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Chapter 1

Introduction

These notes support the lectures on deep learning for the Oxford C18
Computer Vision and the Oxford AIMS CDT Big Data courses. The
notes are self-contained and can be used as a stand-alone introduc-
tion to the mathematics of deep learning.

Modern deep learning has been one of the most significant tech-
nological advances in machine learning in decades. Deep neural net-
works achieve state-of-the-art performance in almost all applications
of machine learning and AI such as image understanding, natural
language processing, automatic speech recognition, graphics, con-
trol, and many others.

The notes start by discussing a very simple type of neural net-
work, namely the perceptron (chapter 2), and use it to introduce
important concepts such as prediction, loss, learning from exam-
ple data, generalization, optimization via stochastic gradient de-
scent, and data representations. Then, convolutional neural net-
works (chapter 3) are introduced, with a discussion of most impor-
tant types of layers, from linear convolution to pooling, non-linear
activation functions, softmax, cross-entropy loss, etc. The concept
of receptive field is also introduced and its calculation is derived.
Lastly, the discussion shifts to automatic differentiation and back-
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2 CHAPTER 1. INTRODUCTION

propagation (chapter 4).



Chapter 2

The perceptron

This chapter introduces the perceptron, one of the earliest and sim-
plest examples of neural network. It also introduces several im-
portant concepts in machine learning: generalization, building pre-
dictors using linear and non-linear operators, training them from
example data using energy minimization, using gradient descent to
optimise the model parameters, and the general idea of data repre-
sentations.

While artificial neural networks are inspired by biological neural
networks, they bear only a superficial resemblance to them. Artifi-
cial neural networks are best described as parametric functions that,
due to their peculiar structure, can be learned efficiently from exam-
ple data and result in excellent performance in applications. This
chapter introduces the perceptron from this viewpoint, starting from
a discussion of generalization, which is perhaps the most important
concept in machine learning.
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4 CHAPTER 2. THE PERCEPTRON

2.1 Generalization

The key goal of machine learning is to extrapolate general properties
of data from limited empirical observations. Consider for instance
the sequence of numbers 1, 2, 3, 4. Asked to predict how the sequence
continues, you would likely guess 5, 6, 7, . . . . Implicitly, by looking
at the first four numbers, you have learned that each number is
obtained from the previous one by adding 1. This rule generalizes
the input examples and allows one to predict their continuation.

Consider a different example: Let the vector x ∈ Rd be an image,
where each vector component encodes the brightness of a certain im-
age pixel. Only a tiny subset of such vectors correspond to images
that look natural (e.g., a face), whereas the vast majority of them
look like random noise. Such natural images can be modelled as
samples from an unknown probability distribution p(x), and we can
generate natural images by drawing samples form this distribution.
The distribution itself is unknown, but we can obtain information
about it by observing n such samples D = (x1, . . . ,xn). A reason-
able approximation to this sampling process is to download images
at random from the Internet. Learning in this case amounts to esti-
mating p(x) from the available samples. Knowing p(x) generalizes
the samples because it allows to predict how natural images look like
in general: in fact, we can extract from p(x) new samples that differ
from the ones used to estimate the distribution.

The final example is closer to the topic of these notes, and con-
siders the problem of analysing the content of data. In the simplest
case, the content is described by a binary class variable c ∈ {0, 1}.
For example, c = 1 might mean that an image contains a “bicycle”
(positive hypothesis) and c = 0 that it does not (negative or null hy-
pothesis). The relationship between data and labels is described by
an unknown conditional probability distribution P [c|x]. Similar to
before, we obtain information about this distribution by observing
n samples D = ((x1, c1), . . . , (xn, cn)) drawn from it.1 For example,

1More accurately we draw samples from the joint p(x, c) = P [c|x]p(x).
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we could download from the Internet images that contain “bicycles”
as well as other images that do not (both kind of images are required
to learn a rule that tells bicycles apart from non-bicycles). The goal
of learning is to estimate the conditional distribution P [c|x] from the
available samples, capturing the general relationship between data
x and labels c and thus predicting the labels of all possible images.2

In the last two examples, generalization was formalized as the
problem of estimating certain (conditional) probability distributions
from limited sample sets. Next, we introduce the perceptron as a
means to do this in practice.

2.2 The perceptron

Consider the simplest of the problems described above, namely bi-
nary classification. In this case, the goal is to estimate, given samples
D, the conditional probability P [c = 1|x] that any datum x belongs
to the positive class.3 Since P [c = 1|x] can be interpreted as a func-
tion f that maps data x ∈ X to numbers f(x) ∈ [0, 1], we can regard
this as the problem of estimating a function f : X → [0, 1].

