Learn a scoring function 〈w,Ψ(x , y)〉 to fit these points.

4. Define the learned function graph to be the collection of points such that
〈w,Ψ(x , y)〉 > 0 (green areas).

26 / 85

Example: learning the graph of a real function /2
learned function f

y

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1
scoring function

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

In this example the joint feature map is a Fourier basis (note the ringing!)

Ψ(x , y) =








cos(f1xx + f1yy + φ1)
cos(f2xx + f2yy + φ2)

...
cos(fdxx + fdyy + φd)







, for appropriate (f1i , f2i , φi).

27 / 85

The good and the bad

learned function f
y

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1
scoring function

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

The good: works for any type of inputs and outputs! (Not just real functions.)

28 / 85

The good and the bad

learned function f
y

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1
scoring function

x
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

The good: works for any type of inputs and outputs! (Not just real functions.)

The Bad:

◮ Not one-to-one. For each x, there are multiple outputs y with positive score.

◮ Not complete. There are x for which all the outputs have negative score.

◮ Very large negative example set.

28 / 85

Structured output SVMs

Structured output SVM. Issues 1 and 2 can be fixed by choosing the highest
scoring output for each input:

ŷ(x;w) = argmax
y∈Y

〈w,Ψ(x, y)〉

29 / 85

Structured output SVMs

Structured output SVM. Issues 1 and 2 can be fixed by choosing the highest
scoring output for each input:

ŷ(x;w) = argmax
y∈Y

〈w,Ψ(x, y)〉

Intuition

The scoring function

〈w,Ψ(x, y)〉

is somewhat analogous to a posterior probability density function

P(y|x)

but it does not have any probabilistic meaning.

29 / 85

Example: real function

−2 0 2
−1

−0.5

0

0.5

1
learned function f scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

◮ f (x) = y that maximises the score along column x .

◮ f (x) is now uniquely and completely defined.

◮ Note: only the relative values of the score along a column really matter (see
rescaled version on the right).

30 / 85

Inference problem

◮ Inference problem. Evaluating a structured SVM requires solving the problem

argmax
y∈Y

〈w,Ψ(x, y)〉.

◮ The efficiency of using a structured SVM (after learning) depends on how
quickly the inference problem can be solved.

31 / 85

Example: binary linear SVM

Standard SVMs can be easily interpreted as a structured SVMs:

◮ Output space:

y ∈ Y = {−1,+1}.

◮ Feature map:

Ψ(x, y) =
y

2
x.

◮ Inference:

ŷ(x;w) = argmax
y∈{−1,+1}

y

2
〈w, x〉 = sign〈w, x〉.

w

32 / 85

Example: object localisation

Let x be an image and y ∈ Y ⊂ R
4 a rectangular window. The goal is to find the

window containing a given object.

(x, y)
restriction

x|y
visual features

Ψ(x, y) 2 R
d

◮ Let x|y denote an image window (crop).

33 / 85

Example: object localisation

Let x be an image and y ∈ Y ⊂ R
4 a rectangular window. The goal is to find the

window containing a given object.

(x, y)
restriction

x|y
visual features

Ψ(x, y) 2 R
d

◮ Let x|y denote an image window (crop).
◮ Standard SVM: score one window:

Φ(x|y) = “histogram of SIFT features”,

〈w,Φ(x|y)〉 = “window score”.

33 / 85

Example: object localisation

Let x be an image and y ∈ Y ⊂ R
4 a rectangular window. The goal is to find the

window containing a given object.

(x, y)
restriction

x|y
visual features

Ψ(x, y) 2 R
d

◮ Let x|y denote an image window (crop).
◮ Standard SVM: score one window:

Φ(x|y) = “histogram of SIFT features”,

〈w,Φ(x|y)〉 = “window score”.

◮ Structured SVM: try all windows and pick the best one:

ŷ(x;w) = argmax
y∈Y

〈w,Ψ(x, y)〉 = argmax
y∈Y

〈w,Φ(x|y)〉.

33 / 85

Example: pose estimation

Let x be an image and y = (p1,p2,p3,p4,p5) the pose of a human, expressed as
the 2D location of five parts.

Φ(x|p1)

Φ(x|p2)

Φ
(p

1 ,p
2)

Ψ(x, y) =

2

6
6
6
6
6
6
6
6
6
6
4

Φ(x|p1)
Φ(x|p1)

.

.

.

Φ(x|p5)
Φ(p1,p2)

.

.

.

Φ(p5,p6)

3

7
7
7
7
7
7
7
7
7
7
5

x|p1

x|p2

Inituition

The score 〈w,Ψ(x, y)〉 reflects how well the five image parts match their
appearance models and whether the deformation is reasonable or not.

