
AIMS  
Computer Vision
Lecture 1: Matching, indexing, and retrieval

 
Dr Andrea Vedaldi  

For lecture notes, tutorial sheets, and updates see

http://www.robots.ox.ac.uk/~vedaldi/teach.html

Structure of the course

Lecture 1: Matching, indexing, and search

Practical 1: Recognition of object instances

Lecture 2: Object category detection

Practical 2: Object category detection

Lecture 3: Visual geometry 1/2: camera models and triangulation

Lecture 4: Visual geometry 2/2: reconstruction from multiple views

Lecture 5: Segmentation, tracking, and depth sensors

Practical 3: Multiple view geometry

2

The Internet: 50 billion images and counting ... 3

...

It may not contain the picture you just took … 4

?

.. but it likely contains a similar one! 5 6

Goal: search a large collection for an image of the same object 8

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

9

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

Define a similarity function between images 10

F(I1, I2) = confidence that the object is the same

I1 I2

Compare images as vectors of pixels

Image similarity (I) 11

194 194 194 194 195 195 195 195 195

195 195 195 196 196 196 196 196 195

196 196 196 196 197 197 197 197 195

195 196 196 196 196 196 197 197 195

194 194 195 195 195 195 195 196 196

194 194 194 194 195 195 195 195 196

195 195 195 195 195 196 196 196 196

196 196 196 196 197 197 197 197 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

196 196 196 196 196 196 196 196 196

196 196 196 196 196 196 196 196 196

196 196 196 196 196 196 196 196 196

107 131 132 118 126 130 129 134 140

94 104 126 120 124 125 129 129 133

89 94 116 123 117 123 131 134 136

96 101 111 119 121 128 136 141 143

110 108 120 118 133 130 134 134 132

110 106 122 120 126 125 123 129 128

107 112 115 118 115 123 125 132 139

126 137 118 117 122 127 135 133 137

100 107 116 116 116 121 128 132 143

120 91 112 114 123 129 139 142 147

148 135 99 110 119 126 136 142 145

106 139 124 110 117 125 133 143 139

103 112 130 118 122 133 141 137 148

105 106 118 131 124 132 142 134 144

97 101 115 119 117 129 136 135 135

95 88 110 136 125 128 140 148 144

91 98 119 132 125 131 138 136 149

97 100 123 129 131 131 135 136 150

94 106 113 127 127 131 136 136 148

F(I1, I2) = －‖ I1 － I2 ‖2

I1 I2(194 - 107)2

(195 -94)2

(195 -115)2

Nuisance factors

Why do pixel values differ so much? 12

Viewpoint Visibility Illumination NoiseCamera

I1 I2

Viewpoint and visibility

Handling a variable viewpoint

As viewpoint changes pixels “move around” or even appear/disappear

We need to match corresponding pixels before we can compare them

13

I1 I2

Matching can be seen as transforming or warping an image to another

Matching and transformation 14

Matching can be seen as transforming or warping an image to another

Matching and transformation 15 16

Feature frame

17 18

19 Similarity transformations
If the camera rotates around and translates along the optical axis, the image transforms according to a similarity:
scale, rotation, and translation.

20

[x′￼

y′￼] = sR(θ)[x
y] + [tx

ty] R(θ) = [cos θ −sin θ
sin θ cos θ]

21 22

23 24

Homography/affine transformations
For pure camera rotation or if the object is planar, then the image transforms with an homography (approximated
as an affine transformation).

25

[x′￼

y′￼] = [a11 a12
a21 a22] [x

y] + [tx
ty]

Comparing local features using normalisation

Consider corresponding feature frames f and f′.

Then normalisation undoes the effect of a viewpoint change.

After normalisation, pixels are in correspondence (matched) and can be compared directly.

26

feature frames features normalisation normalised 
featurescrop

f

f′

f0

f0

Descriptors: SIFT

In practice, one compares descriptors rather than pixels. Descriptors:

handle residual distortions, noise, illumination;

make the representation more compact.

The most important example is the SIFT descriptor.