A reasonable condition on f is that it should predict accurately
the labels of the given samples, i.e. f(xi) ≈ ci for all (xi, ci) ∈ D.
However, this tells us nothing about the value of f out of sample,
namely for points x that are not in the sample set D, and so this is
useless for generalization.

To fix this problem, we restrict the choice of f to a family F
of functions X → [0, 1] that are defined a-priori (before observing
the data D) on the entire input space X . Then, we seek within
this family for a function f that satisfies the constraints f(xi) ≈ ci
sufficiently well. In this manner, f is implicitly defined out of sample.
Such a function may not generalize well, but it is at least defined for

2Note that we could, as before, try to recover p(x) as well. This is often
uninteresting in applications.

3The probability that a datum is negative is just the complement 1− P [c =
1|x] and does not need to be estimated separately.



6 CHAPTER 2. THE PERCEPTRON

all inputs. Furthermore, if F is chosen well, good generalization is
achieved in practice.

Concretely, the family F is often obtained by considering a para-
metric function and varying its parameters. The perceptron is an
important example of such a parametric function.

The perceptron y = f(x;w, b) takes as input a vector x ∈ Rd

and returns as output a scalar y in the [0, 1] range, just as we need.
Evaluating the perceptron comprises two steps. First, one computes
the inner product between the input vector x and a parameter vector
w ∈ Rd and adds a constant bias b ∈ R, resulting in the scalar score

⟨w,x⟩+ b = w⊤x+ b.

Since the score can be any number from −∞ to +∞, the second step
is to apply the sigmoid activation function to compress the score to
the [0, 1] interval.4 The sigmoid function is given by the expression:

S(z) =
1

1 + e−z
. (2.1)

The perceptron is the combination of the two functions above:

f(x;w, b) = S(⟨w,x⟩+ b). (2.2)

Shorthand for the bias term

It is possible to incorporate the bias term directly into the
parameter vector w. This is achieved by extending the input
vector x with an additional component equal to the constant
1 and w by a corresponding component equal to b. With this
substitution, the perceptron can be written more compactly
as

f(x;w) = S(⟨w,x⟩).

In the rest of the chapter, we often use this convention to
shorten the notation.

4S(z) is also known as logistic function.
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2.2.1 Linear classifiers

Dropping the sigmoid activation function from the perceptron (2.2)
leaves us with a linear scoring function h(x;w, b) = ⟨w,x⟩+b. Such
functions can be used directly as predictor by looking at the sign of
the score: a positive score h(x;w, b) > 0 is interpreted as predicting
class c = 1 and a negative score as predicting class c = 0.

In this manner, the input space Rd is divided in two regions
containing vectors predicted to be respectively positive and negative.
The two regions are separated by a decision boundary of equation
h(x;w, b) = 0. For a linear scoring function, the decision boundary
is the hyperplane given by the linear equation ⟨w,x⟩ = −b.

Predictors with a linear decision boundary are called linear clas-
sifiers. A perceptron can also be interpreted as a linear classifier by
thresholding its probabilistic output at 50% probability.

Intuitively, a linear classifier may be insufficient to correctly solve
a complex prediction problem. This occurs because the expressive
power of the predictor is insufficient to model the data. The ex-
pressive power of linear classifiers, including the perceptron, can be
greatly extended by the use of data representations, as will be ex-
plained in section 2.4.

2.3 Learning the perceptron

In order to get the perceptron function f(x;w) to do something
useful, such as recognizing bicycles in images, one must set the pa-
rameters w appropriately. Doing so manually is generally hopeless;
instead, one automatizes this construction by fitting the parameters
w to example data D, a process known as training the model.

As explained before, the dataset D contains n samples (xi, ci)
drawn from the unknown joint data-label probability distribution.
Training should make the perceptron label all, or at least most, of
the training examples correctly and confidently. Hence, one seeks
for a parameter vector w∗ such that f(xi;w

∗) = P̂ [c = 1|xi] = 1
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if the label of example xi is ci = 1 and f(xi;w
∗) = 0 otherwise.

This parameter vector is usually characterized as the minimizer of
an energy function like:

E(w) =
1

n

n∑
i=1

(f(xi;w)− ci)
2
. (2.3)

The energy E(w) ≥ 0 is always non-negative and the minimum
E(w∗) = 0 is achieved if, and only if, all terms in the summation
are identically zero. The latter in turn means f(xi;w

∗) = ci as
required.

A minimizer of eq. (2.3) is also known as the least square fit of
the preceptron function to the data. You are likely familiar with the
concept of least square fit for linear models. This is the same, ex-
cept that the perceptron is a non-linear function due to the sigmoid
activation. It is therefore not possible to find a minimizer of (2.3) in
closed form as in standard least square; instead, as explained in sec-
tion 2.3.3, this is done by using methods such as gradient descent.