34 / 85

Example: ranking /1

◮ Consider the problem of ranking a list of objects x = (o1, . . . , on) (input).

◮ The output y is an ranking (total order). This can be represented as a matrix y

such that

yij = +1, oi has higher rank than oj ,

yij = −1, otherwise.

35 / 85

Example: ranking /1

◮ Consider the problem of ranking a list of objects x = (o1, . . . , on) (input).

◮ The output y is an ranking (total order). This can be represented as a matrix y

such that

yij = +1, oi has higher rank than oj ,

yij = −1, otherwise.

A joint feature map for ranking

Ψ(x, y) =
∑

ij

yij〈Φ(oi)− Φ(oj),w〉.

35 / 85

Example: ranking /2

This structured SVM ranks the objects by decreasing score 〈Φ(oi),w〉:

ŷij(x;w) = sign (〈Φ(oi),w〉 − 〈Φ(oj),w〉) .

In fact the score of this output

〈w,Ψ(x, ŷ(x;w))〉 =
∑

ij

yij〈Φ(oi)− Φ(oj),w〉

=
∑

ij

sign〈Φ(oi)− Φ(oj),w〉〈Φ(oi)− Φ(oj),w〉

=
∑

ij

|〈Φ(oi)− Φ(oj),w〉|

is maximum.

36 / 85

Outline

Support vector classification

Beyond classification: structured output SVMs

Learning formulations

Optimisation

A complete example

Further insights on optimisation

37 / 85

Summary so far and what remains to be done

Input-output relation

The SVM defines an input-output relation based on maximising the joint score:

ŷ(x;w) = argmax
y∈Y

〈w,Ψ(x, y)〉.

Next: how to fit the input-output relation to data.

38 / 85

Learning formulation /1

Given n example input-output pairs

(x1, y1), . . . , (xn, yn),

find w such that the structured SVM approximately fit them

ŷ(xi ;w) ≈ yi , i = 1, . . . , n,

while controlling the complexity of the estimated function.

39 / 85

Learning formulation /1

Given n example input-output pairs

(x1, y1), . . . , (xn, yn),

find w such that the structured SVM approximately fit them

ŷ(xi ;w) ≈ yi , i = 1, . . . , n,

while controlling the complexity of the estimated function.

Objective function (non-convex)

E1(w) =
λ

2
‖w‖2 +

1

n

n∑

i=1

∆(yi , ŷ(xi ;w))

Notation reminder: ∆ is the loss function, ŷ the output estimated by the SVM, yi the

ground truth output, and xi the ground truth input.

39 / 85

Loss function

The loss function measures the fit quality:

∆(y, ŷ)

such that ∆(y, ŷ) ≥ 0 and ∆(y, ŷ) = 0 if, and only if, y = ŷ.

Examples:

◮ For a binary SVM the loss is

∆(y , ŷ) =

{

1, y 6= ŷ ,

0, otherwise.

40 / 85

Loss function

The loss function measures the fit quality:

∆(y, ŷ)

such that ∆(y, ŷ) ≥ 0 and ∆(y, ŷ) = 0 if, and only if, y = ŷ.

Examples:

◮ For a binary SVM the loss is

∆(y , ŷ) =

{

1, y 6= ŷ ,

0, otherwise.

◮ In object localisation the loss could be one minus the ratio of the areas of the
intersection and union of the rectangles y and ŷ:

∆(y, ŷ) = 1−
|y ∩ ŷ|

|y ∪ ŷ|
.

40 / 85

Loss function

The loss function measures the fit quality:

∆(y, ŷ)

such that ∆(y, ŷ) ≥ 0 and ∆(y, ŷ) = 0 if, and only if, y = ŷ.

Examples:

◮ For a binary SVM the loss is

∆(y , ŷ) =

{

1, y 6= ŷ ,

0, otherwise.

◮ In object localisation the loss could be one minus the ratio of the areas of the
intersection and union of the rectangles y and ŷ:

∆(y, ŷ) = 1−
|y ∩ ŷ|

|y ∪ ŷ|
.

◮ In ranking ...
40 / 85

Example: a ranking loss

In ranking, suitable losses include the ROC-AUC, the precision-recall AUC,
precision @ k , ...

◮ The ROC curve plots the true positive rate against the true negative rate.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area under ROC = 88.75

true negative rate

tr
ue

 p
os

iti
ve

 r
at

e

◮ Given the “true” ranking y and the
estimated ŷ, we can define

∆(y, ŷ) = 1− ROCAUC(y, ŷ)

◮ One can show that this is simply the
number of incorrectly ranked pairs,
i.e.

