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Computer Vision

Lecture 1: Matching, indexing, and retrieval
rea Vedaldi

For lecture notes, tutorial sheets, and updates see

The Internet: 50 billion images and counting ...

Structure of the course

Lecture 1: Matching, indexing, and search

Practical 1: Recognition of object instances
Lecture 2: Object category detection

Practical 2: Object category detection
Lecture 3: Visual geometry 1/2: camera models and triangulation
Lecture 4: Visual geometry 2/2: reconstruction from multiple views
Lecture 5: Segmentation, tracking, and depth sensors

Practical 3: Multiple view geometry




but it likely contains a similar one!

WIKIPEDIA
“The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia

= Intaractian

& Login Create account |

Atticle Talk Read Edit View history |Search Q (
All Souls College, Oxford

From Wikipedia, the free encyclopedia Coordinates: (g 51.753279°N 1.253041°W

The Warden and the College of the Souls of all Faithful People deceased in the
University of Oxford!') or All Souls College is one of the constituent colleges of the
University of Oxford in England.

Unique to All Souls, all of its members automatically become Fellows, i.e., full members of
the College's governing body. It has no undergraduate members, but each year recent
graduates of Oxford and other universities compete in "the hardest exam in the world"2(31(4]
for Examination Fellowships.
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Matching local features

Define a similarity function between images

F(l1, I2) = confidence that the object is the same
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Image similarity (1)

Compare images as vectors of pixels
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Nuisance factors

Viewpoint Visibility lllumination Camera Noise




Viewpoint and visibility 13 Matching and transformation 14

Matching can be seen as transforming or warping an image to another
Handling a variable viewpoint

As viewpoint changes pixels “move around” or even appear/disappear
We need to match corresponding pixels before we can compare them

Matching and transformation

Matching can be seen as transforming or warping an image to another




Similarity sformations

If the camera rotates around and translates along the optical axis, the image transforms according to a similarity:
scale, rotation, and translation.

cos@ —sinf
sinf cos@

R(O) = [







Homography/affine transformations 25

Comparing local features using normalisation

26
For pure camera rotation or if the object is planar, then the image transforms with an homography (approximated feature frames crop features normalisation "?er;:zl:es:d
as an affine transformation).
Consider corresponding feature frames f and .
[x] [a“ alz] [x [tx] Then normalisation undoes the effect of a viewpoint change.
= +
! a, a y] t,
Y a ’ After normalisation, pixels are in correspondence (matched) and can be compared directly.
Descriptors: SIFT 27 Summary: descriptors 28

normalised features spatial histogram of gradients

SIFT descriptor
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In practice, one compares descriptors rather than pixels. Descriptors:
handle residual distortions, noise, illumination;
make the representation more compact.

The most important example is the SIFT descriptor.

normalised
features

vector
comparison

image features descriptors

w0 ds
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For each pair of image features
Extract and normalize the corresponding image patches
Compute their descriptor vectors
Compare descriptors using the Euclidean distance

Question: how do we get the
features in the first place?




Exhaustive matching 29 Why exhaustive matching is unfeasible 30
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Exhaustive approach: The cost of exhaustive matching is O(N1 Nz) where N; is the number of features extracted from image I
Extract all possible features (all circles or all ellipses) from both images
Test all feature pairs for possible matches Even after sampling the search space, the number of all possible features Ni is very large (~108).
Testing all features guarantees that, if the “same feature” is visible in both images, then the corresponding patches Exhaustive matching is just too expensive.
are considered for matching.
32

Co-variant feature detectors

A detector is a rule that selects a small subset of features for matching.

The key is co-variance: the selection mechanism must pick the “same” (i.e. corresponding) features after an
image transformation.

Example of a co-variant detection rule: “pick all the dark blobs”.

Co-variant detection, invariant descriptor

A feature extracted by the Harris-Affine detector independently from different frames of a video.

Note that the feature seems “glued on” the scene.




Co-variant detector types Discriminability and support 34
similarity enlarge for context
— Properties of a detector
repeatability blob detector
generality
speed
Benefits of increased covariance | [ = &SR 4
. . all blobs look
handle more general motions / objects the same
Cons of increased covariance
less robust
slower
In practice, descriptors are computed in a region surrounding the feature.
This is because the feature “visual anchors” (e.g. blobs) look the same and would be confused during matching.
36

Global geometric verification

From local to global matching

Local matching Global matching

So far we have detected and then matched local However, our goal is to compare images as a whole,
features. not just individual patches.