2.3.1 Generalization and regularization

If one can find a parameter vector w∗ so that the energy func-
tion (2.3) is equal to zero, the resulting perceptron fits perfectly
all the training data. Furthermore, the perceptron is defined out-of-
sample by construction, so it computes some class probability value
for all possible input vectors. Unfortunately, even this is insufficient
to guarantee that generalization is good. Namely, given a second in-
dependent test set Dtest of samples, the value of the energy (2.3) may
be large even if the energy is small when evaluated on the training
set D.

The issue is that, while both training and test data D and Dtest

are drawn from the same distribution P [c|x]p(x), the distribution it-
self is unknown. Instead, the only information available for learning
the perceptron are the training samples D. Finding out when such
samples are sufficient to learn a good predictor is the core problem
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of statistical learning, a very rich and complex field. While a dis-
cussion of the latter is out of scope, it is not difficult to build some
basic intuition here.

Recall that optimizing the parameters of the perceptron has the
effect of choosing a particular prediction function f from a family of
functions F (given in our case by all possible perceptron functions as
parameters are varied). The key intuition is that, if is this selection
process is not “too specific” to the given training data D, then the
chosen function is likely to work well on the test data as well.

A simple way to avoid overly-specific choices is to reduce the space
of available choices before the optimization begins. So, instead of
considering all possible perceptron parameters, one can constrain
them to a smaller space of acceptable parameters a-priori. We want
to constrain the choice in a simple and generally-applicable man-
ner and in such a way that the functions can still fit most real-life
training sets D well. A criterion that satisfies these requirements
is to restrict functions to be smooth in some sense. Smoothness
captures the idea that, in most applications, similar data vectors x
tend to receive similar labels c and so smooth predictor functions
may generalize well.

The most common approach is to look at the smoothness of
the linear scoring function inside the perceptron. As a measure of
smoothness, one can look at how much the score ⟨w,x⟩ changes in
response to a change in the input vector x. The amount of change
observed by going from sample x to sample x′ is bounded from above
by the Cauchy-Schwarz inequality :

(⟨w,x′⟩ − ⟨w,x⟩)2 = (⟨w,x′ − x⟩)2 ≤ ∥w∥ · ∥x′ − x∥. (2.4)

Thus, irregardless of the specific samples, the amount of change
can be reduced by reducing the norm of the parameter vector w,
resulting in a smoother predictor.

Hence, our criterion is to choose the perceptron parameters w
that fits the data well while ensuring that the norm of the parameters
is never too large. This is normally done by adding the squared norm
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∥w∥2 as a penalty or regularization term to (2.3), resulting in the
regularized energy function

E(w) =
λ

2
∥w∥2 + 1

|D|
∑

(x,c)∈D

(c− h(x;w))
2
. (2.5)

The parameter λ controls smoothness, trading-off lowering the fit-
ting error on the training data with the ability to generalize to future
data. Formulation (2.5) is a particular example of regularized risk
minimization known as ridge regression, where one balances squared
fitting error and squared norm regularizer.

2.3.2 Cross-entropy and other losses

The least square formulation (2.3) can be generalized by considering
a different loss function. A loss function ℓ(y, c) compares the ground-
truth class label c to the output y of the perceptron so that (1)
ℓ(y, c) ≥ 0 is non-negative and (2) ℓ(y, c) = 0 when y is a “correct”
prediction for c. Generalizing eq. (2.3) to use a generic loss function,
the energy becomes

E(w) =
1

|D|
∑

(x,c)∈D

ℓ(f(x;w), c). (2.6)

All loss functions are zero when predictions are perfect, but can
weigh in different manner imperfect predictions, resulting in different
trade-offs. In (2.3) the loss function is the squared loss:

ℓ(y, c) = (y − c)
2
.

Another popular loss is the cross-entropy loss, given by

ℓ(y, c) = −c log y − (1− c) log(1− y). (2.7)

This loss is generally preferable for classification problems because it
very strongly discourages the prediction y from putting more mass
on the incorrect class. For example, if c = 1, then the cross-entropy
loss assigns an infinitely-large loss to the (incorrect) estimate y = 0;
by comparison, the squared loss assigns loss value 1.
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Consistent posterior probability estimators. An interesting
property of the squared and cross-entropy losses is that they are
consistent estimators of the true conditional class probabilities. To
understand this, consider the case in which the label c itself is un-
certain. For example, the label may be produced by a human an-
notator and reflect her opinion. Because different annotators will
have different opinions, the data label is not deterministic; instead,
the particular value c = 1 is only given with probability P1 ∈ [0, 1].
Then, for a prediction y, the average value of the loss is given by:

Ec[−c log y − (1− c) log(1− y)] = −P1 log y − (1− P1) log(1− y).