∆(y, ŷ) =
1

n2

n∑

i,j=1

[yij 6= ŷij]

41 / 85

Learning formulation /2

The goal of learning is to find the minimiser w∗ of:

E1(w) =
λ

2
‖w‖2 +

1

n

n∑

i=1

∆(yi , ŷ(xi ;w)),

where ŷ(xi ;w) = argmax
y∈Y

〈w,Φ(xi , y)〉.

The dependency of the loss on w is very complex: ∆ is non-convex and is
composed with argmax!

42 / 85

Learning formulation /2

The goal of learning is to find the minimiser w∗ of:

E1(w) =
λ

2
‖w‖2 +

1

n

n∑

i=1

∆(yi , ŷ(xi ;w)),

where ŷ(xi ;w) = argmax
y∈Y

〈w,Φ(xi , y)〉.

The dependency of the loss on w is very complex: ∆ is non-convex and is
composed with argmax!

Objective function (convex)

Given a convex surrogate loss Li (w) ≈ ∆(yi , ŷ(xi ;w)) we consider the objective

E (w) =
λ

2
‖w‖2 +

1

n

n∑

i=1

Li (w).

42 / 85

The surrogate loss

◮ The key in the success of the structured SVMs is the existence of good
surrogates. There are standard constructions that work well in a variety of
cases (but not always!).

43 / 85

The surrogate loss

◮ The key in the success of the structured SVMs is the existence of good
surrogates. There are standard constructions that work well in a variety of
cases (but not always!).

◮ The aim is to make minimising Li (w) have the same effect as minimising
∆(yi , ŷ(xi ;w)).

◮ Bounding property:

∆(yi , ŷ(xi ;w)) ≤ Li (w).

43 / 85

The surrogate loss

◮ The key in the success of the structured SVMs is the existence of good
surrogates. There are standard constructions that work well in a variety of
cases (but not always!).

◮ The aim is to make minimising Li (w) have the same effect as minimising
∆(yi , ŷ(xi ;w)).

◮ Bounding property:

∆(yi , ŷ(xi ;w)) ≤ Li (w).

Tightness

◮ If we can find w∗ s.t. Li (w
∗) = 0, then ∆(yi , y(xi ;w

∗)) = 0.

◮ But can we?

◮ Not always! Consider setting Li (w) = “very large constant”.

◮ We need a tight bound. E.g.:

∆(yi , y(xi ;w
∗)) = 0 ⇒ Li (w

∗) = 0.

43 / 85

Margin rescaling surrogate

◮ Margin rescaling is the first standard surrogate construction:

Li (w) = sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

44 / 85

Margin rescaling surrogate

◮ Margin rescaling is the first standard surrogate construction:

Li (w) = sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

◮ This surrogate bounds the loss:

∆(yi , ŷ(xi ;w)) ≤ ∆(yi , ŷ(xi ;w)) +

≥0 because ŷ(xi ;w) maximises the score by definition.
︷ ︸︸ ︷

〈Ψ(xi , ŷ(xi ;w)),w〉 − 〈Ψ(xi , yi),w〉

≤ sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉

= Li (w)

44 / 85

Margin condition

◮ Is margin rescaling a tight approximation?

◮ The following margin condition holds

Li (w
∗) = 0 ⇔ ∀y ∈ Y :

score of g.t. output
︷ ︸︸ ︷

〈Ψ(xi , yi),w〉 ≥

score of any other output
︷ ︸︸ ︷

〈Ψ(xi , y),w〉 +

margin
︷ ︸︸ ︷

∆(yi , y)

45 / 85

Margin condition

◮ Is margin rescaling a tight approximation?

◮ The following margin condition holds

Li (w
∗) = 0 ⇔ ∀y ∈ Y :

score of g.t. output
︷ ︸︸ ︷

〈Ψ(xi , yi),w〉 ≥

score of any other output
︷ ︸︸ ︷

〈Ψ(xi , y),w〉 +

margin
︷ ︸︸ ︷

∆(yi , y)

Tightness

◮ The surrogate is not tight in the sense above:

∆(yi , y(xi ;w
∗)) = 0 6⇒ Li (w

∗) = 0.

◮ In order to minimise the surrogate,
the more stringent margin condition has to be satisfied!

◮ But this is usually good enough, and in fact beneficial (implies robustness).

45 / 85

Slack rescaling surrogate

◮ Slack rescaling is the second standard surrogate construction:

Li (w) = sup
y∈Y

∆(yi , y) [1 + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉] .

◮ May give better results than marging rescaling.

◮ However, it is often significantly harder to treat in calculations.