This is because normalisation is only possible if Next, we will see how to build a global similarity
features are unoccluded and approximately planar. score from patch-level local comparisons.

Small features are much more likely to satisfy such
assumptions.

On the contrary, the image as a whole is non-planar
and contains plenty of self-occlusions.




Matching all local features 37 Matching all local features 38
Step 0: get an image pair Step 1: detect local features f and extract descriptors d
number of matches: 0 number of matches: 0
The leftimage has mfeatures  (f1, d1), ..., (fm, dm)
Right image has n feature (f"1, d"1), ..., (f'n, d’n)
Matching all local features 39 Matching all local features 40

Step 2: match each descriptor to its closets one

number of matches: 2048

Match the i-th left feature to its right nearest-neighbour nn(i), where:

nn(i) = argmin ||d; — djf||2
J=1,.. m

Step 3: reject ambiguous matches using the 2nd-nn test

number of matches: 293

Accept a match i — nn(j) only if it is at least a fraction = = 0.9 away from other possible matches:

ld; — d,’m(,-)ll2 < 7 argmin ||d; - djf||2
j#an(i)




Matching all local features 41
Step 4: geometric verification
number of matches: 127
Input: M tentative feature matches (x1, X"1), ..., (Xm, X'm).
Output: affine transformation (A*,T*) with the largest number of inlier matches:
(A*,T*) = argmax, y ‘ {i Cx;—Ax; = T < e} ‘
1. Repeat a large number of times:
The final step is to test whether matches are consistent with an overall image transformation. A. Randomly sample a minimal subset of matches sufficient to estimate (A.T).
B. Find inliers, i.e. other matches that are compatible with (A, T).
Inconsistent matches are rejected (see RANSAC). . . .
2. Return (A*,T*) as the pair (A,T) with the largest number of inliers.
43 a4

The RANSAC Algorithm

RANdomized SAmples Consensus [Fishler & Bolles, 1981]

outliers
. inliers

. . outliers

Consider the problem of fitting a line to a set of 2D points (xi,yi)
Often the data is contaminated by outliers, i.e. points that cannot be explained by the models

A method such as least square is heavily affected by outliers

The RANSAC Algorithm

RANdomized SAmples Consensus

outliers

inliers

outliers

support =3
Pick two points at random instead, and fit the line
We may be unlucky, an pick two outliers

This can be detected by counting how many other points agree with the line




The RANSAC Algorithm 45 The RANSAC Algorithm 46
RANdomized SAmples Consensus RANdomized SAmples Consensus
outliers : outliers
y . linliers e o inliers
S & N N e
. T Y ey
. -2 N B gt .
. i@: outliers b e e outliers
* o1 e e .
\ e support=7 x
support = 2
Play the game again However, eventually we will be lucky, and pick two inliers
Once more we picked an outlier, so we obtained a small support This can be detected because the support is much larger
The RANSAC Algorithm 47 Image similarity (I1) 48

RANdomized SAmples Consensus

inliers

support =7

Once the inlier set is identified, standard least square can be used to improve the solution

Why?

By counting number of verified local feature matches

F(l1, I2) = # of matches after geometric verification




Indexing using visual words

From image matching to image search 50

Our matching strategy can be used to search a handful of images exhaustively. However, this is far to slow to
search a database of a billion or more images such as Flickr, FaceBook, or the Internet.

Example:
L images in the database
N features per image (incl. query)
D dimensional feature descriptor
Exhaustive search cost: O(N2 L D)
Memory footprint: O(NLD)

e.g. 106- 100 (FaceBook)

e.g. 103 (~ SIFT detector)

e.g. 102 (~ SIFT descriptor)

1011 - 1015 ops = 100 days - 300 years
1TB - 1PB

Goal: develop a method to search a million or more images on a single computer in under a second (and many

more on computer clusters).

Issues:
memory footprint
matching cost (time)
precision and recall

The inverted index

Used by Google to search the Web instantaneously
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Inverted index

For each word, lists all documents
containing it as pairs {DocID,

WordCount)

Efficient query resolution: given a word,

return the corresponding list

Indexing images
Image = document
Word = ?