The best prediction y according to this loos can be found found by
setting the derivative of this expression with respect to y to zero.
In this manner, it is easy to show that the minimum is achieved for
y = P1. Hence, minimising the expected loss results in the correct
probability value being estimated. The squared loss has the same
property.

Sigmoid cross-entropy and logistic regression. A perceptron
trained using the cross-entropy loss can also be interpreted as a
logistic regressor. In order to do so, move the activation function
S(z) from the predictor function to the loss function. In this manner,
the predictor reduces to the linear function g(x;w) = ⟨x,w⟩ and the
loss becomes

ℓ(y, c) = −c logS(y)− (1− c) log(1− S(y)).

Using the fact that 1 − S(y) = S(−y), this expression can be sim-
plified to:

ℓ(y, c) = − logS(c̄y) = log
(
1 + e−c̄y

)
, c̄ = 2c− 1.

The latter is called the logistic loss and is applied directly to the
output of a linear predictor.
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Hinge loss and support vector machines. The hinge loss

ℓ(y, c) = max{0, 1− c̄y}, c̄ = 2c− 1.

is similar in shape to the logistic loss, but is not smooth everywhere.
Just like the logistic loss, the hinge loss can be used to train a linear
predictor. A linear predictor learned using this loss in a regularized
formulation such as eq. (2.5) is also called a support vector machine
(SVM).

2.3.3 Optimization via gradient descent

We now consider the practical problem of learning a predictor by
optimizing energies such as eq. (2.3). Due to the non-linearity of
the perceptron, even the least square formulation (2.3) cannot be
solved in closed form as in standard least square. Instead, one opti-
mizes E(w) incrementally, usually via a process known as gradient
descent. Gradient descent is based on approximating the energy
around a current estimate wt of the parameter vector. The approx-
imation is given by the gradient ∇E(wt) (first order derivative) of
the energy function at that point, which results in the first-order
Tayolor expansion E(wt+1) ≈ E(wt) + ⟨∇E(wt),wt+1 − wt⟩. Be-
cause this expression approximates the energy function with a linear
function, it is also known as a linearization.

We update the parameter wt+1 = wt−η∇E(w) by subtracting a
positive multiple η > 0 of the gradient. This approximately reduces
the energy, as shown via a simple calculation:

E(wt+1) ≈ E(wt) + ⟨E(wt),wt+1 −wt⟩
= E(wt)− η∥E(wt)∥2

≤ E(wt).

Since the approximation is valid only if wt+1 is sufficiently close to
wt, the the step size η must be chosen sufficiently small. If this is
done properly, by starting from an initial random parameter vector
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w0 and by iterating this update rule, one can gradually reduce the
energy until a (locally) optimal parameter w∗ is found.

As seen above, the key step in learning the perceptron is to com-
pute the gradient of the terms ℓ(f(x;w), c) in the energy (2.6). In
the specific case of the perceptron, we see that each term is the com-
position of three functions: the loss, the sigmoid activation, and the
inner product. Hence, in order to compute this derivative we need
to use the chain rule:

dℓ(f(x;w), c)

dw
=

dℓ

dy
(f(x;w), c) · dS

dz
(⟨w,x⟩) · d⟨w,x⟩

dw
.

Note that each derivative is computed at the point determined by
evaluating the function chain: ℓ(y, c) at y = f(x;w), S(z) at z =
⟨w,x⟩, and ⟨w,x⟩ at x.

For example, if ℓ is the cross-entropy loss and if c = 1, the
expression above simplifies to:

dℓ(f(x;w), c)

dw
= x · Ṡ(⟨w,x⟩) ·

{
− 1

S(⟨w,x⟩) , if c = 1,

+ 1
1−S(⟨w,x⟩) , if c = 0.

Here the derivative of the sigmoid function is given by

Ṡ(z) =
ez

(1 + ez)
2 = S(z)(1− S(z)). (2.8)

Recall that gradient descent adds a multiple of the negative gradient
to the current parameter estimate w. Hence, if c = 1, this adds to
w a fraction of the vector x, increasing the response of ⟨w,x⟩ to this
input. Furthermore, the speed of descent is modulated by the factor

G(⟨w,x⟩) where G(z) =
Ṡ(z)

S(z)
= 1− S(z).

Hence, if ⟨w,x⟩ has already a strong positive response to input x,
the parameters are not changed by much because G(z) ≈ 0. On
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the other hand, if ⟨w,x⟩ has a strong negative (hence incorrect) re-
sponse, the speed of change is maximum because G(z) ≈ 1, which
rapidly steers the scoring function to respond correctly. These con-
siderations are reversed if c = 0.