◮ The margin condition is

Li (w
∗) = 0 ⇔ ∀y 6= yi :

score of g.t. output
︷ ︸︸ ︷

〈Ψ(xi , yi),w〉 ≥

score of any other output
︷ ︸︸ ︷

〈Ψ(xi , y),w〉 +

margin
︷︸︸︷

1

46 / 85

Augmented inference

◮ Evaluating the objective E (w) requires computing the supremum in the
augment loss

sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

◮ Maximising this quantity is the augmented inference problem due to its
similarity with the inference problem

max
y∈Y
〈Ψ(xi , y),w〉

◮ Augmented inference can be significantly harder than inference, especially for
slack rescaling.

47 / 85

Example: binary linear SVM

◮ Recall that for a binary linear SVM:

Y = {−1,+1}, Ψ(x, y) =
y

2
x, ∆(yi , ŷ) = [yi 6= y].

48 / 85

Example: binary linear SVM

◮ Recall that for a binary linear SVM:

Y = {−1,+1}, Ψ(x, y) =
y

2
x, ∆(yi , ŷ) = [yi 6= y].

◮ Then in the margin rescaling construction, solving the augmented inference
problem yields

Li (w) = sup
y∈{−1,1}

[yi 6= y] +
y

2
〈xiw〉 −

yi

2
〈xi ,w〉

= max
y∈{−yi ,yi}

[yi 6= y] +
y − yi

2
〈xi ,w〉

= max{0, 1− yi 〈xi ,w〉},

i.e. the same loss of a standard SVM.

◮ In this case, slack rescaling yields the same result.

48 / 85

The good and the bad of convex surrogates

Good:

◮ Convex surrogates separate the ground truth outputs yi from other outputs y

by a margin modulated by the loss.

Bad:

◮ Despite their construction, they can be poor approximations of the original loss.

◮ They are unimodal, and therefore cannot model situations in which different
outputs are equally acceptable.

◮ If the ground truth yi is not separable, they may be incapable of identifying
which is the best output that can actually be achieved instead – no graceful
fallback.

49 / 85

Outline

Support vector classification

Beyond classification: structured output SVMs

Learning formulations

Optimisation

A complete example

Further insights on optimisation

50 / 85

Summary so far and what remains to be done

Input-output relation

The SVM defines an input-output relation based on maximising the joint score:

ŷ(x;w) = argmax
y∈Y

〈w,Ψ(x, y)〉.

Convex surrogate objective

The joint score can be designed to fit the data (x1, y1), . . . , (xn, yn) by optimising

E (w) =
λ

2
‖w‖22 +

1

n

n∑

i=1

Li (w).

Next: how to solve this optimisation problem.

51 / 85

A (naive) direct approach /1

◮ Learning a structured SVM requires solving an optimisation problem of the
type:

E (w) =
λ

2
‖w‖22 +

1

n

n∑

i=1

Li (w),

Li (w) = sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

52 / 85

A (naive) direct approach /1

◮ Learning a structured SVM requires solving an optimisation problem of the
type:

E (w) =
λ

2
‖w‖22 +

1

n

n∑

i=1

Li (w),

Li (w) = sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

◮ More in general, this can be rewritten as

E (w) =
λ

2
‖w‖22 +

1

n

n∑

i=1

Li (w), Li (w) = sup
y∈Y

biy − 〈aiy,w〉.

52 / 85

A (naive) direct approach /2

This problem can be rewritten as a constrained quadratic program in the
parameters w and the slack variables ξ:

E (w, ξ) =
λ

2
‖w‖22 +

1

n

n∑

i=1

ξi ,

ξi ≥ biy − 〈aiy,w〉 ∀i = 1, . . . , n, y ∈ Y.

Can we use a standard quadratic solver (e.g. quadprog in MATLAB)?

53 / 85

A (naive) direct approach /2

This problem can be rewritten as a constrained quadratic program in the
parameters w and the slack variables ξ:

E (w, ξ) =
λ

2
‖w‖22 +

1

n

n∑

i=1

ξi ,

ξi ≥ biy − 〈aiy,w〉 ∀i = 1, . . . , n, y ∈ Y.

Can we use a standard quadratic solver (e.g. quadprog in MATLAB)?

The size of this problem

◮ There is one set of constraints for each data point (xi , yi).

◮ Each set of constraints contains one linear constraint for each output y.

◮ Way too large (even infinite!) to be directly fed to a quadratic solver.

53 / 85

A second look

◮ Let’s look again to the original problem is a slightly different form:

E (w) =
λ

2
‖w‖22 + L(w),

L(w) =
1

n

n∑

i=1

sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

◮ L(w) is a convex, non-smooth function, with bounded Lipschitz constant (i.e.,
it does not vary too fast). Optimisation of such functions is extensively studied
in operational research.

◮ We are going to discuss the Bundle Method for Regularized Risk Minimization
(BMRM) method, a special case of bundle method for regularised loss
functions, which in turns is a stabilised variant of cutting plane.