27

20 40 60 80 100 120
0

20

40

60

80

100

120

140

20 40 60 80 100 120
0

20

40

60

80

100

120

140

normalised features spatial histogram of gradients SIFT descriptor

d

d0

Summary: descriptors

For each pair of image features

Extract and normalize the corresponding image patches

Compute their descriptor vectors

Compare descriptors using the Euclidean distance

28

image features normalised 
features

20 40 60 80 100 120
0

20

40

60

80

100

120

140

20 40 60 80 100 120
0

20

40

60

80

100

120

140

descriptors

d1

d2

－ ‖ d1 － d2 ‖2

vector  
comparison

Question: how do we get the
features in the first place?

Exhaustive matching

Exhaustive approach:

Extract all possible features (all circles or all ellipses) from both images

Test all feature pairs for possible matches

Testing all features guarantees that, if the “same feature” is visible in both images, then the corresponding patches
are considered for matching.

29

......

Why exhaustive matching is unfeasible

The cost of exhaustive matching is O(N1 N2) where Ni is the number of features extracted from image Ii.

Even after sampling the search space, the number of all possible features Ni is very large (~106).

Exhaustive matching is just too expensive.

30

We need a method to
select a small subset of

features to match.

Co-variant feature detectors

A detector is a rule that selects a small subset of features for matching.

The key is co-variance: the selection mechanism must pick the “same” (i.e. corresponding) features after an
image transformation.

Example of a co-variant detection rule: “pick all the dark blobs”.

31 Co-variant detection, invariant descriptor

A feature extracted by the Harris-Affine detector independently from different frames of a video.

Note that the feature seems “glued on” the scene.

32

Co-variant detector types

Properties of a detector

repeatability

generality

speed  

Benefits of increased covariance

handle more general motions / objects 

Cons of increased covariance

less robust

slower

33

similarity affine

Discriminability and support

In practice, descriptors are computed in a region surrounding the feature.

This is because the feature “visual anchors” (e.g. blobs) look the same and would be confused during matching.

34

all blobs look

the same

blob detector

enlarge for context

35

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

From local to global matching

Local matching

So far we have detected and then matched local
features.

This is because normalisation is only possible if
features are unoccluded and approximately planar.

Small features are much more likely to satisfy such
assumptions.

On the contrary, the image as a whole is non-planar
and contains plenty of self-occlusions. 

Global matching

However, our goal is to compare images as a whole,
not just individual patches.

Next, we will see how to build a global similarity
score from patch-level local comparisons.

36

Step 0: get an image pair

Matching all local features 37

number of matches: 0

Step 1: detect local features f and extract descriptors d

Matching all local features

The left image has m features	 (f1, d1), …,	 (fm, dm)

Right image has n feature	 (f′1, d′1), …, (f′n, d′n)

38

Step 2: match each descriptor to its closets one

Matching all local features

Match the i-th left feature to its right nearest-neighbour nn(i), where:

39

nn(i) = argmin
j=1,…,m

∥di − d′￼j∥2

Step 3: reject ambiguous matches using the 2nd-nn test

Matching all local features

Accept a match i ⟼ nn(i) only if it is at least a fraction 𝜏 = 0.9 away from other possible matches:

40

∥di − d′￼nn(i)∥2 < τ argmin
j≠nn(i)

∥di − d′￼j∥2

Step 4: geometric verification

Matching all local features

The final step is to test whether matches are consistent with an overall image transformation.

Inconsistent matches are rejected (see RANSAC).

41

(RANdom SAmple Consensus)

RANSAC: optimization robust to outliers

Input: M tentative feature matches (x1, x′1), …, (xM, x′M).

Output: affine transformation (A*,T*) with the largest number of inlier matches:

42

1. Repeat a large number of times:

A. Randomly sample a minimal subset of matches sufficient to estimate (A,T).

B. Find inliers, i.e. other matches that are compatible with (A,T).

2. Return (A*,T*) as the pair (A,T) with the largest number of inliers.

(A*, T*) = argmaxA,T {i : ∥x′￼i − Axi − T∥ < ϵ}

RANdomized SAmples Consensus [Fishler & Bolles, 1981]

The RANSAC Algorithm 43

Consider the problem of fitting a line to a set of 2D points (xi,yi)

Often the data is contaminated by outliers, i.e. points that cannot be explained by the models