Shrinkage. Note that, when regularization is used as in (2.5), then
the gradient λw of the regularizer must be considered as well. When
subtracted from the parameter vector w − ηλw = (1 − ηλ)w, the
effect is to shrink the parameter towards zero. This is why in neural
networks this form of regularization is often called shrinkage.

Stochastic gradient descent (SGD). Note that gradient de-
scent requires to compute the gradient ∇E(wt) of the energy func-
tion at each step. In modern machine learning applications, the
number of training samples n can be in the order of millions, so
each evaluation of the gradient requires millions of evaluations of
predictor, loss, and their gradients. Given that the energy is im-
proved only slightly at each iteration of gradient descent, this is just
too slow.

The solution to this problem is stochastic gradient descent (SGD).
The idea is rather simple. Instead of evaluating the gradient exactly,
one approximates it by considering a tiny subset B ⊂ D of the train-
ing data at every iteration, called a mini-batch:

∇E(wt) ≈
1

|B|
∑

(x,c)∈B

∇ℓ(f(x;w), c) + λw. (2.9)

Here the last term is the gradient of the squared norm regularizer.
Given this approximated gradient, parameters are updated as usual.

In the limit, the mini-batch can comprise a single training sample
at a time. However, there is a trade-off between how noisy the
gradient estimate is and how quickly parameters are updated which
is typically optimized for batches containing 10-1000 samples.

Batches are in principle randomly sampled, but in practice it is
more effective to randomly permute the training data D and then
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partition the latter in mini-batches of equal size. A full pass through
the training data is called an epoch. After each epoch, the data is
shuffled again and the process is repeated.

Learnign rate schedule. The learning rate η is gradually de-
creased during (S)GD. While there are many possible schedules, a
simple approach is to run (S)GD until there is no more progress in
the energy function and then lower the learning rate by a factor of
10.

Momentum. As gradients are noisy, and since gradient descent
does not have a way of “sensing” the curvature of the energy function
as second-order methods would, several tricks have been developed
to improve the conditioning of the algorithm.

One of the simplest and most effective is the idea of momentum.
The momentum is a variable mt containing a moving average of the
gradient:

mt+1 = ρmt + (1− ρ)∇E(wt).

where 0 ≤ ρ < 1 is the inertia (often set to ρ = 0.9). Then parame-
ters are updated as follows:

wt+1 = wt − ηmt+1.

2.4 Data representations

Perceptrons and other linear predictors such as SVMs can rarely be
applied to data directly. First, often data is not presented in the
form of vectors, so it is not directly compatbile with the perceptron.
Second, even when data is in vectorial form, as it may be the case
for an RGB-coded image, the perceptron may be too simplistic to
successfully analyse the data as required.

This problem is usually addressed by considering a suitable data
representation. A representation function Φ maps data sample x
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belonging to some space X to vectors Φ(x) ∈ Rd. With this trans-
formation, the perceptron can be applied to the data as follows:

f(x;w,Φ) = S(⟨w,Φ(x)⟩).

The representation Φ can be handcrafted, or it can be though of
as an additional parameter of the perceptron and can be optimized
using the same energy as before (in deep neural networks, the rep-
resentation itself is computed by a neural network, recursively).

The obvious advantage of using a representation is that it con-
verts arbitrary data into vectors, so that a linear classifier can be
used. However, representations are much more powerful than that
and are used even if the input space is a vector space. Represen-
tations can in fact dramatically expand the expressive power of a
linear classifier by implementing a non-linear scoring rule:

h(x;w) = ⟨w,Φ(x)⟩ =
d∑

k=1

wkΦk(x). (2.10)

Each dimension of the representation can be though of as a basis
function Φk and wk as the corresponding coefficient.

While (2.10) may not seem all that expressive, quite the opposite
is true. For example, if we pick the functions Φk(x) to be elements
of a Fourier basis (i.e. sinusoidal functions), in the limit almost any
function can be approximated in the form of h(x;w).

For machine learning applications, however, the ability to poten-
tially approximate any function is not necessarily the most impor-
tant property of a representation. As discussed in section 2.3.1, the
most important goal is to make predictor generalize to future data,
which is usually obtained via smoothing/regularization.

Representations play a fundamental role here as well as they
determine what it means for functions to be smooth. Generaliz-
ing eq. (2.4), we have in fact:

(⟨w,Φ(x′)⟩ − ⟨w,Φ(x)⟩)2 ≤ ∥w∥ · ∥Φ(x′)− Φ(x)∥.
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Hence, we see that two inputs x and x′ are automatically assigned
similar scores if their representation vectors Φ(x) and Φ(x′) are sim-
ilar and (possibly) different scores otherwise.

This suggest that the representation should reflect the congru-
ency of the input data in the similarity between representation vec-
tors. Namely, two input points that are congruent, i.e. that have
similar meaning and thus similar classification, should be mapped
to similar vectors and two input points that are incongruent should
be mapped to different vectors.