54 / 85

Subgradient and subdifferential

L(w)

w

g

@L(w)

◮ Assumption: L(w) convex, not necessarily smooth, with bounded Lipschitz
constant G .

◮ A subgradient of L(w) at w is any vector g such that

∀w′ : L(w′) ≥ L(w) + 〈g,w′ −w〉.

◮ ‖g‖ ≤ G .
◮ The subdifferential ∂L(w) is the set of all subgradients and contains only the

gradient ∇L(w) if the function is differentiable.

55 / 85

Cutting planes

L(w)

w w

L(t)(w)

◮ Given a point w0, we approximate the convex L(w) from below by a tangent
plane:

L(w) ≥ b − 〈a,w〉, −a ∈ ∂L(w0) b = L(w0) + 〈a,w0〉.

◮ (a, b) is the cutting plane at w.
◮ Given the cutting planes at w1, . . . ,wt , we define the lower approximation

L(t)(w) = max
i=1,...,t

bi − 〈ai ,w〉.

56 / 85

Cutting plane algorithm

◮ Goal: minimize a convex non-necessarily smooth function L(w).

◮ Method: incrementally construct a lower approximation L(t)(w). At each
iteration, minimise the latter to obtain wt and add a cutting plane at that
point.

Cutting plane algorithm

Start with w0 = 0 and t = 0. Then repeat:

1. t ← t + 1.

2. Get a cutting plane (at , bt) by computing the subgradient of L(w) at wt−1.

3. Add the plane to the current approximation L(t)(w).

4. Set wt = argminw L(t)(w).

5. If L(wt)− L(t)(wt) < ǫ stop as converged.

[Kiwiel, 1990, Lemaréchal et al., 1995, Joachims et al., 2009]

57 / 85

Guarantees at convergence

L(w)

w

L(t)(w)

wt w∗

◮ The algorithm stops when L(wt)− L(t)(wt) < ǫ.
◮ The true optimum L(w∗) is sandwiched:

wt minimizes L(t)

︷ ︸︸ ︷
w∗ minimizes L

︷ ︸︸ ︷

L(t)(wt) ≤ L(t)(w∗) ≤ L(w∗)
︸ ︷︷ ︸

L(t) ≤ L

≤ L(wt)

Hence when the algorithm converge one has the guarantee:

L(wt) ≤ L(w∗) + ǫ.

58 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

Cutting plane example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function L(w) = w logw in the interval [0.001, 1].

59 / 85

BMRM: cutting planes with a regulariser

◮ The standard cutting plane algorithm takes forever to converge (it is not the
one used for SVM...) as it can take wild steps.

◮ Bundle methods try to regularise the steps but are generally difficult to tune.
BMRM notes that one has already a regulariser in the SVM objective function:

E (w) =
λ

2
‖w‖2 + L(w).

BMRM algorithm

Start with w0 = 0 and t = 0. Then repeat:

1. t ← t + 1.

2. Get a cutting plane (at , bt) by computing the subgradient of L(w) at wt−1.

3. Add the plane to the current approximation L(t)(w).

4. Set Et(w) = λ
2 ‖w‖

2 + L(t)(w).

5. Set wt = argminw Et(w).

6. If E (wt)− Et(wt) < ǫ stop as converged.

[Teo et al., 2009] but also [Kiwiel, 1990, Lemaréchal et al., 1995, Joachims et al., 2009]

60 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

BMRM example

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

◮ Optimizing the function E (w) = w2

2 + w logw in the interval [0.001, 1].

61 / 85

Application of BMRM to structured SVMs

◮ In this case:

L(w) =
1

n

n∑

i=1

sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

◮ ∂L(w) is just the average of the subgradients of the terms.

◮ The subgradient gi at w of a term is computed by determining the maximally

violated output

ȳi = argmax
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉,

62 / 85

Application of BMRM to structured SVMs

◮ In this case:

L(w) =
1

n

n∑

i=1

sup
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉.

◮ ∂L(w) is just the average of the subgradients of the terms.

◮ The subgradient gi at w of a term is computed by determining the maximally

violated output

ȳi = argmax
y∈Y

∆(yi , y) + 〈Ψ(xi , y),w〉 − 〈Ψ(xi , yi),w〉,

◮ Remark 1. This is the augmented inference problem.

◮ Remark 2. Once ȳi is obtained, the subgradient is given by

gi = Ψ(xi , ȳi)−Ψ(xi , yi).

◮ Thus BMRM can be applied provided that the augmented inference problem
can be solved (even when Y is infinite!).