A method such as least square is heavily affected by outliers

x

y outliers
inliers

outliers

RANdomized SAmples Consensus

The RANSAC Algorithm 44

Pick two points at random instead, and fit the line

We may be unlucky, an pick two outliers

This can be detected by counting how many other points agree with the line

x

y outliers
inliers

outliers

support = 3

RANdomized SAmples Consensus

The RANSAC Algorithm 45

Play the game again

Once more we picked an outlier, so we obtained a small support

x

y outliers
inliers

outliers

support = 2

RANdomized SAmples Consensus

The RANSAC Algorithm 46

However, eventually we will be lucky, and pick two inliers

This can be detected because the support is much larger

x

y outliers
inliers

outliers

support = 7

RANdomized SAmples Consensus

The RANSAC Algorithm 47

Once the inlier set is identified, standard least square can be used to improve the solution

Why?

x

y outliers
inliers

outliers

support = 7

By counting number of verified local feature matches

Image similarity (II) 48

F(I1, I2) = # of matches after geometric verification

I1 I2

49

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

From image matching to image search

Our matching strategy can be used to search a handful of images exhaustively. However, this is far to slow to
search a database of a billion or more images such as Flickr, FaceBook, or the Internet.

Example:

L images in the database 		 e.g. 106 - 1010 (FaceBook)

N features per image (incl. query)		 e.g. 103 (~ SIFT detector)

D dimensional feature descriptor		 e.g. 102 (~ SIFT descriptor)

Exhaustive search cost: O(N2 L D)		 1011 - 1015 ops = 100 days - 300 years

Memory footprint: O(NLD)				 1TB - 1PB

Goal: develop a method to search a million or more images on a single computer in under a second (and many
more on computer clusters).

Issues:

memory footprint

matching cost (time)

precision and recall

50

Used by Google to search the Web instantaneously

The inverted index

Inverted index

For each word, lists all documents
containing it as pairs 〈DocID,
WordCount〉

Efficient query resolution: given a word,
return the corresponding list

Indexing images

Image = document

Word = ?

 
The key is to understand how to extract
“words” from images

51

Inverted Files for Text Search Engines 9

Fig. 3. Complete document-level inverted file for
the Keeper database. The entry for each term t is
composed of the frequency ft and a list of pairs, each
consisting of a document identifier d and a document
frequency fd,t. Also shown are the Wd values as com-
puted for the cosine measure shown in Equation 1.

it means that a list can be read or written in a single operation. Accessing a sequence
of blocks scattered across a disk would impose significant costs on query evaluation
as the list for a typical query term on the Web data would occupy 100kB (kilobytes) to
1MB, and the inverted list for a common term could be many times this size. Adding
to the difficulties for the great majority of terms, the inverted list is much less than
a kilobyte, placing a severe constraint on feasible size for a fixed-size block. Second,
no additional space is required for next-block pointers. Third, index update procedures
must manage variable-length fragments that vary enormously in size, from tiny to vast;
our experience, however, is that the benefits of contiguity greatly outweigh these costs.

An issue that is considered in detail in Section 8 is how to represent each stored value
such as document numbers and in-document frequencies. The choice of any fixed num-
ber of bits or bytes to represent a value is clearly arbitrary and has potential implica-
tions for scaling (fixed-length values can overflow) and efficiency (inflation in the volume
of data to be managed). Using the methods described later in this article, large gains in
performance are available through the use of compressed representations of indexes.

To facilitate compression, d-gaps are stored rather than straight document identi-
fiers. For example, the sorted sequence of document numbers

7, 18, 19, 22, 23, 25, 63, . . .

can be represented by gaps

7, 11, 1, 3, 1, 2, 38,

ACM Computing Surveys, Vol. 38, No. 2, Article 6, Publication date: July 2006.

inverted index

Visual words 52

visual descriptors

descriptor d

continuous 
space

E.g. 128D  
for SIFT

visual  
dictionary

visual  
word k

visual words

discrete  
space

K elements

The visual vocabulary is obtained by forming K clusters of example descriptors (d1, … dM). Here M may be in
the order of a 1M, and K in the order of 10-100K. 

The K cluster means (µ1,…,µK) are randomly initialised. Then the K-means algorithm alternates two steps:

Find for each descriptor di the index π(di) of its closets mean:

Recompute each mean µk from the descriptor assigned to it: 
 
 

Once the means are trained, new descriptors d are quantised by mapping them to the closest mean: 
 
 

For learning a visual words vocabulary

The K-means algorithm 53

π(d) = argmin
k=1,…,K

∥d − μk∥2

μk = average{di : nn(di) = k}

π(di) = argmin
k=1,…,K

∥di − μk∥2

Clustering a 2D dataset

K-means example 54

Visual word examples. Each row is an
equivalence class of patches mapped to the
same cluster by K-means.