The latter often requires the representation to be invariant to
irrelevant factors of variation in the data, also called nuisance fac-
tors. For instance, if the goal is to recognize bicycles in images,
since the specific location of the bicycle is irrelevant, a representa-
tion which is invariant to image translations can be helpful in solving
this problem.

Universal representations

Congruency is often too strong a condition because the same
representation is often used to solve multiple and complemen-
tary analysis problem. For instance, we may use the same
representation to tell whether an image contains a car or not,
or a red object or not. Given that cars need not to be red
and that red objects need not to be cars, it is clear that we
cannot make Φ(x) congruent to both concepts at the same
time.
Fortunately, we do not need to. In fact suffices for Φ(x) to
disentangle the two concepts, by containing subset of compo-
nents congruous to each concept separately. Then different
linear projections ⟨w,x⟩ can easily extract the two concepts.
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Chapter 3

Convolutional neural
networks

Deep Convolutional Neural Networks (CNNs) are one of the most
important families of modern neural networks. They have outstand-
ing performance in image generation and analysis tasks, such as
image classification, semantic segmentation, object detection, im-
age denoising, colorization, image synthesis, face recognition, text
spotting, pose recognition, scene understanding, and many more.

This chapter introduces CNNs. After a high-level overview of
CNNs (section 3.1), section 3.2 is dedicated to discuss the concept
of tensor, the fundamental data unit that is processed by CNNs.
Tensors are processed by “convolutional” operators, which are dis-
cussed in detail in the second part of the chapter (section 3.3).

3.1 Filter chains

In the simplest case, CNNs operate on 3D arrays or tensors (sec-
tion 3.2), with two spatial dimensions, height and width, and a
channel dimension. A tensor is a generalization of an image and

19
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associates to each spatial location a vector of features. In the case
of an image, these feature vectors have three channels, capturing the
intensity of the primary colours red, green and blue which specify
the color of each pixel.

A CNN processes tensors via a chain of non-linear filters. These
filters gradually transform the low-level RGB data, which captures
raw light measurements, into progressively more abstract represen-
tations, capturing concepts such as edges, boundaries, textures, and
eventually objects, enabling their recognition.

Formally, a CNN is as sequence of layers f1, f2, . . . , fn. Each
layer takes as input a tensor xi−1 and produces as output a tensor
xi:

x1 = f1(x0), x2 = f2(x1), . . . , xn = fn(xn).

Most of the functions fi are local and translation invariant operators
and thus can be thought as filters. The prototypical layer is in fact
linear convolution (section 3.3.1), but in general these filters may be
non-linear.

Feature channels in tensors often are not interpretable; instead,
their meaning is determined automatically by learning the CNN from
example data, similar to the perceptron (section 2.3). An exception
is the output of the last layer, xn, which generally conveys an explicit
and desirable meaning. For instance, xn can be a vector of class
probabilities, encoding the CNN belief that the input image belongs
to a certain class.

The next section discusses tensors in more detail, slightly gener-
alizing the concepts reviewed so far.

3.2 Tensors

As we have suggested in the previous section, a CNN operates on
tensor variables; while in many branches of mathematics “tensors”
have a rich structure, in CNNs a tensor is simply a synonymy of
multi-dimensional array.
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Usually, tensors in CNNs have the format x ∈ RN×C×U1×···×UD ,
where the first dimension spans different data samples, the second di-
mension spans feature channels, and the remaining dimensions span
spatial locations. The tuple N × C × U1 × · · · × UD listing the di-
mensions of the tensor is called the tensor shape. Dimension N is
often called batch size and is used to pack several input samples
into a single tensor for efficient parallel processing, for example to
compute mini-batches in stochastic gradient descent (section 2.3.3).
The number of feature channels C is arbitrary in general, although
in some cases it has a specific meaning (e.g., C = 3 when represent-
ing RGB images). Often, as for a standard image, there are two
spatial dimensions. In this case, U1 = H is called the height of the
tensor and U2 = W its width. Other common cases are to have 1
or 3 spatial dimensions; in the latter case, the third dimension U3 is
usually called depth and can be used to represent volumetric data,
common in medical imaging.

Note that the conventions above are common but not universal.
Tensor dimensions can be assigned different meanings by different
CNN architectures. For example, sometimes in some applications
it is useful to use specific dimensions to represent time rather than
space.

In order to refer to a specific component of a tensor x, we will use
the notation xncu, where 0 ≤ n < N is the sample index, 0 ≤ c < C
the channel index, and (0, . . . , 0) ≤ u < U = (U1, . . . , UD) the spa-
tial location multi-index. Note that, unless otherwise specified, ten-
sor elements are indexed starting from 0 rather than 1 — the reason
is that this often simplifies mathematical expressions substantially.