62 / 85

Outline

Support vector classification

Beyond classification: structured output SVMs

Learning formulations

Optimisation

A complete example

Further insights on optimisation

63 / 85

Structured SVM: fitting a real function

◮ Consider the problem of learning a real function f : R → [−1, 1] by fitting
points (x1, y1), . . . , (xn, yn).

◮ Loss

∆(y , ŷ) = |ŷ − y |.

◮ Joint feature map

Ψ(x , y) =









y

yx

yx2

yx3

− 1
2y

2









.

To see why this works we will look at the resulting inference problem.

64 / 85

MATLAB implementation /1

First, program a callback for the loss.

1 function delta = lossCB(param, y, ybar)

2 delta = abs(ybar - y) ;

3 end

65 / 85

MATLAB implementation /1

First, program a callback for the loss.

1 function delta = lossCB(param, y, ybar)

2 delta = abs(ybar - y) ;

3 end

Then a callback for the feature map.

1 function psi = featureCB(param, x, y)

2 psi = [y ;

3 y * x ;

4 y * x^2 ;

5 y * x^3 ;

6 - 0.5 * y^2] ;

7 psi = sparse(psi) ;

8 end

65 / 85

Inference

◮ The inference problem is

ŷ(x ;w) = argmax
y∈[−1,1]

〈w,Ψ(x , y)〉

= argmax
y∈[−1,1]

y(w1 + w2x + w3x
2 + w4x

3)−
1

2
y2w5.

66 / 85

Inference

◮ The inference problem is

ŷ(x ;w) = argmax
y∈[−1,1]

〈w,Ψ(x , y)〉

= argmax
y∈[−1,1]

y(w1 + w2x + w3x
2 + w4x

3)−
1

2
y2w5.

◮ Differentiate w.r.t. y and set to zero to obtain:

ŷ(x ;w) =
w1

w5
+

w2

w5
x +

w3

w5
x2 +

w4

w5
x3.

◮ Note: there are some other special cases due to the fact that y ∈ [−1,+1] and
w5 may be negative.

66 / 85

Augmented inference

◮ Solving the augmented inference problem is needed to compute the value and
sub-gradient of the margin-rescaling loss

Li (w) = max
ŷ∈[−1,1]

∆(y , ŷ) + 〈w,Ψ(x , y)〉 − 〈w,Ψ(x , yi)〉

= max
ŷ∈[−1,1]

|ŷ − yi |+ y(w1 + w2x + w3x
2 + w4x

3)−
1

2
y2w5 − const.

67 / 85

Augmented inference

◮ Solving the augmented inference problem is needed to compute the value and
sub-gradient of the margin-rescaling loss

Li (w) = max
ŷ∈[−1,1]

∆(y , ŷ) + 〈w,Ψ(x , y)〉 − 〈w,Ψ(x , yi)〉

= max
ŷ∈[−1,1]

|ŷ − yi |+ y(w1 + w2x + w3x
2 + w4x

3)−
1

2
y2w5 − const.

◮ The maximiser is one of at most four possibilities:

y ∈

{

−1, 1,
z − 1

w5
,
z + 1

w5

}

∩ [−1, 1], z = y(w1 + w2x + w3x
2 + w4x

3).

◮ Try the four cases and pick the one with larger augmented loss.

67 / 85

MATLAB implementation /2

Finally program the augmented inference.

1 function yhat = constraintCB(param, model, x, y)

2 w = model.w ;

3 z = w(1) + w(2) * x + w(3) * x.^2 + w(4) * x.^3 ;

4 yhat = [] ;

5 if w(5) > 0

6 yhat = [z - 1, z + 1] / w(5) ;

7 yhat = max(min(yhat, 1),-1) ;

8 end

9 yhat = [yhat, -1, 1] ;

10

11 aloss = @(y_) abs(y_ - y) + z * y_ - 0.5 * y_.^2 * w(5) ;

12 [drop, worse] = max(aloss(yhat)) ;

13 yhat = yhat(worse) ;

14 end

68 / 85

MATLAB implementation /3

Once the callbacks are coded, we use an off-the-shelf-solver
(http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html)

1 % training examples

2 parm.patterns = {-2, -1, 0, 1, 2} ;

3 parm.labels = {0.5, -0.5, 0.5, -0.5, 0.5} ;

4

5 % callbacks & other parameters

6 parm.lossFn = @lossCB ;

7 parm.constraintFn = @constraintCB ;

8 parm.featureFn = @featureCB ;

9 parm.dimension = 5 ;

10

11 % call the solver and print the model

12 model = svm_struct_learn(’ -c 10 -o 2 ’, parm) ;

13 model.w

69 / 85

http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 1 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 2 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 3 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 4 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 5 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 6 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 7 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 8 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 9 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 10 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 11 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 12 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 13 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 14 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 15 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 16 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 17 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 18 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Learning the scoring function

−2 0 2
−1

−0.5

0

0.5

1
cutting plane iteration 19 scoring function

−2 0 2
−1

−0.5

0

0.5

1
column rescaled

−2 0 2
−1

−0.5

0

0.5

1

After each cutting plane iteration the scoring function

F (x , y) = 〈Ψ(x , y),w〉

is updated. Remember:

◮ The output function is obtained by maximising the score along the columns.