From local features to visual words

Two steps:

Extraction. Extract local features and compute corresponding descriptors as before.

Quantisation. Then map the descriptors to the K-means cluster centres to obtain the corresponding visual
words.

56

A simple but efficient global image descriptor

Histogram of visual words

The histogram of visual words is the vector of the number
of occurrences of the K visual words in the image: 
 
 
 
 
 
 
 
 
 
 
 
 
If there are K visual words then h ϵ ℛK.

The vector h is a global image descriptor.

57

...h

hk = |{di : π(di) = k |

A simple but efficient global image descriptor

Histogram of visual words

This is also called a bag of visual words because it does not
remember the relative positions of the features, just the
number of occurrences. 
 
 
 
 
 
 
 
 
 
 
 
Hence, h discards spatial information.

Pros: more invariant to viewpoint changes and other
nuisance factors.

Cons: less discriminative.

58

h

Cosine similarity

Comparing histograms

Histogram of visual words can be compared as vectors.

The relative distribution of visual words is more informative than their absolute number of occurrences.

This intuition is captured by the cosine similarity, which computes the angle of the L2-normalised histograms.

59

✓

1

h1

h2

F(I1, I2) = cos θ = ⟨ h1

∥h1∥
,

h2

∥h2∥ ⟩

By comparing bag-of-words descriptors

Image similarity (III) 60

F(I1, I2) = 〈h1, h2〉

I1 I2

Search as sparse matrix multiplication

Goal: given a query vector h, quickly compute its similarity with all the L vectors 
h1, h2, h3, ..., hL in the database (one per indexed image).

Express this as a vector-matrix multiplication:

 
 
 
 
 
 
The naive multiplication cost is 
O(K L), where K is the number of visual words and L is the
database size.

However, histograms are often highly sparse. If only a fraction  
ρ ≪ 1 of entries is non-zero, then the cost reduces to O(ρ K L)
or even O(ρ2 K L).

The space required i is also only O(ρ K L).

61

0 0 0 ... 0.1

0 0.1 0 ... 0

0.2 0 0 ... 0

0.1 0 0.3 ... 0.1

...

0 0 0.1 ... 0.2

...

0.01 0.1 0 ... 0

...

0 0.1 0.2 0 ... 0 ... 0.1 ⨉

h h2 h3 hLh1

Summary: image indexing and retrieval

Given a query image I, we search the database by combining the two similarities:

1. The fast but unreliable cosine similarity to obtain a short list of M ≅ 100 possible
matches.

2. The slow but reliable geometric verification to rerank the top M matches.

62

cosine  
similarity

all images top M top 1
geometric 
verification

number of matches: 127

query I

http://www.robots.ox.ac.uk/~vgg/demo/

Demo 63 64

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

Evaluating of a retrieval system

We now have a system that can match a given
picture to a large database of images (e.g.
Wikipedia).

Besides speed, a good retrieval system must
have two fundamental properties:

1. Precision, i.e. the ability to return only images
that match the query.

2. Recall, i.e. the ability to return all the images
that match the query.

65

Assess the quality of a ranked result list

Precision-recall curves

Consider all images up to rank r in the list:

Precision @r: fraction of correct results in the top
r.

Recall @r: fraction of relevant database images
that are contained in the top r.

The Average-Precision (AP) is (roughly) the area
under the PR curve.

AP is a single number summarising the overall quality
of the result list.

66

25%

66%
60%

50%

42%

recall

pr
ec

is
io

n

100%

12%

75%

37% 100%

precision-recall

decreasing score

Evaluating an image retrieval system

A benchmark usually has 1) a large image database and 2) a number of test queries for which the correct
answer (relevant/irrelevant images) is known.

The retrieval system is evaluated in term of mean average precision (mAP), which is the mean AP of the test
queries.

67

✔ ✗✗ 35%

query retrieval results AP

✔ ✗✗ 100%

✔ ✗ ✔ 75%

53%mean average precision (mAP)

......

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

Example benchmark: Oxford 5K

Dataset content

~ 5K images of Oxford

An optional additional set of confounder (irrelevant) images

58 test queries

68

Query Retrieved Images

✔✗✔ ...