A scalar quantity x ∈ R can be interpreted as a tensor with a
single dimension equal to 1. However, it can equivalently be inter-
preted as a tensor with an arbitrary number of dimensions all equal
to 1 (i.e., a 1 × 1 × · · · × 1 tensor,1) or a tensor with no dimen-
sions at all. Since the latter is the convention used by the PyTorch

1More in general any tensor with dimensions U can be thought of as a tensor
with dimensions U × 1× · · · × 1.
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toolbox, we will adopt it here. The reason for distinguishing R,
R1 and R1×1×···×1 is that, while they are isomorphic (equivalent)
spaces, they are treated differently by operations that manipulate
the tensor dimensions, such as reshaping, slicing, or concatenating.

Tensors in practice

Tensors are a fundamental building block in many machine
learning toolboxes. The notation we use here directly maps
to tensors as represented in PyTorch. Other toolboxes may
use equivalent but different conventions. For example, Mat-
ConvNet uses the HWCN order (instead of NCHW ) and
1-based indexing (instead of 0-based). The existence of differ-
ent conventions is unfortunate, but usually it is not a source
of major confusion.

3.2.1 The vec operator

The different dimensions of a tensor organize data components by
meaning, for example by associating them to different spatial loca-
tions, feature channels, or data samples. However, when we look
at tensors as variables in a calculation, for example to compute the
derivatives required in gradient descent, these distinctions are moot.
In such cases, it is sometimes useful to reinterpret tensors as mere
data blobs or vectors.

A tensor is converted into a vector by the vec or stacking operator

vec : RU1×···×UD → R
∏D

d=1 Ud . (3.1)

If y is a tensor, then vecy is a vector whose entries are obtained
by scanning in some conventional order the entries of y. Hence, the
dimension of vecy is the product of the dimensions of y.

An important application of vec is to transform tensors in to vec-
tors so that the standard real analysis notation (gradients, Jacobian
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matrices, etc.) can be used to work out the derivatives of neural
networks (section 4.2).

Conventions for vectorizing tensors

The specific scanning order used to vectorize a tensor, which
determines how the elements of y are mapped to elements
of vecy, is not important, provided that it is fixed. In prac-
tice, most programming environments provide the ability to
reshape tensors (or multi-dimensional arrays) using a certain
default order, which normally corresponds to the order in
which the tensor elements are stored in memory. There are
two main conventions for the scanning order:

• Row major. Dimensions are scanned from the right to
the left, i.e. (y0,...,0,0, y0,...,0,1, y0,0,...,2, . . . , y0,...,1,0, . . . )
This is the convention used by PyTorch.

• Column major. Dimensions are scanned from the
left to the right, i.e. (y0,0,...,0, y1,0,...,0, y2,0,...,0, . . . ,
y0,1,...,0, . . . ) This is the convention used by MATLAB
and MatConvNet.

Packages that use opposite scanning orders also tend to use
opposite conventions for ordering dimensions in a tensor. So
for example PyTorch uses the dimension orderN×C×H×W ,
whereas MatConvNet uses H×W×C×N . As a consequence
of this “double reversal”, stacked tensors end-up being almost
the same in the two cases (almost because the width and
height dimensions are still swapped). This is likely due to
the fact that the stacking order is also the order of the tensor
elements in memory and certain layouts are preferable for the
hardware implementing the calculations.
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3.2.2 Slices

Slicing a tensor is another common operation. Slicing amounts to
considering a subtensor obtained by fixing some dimensions to given
values and letting the other ones vary. We will use a slightly informal
notation for slicing. Namely, let x ∈ RU1×···×UM be a tensor. The
tensor xu1: denotes the slice of x obtained by fixing the first index
to value u1:

[xu1:]u2···uM
= xu1u2···uM

.

The notations x:uM
and x:uk: are similar, but denote fixing the last

or intermediate indexes. Fixing several dimensions is also possible,
as in xu1:uk:uM

, with obvious meaning.

3.3 Layers

This section describes the most important layer types in CNNs.

3.3.1 Linear convolution

The linear convolution operator takes as input a tensor x ∈ RN×C×I

and a filter bank f ∈ RK×C×F and produces as output the tensor y
given by:

ynkv =

C−1∑
c=0

F−1∑
u=0

fkcu · xn,c,v+u. (3.2)

This expression has the obvious meaning for tensors with a single
spatial dimension (D = 1). For more than one dimension, u must
be interpreted as a multi-index and is summed over the product of
intervals ΠD

i=1[0, Fi − 1]. A more explicit version of this expression
for the multi-dimensional case is thus given by:

ynkv1···vD =

C−1∑
c=0

F1−1∑
u1=0

· · ·
FD−1∑
uD=0

fkcu · xn,c,v1+u1,...,vD+uD
.
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filter F = 3

0

I + P - F-P

I - 1

-P I - 1 + P

padding P  = 1

stride S = 2

O - 1  0

Figure 3.1: Calculation of the size of the output of a convolution-like
layer for a 1D tensor. From bottom to top: the 1D input tensor has
I samples; padding (P = 1 in the example) adds P samples to each
side; applying a filter of size F drops F − 1 samples to the right;
downsampling (S = 3 in the example) retains one every S samples.