The key is to understand how to extract
“words” from images

visual descriptors

Visual words 52

visual words

descriptor d
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The K-means algorithm 53 K-means example 54
For learning a visual words vocabulary Clustering a 2D dataset
The visual vocabulary is obtained by forming K clusters of example descriptors (d, ... dv). Here M may be in
the order of a 1M, and K in the order of 10-100K.
The K cluster means (u1,...,ux) are randomly initialised. Then the K-means algorithm alternates two steps:
Find for each descriptor di the index m(d) of its closets mean:
(d,) = argmin ||d; — /|
k=1,...K
Recompute each mean px from the descriptor assigned to it:
wu, = average{d, : nn(d,) = k}
Once the means are trained, new descriptors d are quantised by mapping them to the closest mean:
a(d) = argmin [|d — g ||
k=1,...K
56

Visual word examples. Each row is an
equivalence class of patches mapped to the
same cluster by K-means.

Two steps:
Extraction. Extract local features and compute corresponding descriptors as before.

Quantisation. Then map the descriptors to the K-means cluster centres to obtain the corresponding visual
words.




Histogram of visual words 57

A simple but efficient global image descriptor

The histogram of visual words is the vector of the number
of occurrences of the K visual words in the image:

il »

= 1{d;: o(d,) = k|

If there are K visual words then h € #X.

The vector h is a global image descriptor.

Histogram of visual words 58
A simple but efficient global image descriptor
This is also called a bag of visual words because it does not

remember the relative positions of the features, just the
number of occurrences.

Hence, h discards spatial information.

Pros: more invariant to viewpoint changes and other
nuisance factors.

Cons: less discriminative.

Comparing histograms 59

Cosine similarity

h, h,
FdI,,I,) =cosf = —,
(Ihy - [Ihyl

Histogram of visual words can be compared as vectors.
The relative distribution of visual words is more informative than their absolute number of occurrences.

This intuition is captured by the cosine similarity, which computes the angle of the L2-normalised histograms.

Image similarity (l11) 60

By comparing bag-of-words descriptors

F(l1, ) = (hy hg)




Search as sparse matrix multiplication 61 Summary: image indexing and retrieval 62

Goal: given a query vector h, quickly compute its similarity with all the L vectors
hi, hz, hs, ..., hrin the database (one per indexed image).

Express this as a vector-matrix multiplication:

_hy h2 hs
[o 0102 0 .. 0 .. 0.1:| Xlo o o
e 06 o [ J [ J 0 01 0
02 0 0
01 0 03
The naive multiplication cost is
O(K L), where K is the number of visual words and L is the
database size. 0 0 04
However, histograms are often highly sparse. If only a fraction
p « 1 of entries is non-zero, then the cost reduces to O(p K L)
0.01 0.1 0
or even O(p2 K L). =

The space required i is also only O(p K L).

0.1

0.2

Given a query image |, we search the database by combining the two similarities:

1. The fast but unreliable cosine similarity to obtain a short list of M = 100 possible
matches.

2. The slow but reliable geometric verification to rerank the top M matches.

all images l top M l top 1

m cosine !‘q geometric
m gy (T similarit LY verification
BE=, o g

Demo

http://www.robots.ox.ac.uk/~vgg/demo/

e

Fext Search

Examining result for oxc1_hertford_000011 to oxc1_oxford_001612

WARNING: I using query expansion, ondences will not be displayed.

Evaluating retrieval systems




Evaluating of a retrieval system 65

We now have a system that can match a given
picture to a large database of images (e.g.
Wikipedia).

Besides speed, a good retrieval system must
have two fundamental properties:

1. Precision, i.e. the ability to return only images
that match the query.

2. Recall, i.e. the ability to return all the images
that match the query.

Precision-recall curves

Assess the quality of a ranked result list

decreasing score

precision-recall
100% Consider all images up to rank rin the list:

r.

Recall @r: fraction of relevant database images
that are contained in the top r.

precision

The Average-Precision (AP) is (roughly) the area
under the PR curve.

AP is a single number summarising the overall quality
of the result list.

12%  37% 100%
25% recall

66

Precision @r: fraction of correct results in the top

Evaluating an image retrieval system 67

A benchmark usually has 1) a large image database and 2) a number of test queries for which the correct
answer (relevant/irrelevant images) is known.

The retrieval system is evaluated in term of mean average precision (mAP), which is the mean AP of the test
queries.

query retrieval results AP

35%

100%

75%

mean average precision (mAP) 53%

Example benchmark: Oxford 5K

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

Query Retrieved Images

Dataset content
~ 5K images of Oxford
An optional additional set of confounder (irrelevant) images
58 test queries