◮ The relative scaling of the columns is irrelevant and rescaling them reveals the
structure better.

70 / 85

Outline

Support vector classification

Beyond classification: structured output SVMs

Learning formulations

Optimisation

A complete example

Further insights on optimisation

71 / 85

How fast is BMRM?

◮ Provably convergent to a desired approximation ǫ.

◮ The convergence rates with respect to the accuracy ǫ are not bad:

loss L(w) number of iterations accounting for λ

non-smooth O(1
ǫ
) O(1

λǫ
)

smooth O(log(1
ǫ
)) O(1

λ
log(1

ǫ
))

◮ Note: the convergence rate depends also on the amount of regularisation λ.

◮ Difficult learning problems (e.g. object detection) typically have
◮ large n,
◮ small λ,
◮ small ǫ.

so fast convergence is not so obvious.

72 / 85

BMRM for structured SVMs: problem size

◮ BMRM decouples the data from the approximation of L(w).

◮ The number of data points n affects the cost of evaluationg L(w) and its
subgradient.

◮ However, the cost of optimising L(t)(w) depends only on the iteration number
t!

◮ In practice t is small and L(t)(w) may be minimised very efficiently in the dual.

73 / 85

BMRM subproblem in the primal

◮ The problem

min
w

λ

2
‖w‖2 + L(t)(w), L(t)(w) = max

i=1,...,n
bi − 〈ai ,w〉

reduces to the constrained quadratic program

min
w,ξ

λ

2
‖w‖2 + ξ,

ξ ≥ bi − 〈ai ,w〉, i = 1, . . . , t.

◮ Note that there is a single (scalar) slack variable. This is known as one-slack
formulation.

74 / 85

BMRM subproblem in the dual

Let b⊤ = [b1, . . . , bt], A = [a1, . . . , at] and K = A⊤A/λ. The corresponding dual
problem is

max
α≥0

〈α,b〉 −
1

2
α⊤Kα, 1⊤α ≤ 1.

where at optimum w∗ = 1
λ
Aα∗.

Intuition: why it is efficient

◮ The original infinite constraints are approximated by just t constraints in
L(t)(w).

◮ This is possible because:

1. The approximation needs to be good only around the optimum.
2. The effective dimensionality and redundancy of the data are exploited.

◮ Solving the corresponding quadratic problem is easy because t is small.

Remark. BMRM is a primal solver. Switching to the dual for the subproblems is
convenient but completely optional.

75 / 85

Implementation

◮ An attractive aspect is the ease of implementation.

1 A = [] ;

2 B = [] ;

3 minimum = -inf ;

4 while getObjective(w) - minimum > epsilon

5 [a,b] = getCuttingPlane(w) ;

6 A = [A, a] ;

7 B = [B, b] ;

8 [w, minimum] = quadraticSolver(lambda, A, B) ;

9 end

◮ A simple quadratic solver may do as the problem is small (e.g. MATLAB
quadprog).

◮ getCuttingPlane computes an average of subgradients, in turn obtained by
solving the augmented inference problems.

76 / 85

Tricks of the trade: caching /1

w1 w2 w3 . . .
L1(w) (a11, b11) (a12, b12) (a13, b13) . . .
L2(w) (a21, b21) (a22, b22) (a23, b23) . . .

...
Ln(w) (an1, b1) (an2, bn2) (an3, bn3) . . .
L(w) (a1, b1) (a2, b2) (a3, b3) . . .

◮ For each novel wt a new constraint per example is generated by running
augmented inference.

◮ The overall loss is an average of per-example losses:

L(w) =
1

n

n∑

i=1

Li (w)

◮ And so for each cutting plane:

at =
1

n

n∑

i=1

ait(w), bt =
1

n

n∑

i=1

bit(w),

77 / 85

Tricks of the trade: caching /2

w1 w2 w3 . . .
L1(w) (a11, b11) (a12, b12) (a13, b13) . . . → t∗1
L2(w) (a21, b21) (a22, b22) (a23, b23) . . . → t∗2

...
...

Ln(w) (an1, b1) (an2, bn2) (an3, bn3) . . . → t∗n
L(w) (a1, b1) (a2, b2) (a3, b3) . . . (at+δt , bt+δt)

Caching recombines constraints generated so far to obtain a novel cutting plane
without running augmented inference (expensive) [Joachims, 2006, Felzenszwalb

et al., 2008].

1. For each example i = 1, . . . , n pick the most violated constraint in the cache:

t∗i = argmax
t=1,...,t

bit − 〈ait ,w〉.

2. Now form a novel cutting plane by recombining the existing constraints:

at+δt =
1

n

n∑

i=1

ait∗
i
(w), bt+δt =

1

n

n∑

i=1

bit∗
i
(w), .

78 / 85

Tricks of the trade: caching /3

◮ Caching is very important for problems like object detection in which
inference is very expensive (seconds or minutes per image).

◮ Consider for example [Felzenszwalb et al., 2008] object detector . With 5000
training images and five seconds / image for inference it requires an hour for
one round of augmented inference!

◮ Thus the solver should be iterated until examples in the cache are correctly
separated. It is pointless to fetch more before the solution has stabilised due to
the huge cost.

◮ Preventive caching. During a round of inference it is also possible to return
and store in the cache a small set of “highly violated” constraints. They may
become “most violated” at a later iteration.

79 / 85

Tricks of the trade: incremental training

◮ Another speedup is to train the model gradually, by adding progressively more
training samples.

◮ The intuition is that a lot of samples are only needed to refine the model.

80 / 85

Summary

◮ Structured output SVMs extend standard SVMs to arbitrary output spaces.

◮ “New” optimisation techniques allow to learn models on a large scale (e.g.
BMRM).

◮ Benefits
◮ Apply well understood convex formulations and optimisation techniques to a

variety problems, from ranking to image segmentation and pose estimation.
◮ Good solvers + explicit feature maps = large scale non-linear models.
◮ Can incorporate latent variables (not discussed).

◮ Caveats
◮ Surrogate losses have many limitations.
◮ Inference and augmented inference must be solved ad hoc for every new design.
◮ All the limitations of discriminative learning.

Slides and code at
http://www.vlfeat.org/~vedaldi/teach.html.

81 / 85

http://www.vlfeat.org/~vedaldi/teach.html

Bibliography I

G. Csurka, C. R. Dance, L. Dan, J. Willamowski, and C. Bray. Visual
categorization with bags of keypoints. In Proc. ECCV Workshop on Stat. Learn.

in Comp. Vision, 2004.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In Proc. CVPR, 2009.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object
categories. In CVPR Workshop, 2004.

P. F. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained,
multiscale, deformable part model. In Proc. CVPR, 2008.

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space
reduction for human pose estimation. In Proc. CVPR, 2008.

T. Hastie, R. Tibishirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2001.

T. Joachims. Training linear SVMs in linear time. In Proc. KDD, 2006.

82 / 85

Bibliography II

T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural
SVMs. Machine Learning, 77(1), 2009.

K. C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable
minimization. Mathematical Programming, 46, 1990.

B. Leibe and B. Schiele. Scale-invariant object categorization using a
scale-adaptive mean-shift search. Lecture Notes in Computer Science, 3175,
2004.

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods.
Mathematical Programming, 69, 1995.

V. Lempitsky, A. Vedaldi, and A. Zisserman. A pylon model for semantic
segmentation. In Proc. NIPS, 2011.

T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large
scale image classification: Generalizing to new classes at near-zero cost. In
Proc. ECCV, 2012.

D. Parikh and K. Grauman. Relative attributes. In Proc. ICCV, 2011.

D. Ramanan. Learning to parse images of articulated bodies. In Proc. NIPS, 2006.

83 / 85

Bibliography III

D. Ramanan, D. Forsyth, and A. Zisserman. Strike a pose: Tracking people by
finding stylized poses. In Proc. CVPR, 2005.

J. Sánchez and F. Perronnin. High-dimensional signature compression for
large-scale image classification. In Proc. CVPR, 2011.

B. Schölkopf and A. Smola. Learning with Kernels, chapter Robust Estimators,
pages 75 – 83. MIT Press, 2002a.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002b.

J. Sivic and A. Zisserman. Efficient visual content retrieval and mining in videos.
Lecture Notes in Computer Science, 3332, 2004.

Alex J. Smola and Bernhard Scholkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3), 2004.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Proc.

NIPS, 2003.

C. H. Teo, S. V. N. Vishwanathan, A. Smola, and Q. V. Le. Bundle methods for
regularized risk minimization. Journal of Machine Learning Research, 1(55),
2009.

84 / 85

Bibliography IV

A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object
detection. In Proc. ICCV, 2009.

M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object
categories. In Proc. CVPR, volume 2, pages 101–108, 2000.

85 / 85

	Support vector classification
	Beyond classification: structured output SVMs
	Learning formulations
	Optimisation
	A complete example
	Further insights on optimisation