Note that working with multiple spatial dimensions is a direct and
trivial extension of the 1D case. Likewise, processing multiple input
samples as indexed by n is a trivial extension of processing a single
sample. Hence, in order to simplify the notation, in the rest of the
section we will assume D = 1 and N = 1 and drop the sample index
n. In this case, expression (3.2) simplifies to:

ykv =

C−1∑
c=0

F−1∑
u=0

fkcu · xc,v+u.

Tensor dimensions. Each filter fk: in the bank processes the
whole input tensor x to produce a specific channel yk: of the out-
put; therefore, the number K of filters in the bank is independent
of the shape of x and sets the number of output channels. On the
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other hand, the filter bank and the input tensor must have the same
number of channels C.

Next, we compute the spatial dimensions of the output y as a
function of the input and the filter bank shapes (see also fig. 3.1).
Each output element y:v is computed by applying a filter to a window
of the input tensor x. This window starts at location v and ends
at location v + U − 1. Since the largest such locations must still be
within the bounds of the input tensor and since the latter has has
size I, it must be v+U − 1 ≤ I − 1. Hence, v, which indexes output
elements, must be in the interval 0 ≤ v ≤ I − U . We conclude that
the output dimension is O = I − U + 1.

Convolution vs correlation

In mathematics and signal processing, eq. (3.2) does not de-
fine the convolution operator, but rather then correlation op-
erator. The only significant difference is that convolution is
defined by flipping (spatially) the filters. In these notes we
still call eq. (3.2) convolution as this is standard in the CNN
literature.

Padding, stride, and dilation. The basic convolution operator
can be extended to include three useful features:

• Padding. The input tensor can be virtually padded with
P− zeros to the left and P+ zeros to the right, allowing the
filter to slide more to the left and to the right than otherwise
possible. For example, if the filter bank size F = 2P + 1 is
odd, then using P− = P+ = P as padding causes the input
and output tensors to have the same size (instead of having a
smaller output).

• Stride. It is possible to retain only one every S elements of
the output tensor, thus sub-sampling the output with stride S
and reducing the resolution of the output tensor by the same
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factor. This is useful because convolution operators tend to
have a smoothing effect on the input signal and retaining the
full resolution is usually overkill.

• Dilation. It is also possible to dilate the filter spatial support
without increasing its spatial dimension. This is done by skip-
ping over D input locations for every filter spatial location, a
technique borrowed from the wavelet literature also known as
“à trous” or “perforated” convolution.

In order to account for padding, stride, and dilation, eq. (3.2) is
modified to

ykv =

C−1∑
c=0

F−1∑
u=0

fkcu · xc,Du+Sv−P− (3.3)

The following lemma gives the shape of the output tensor ac-
counting for these modifications:

Lemma 1. The size O of the output of the convolution operator with
a filter of size F applied to an input of size I with padding (P−, P+),
stride S, and dilation D is given by:

O = 1 +

⌊
I + P+ + P− −D · (F − 1)− 1

S

⌋
. (3.4)

Proof. In expression (3.3), the input tensor x is sampled at spatial
location r(u, v) = Su + Dv − P− where u ranges from 0 to F − 1.
Since padding virtually extends the input tensor x by P− and P+

pixels to the left and to the right respectively, we must have the
following constraints on the spatial index applied to x:

−P− ≤ r(0, v) and r(F − 1, v) ≤ I + P+ − 1.

Rearranging, the output index v must vary in the range:

0 ≤ v ≤
⌊
I + P+ + P− −D · (F − 1)− 1

S

⌋
.

From this expression, we immediately derive eq. (3.4).
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3.3.2 Activation functions

Activation functions are scalar functions y = S(x) applied component-
wise to tensors. Given an input tensor x, we will use the “broadcast”
notation y = S(x) to denote the effect of applying the function to
each entry of the input, i.e.:

yncu = S(xncu).

Note that the output tensor y has the same shape as the input x.
Activation functions are usually non-linear. The perceptron uses

the sigmoid function, already given in eq. (2.1) and repeated here
for convenience:

S(z) =
1

1 + e−z
.

Modern neural networks prefer the Rectified Linear Units (ReLU),
given by

S(z) = max{0, z}. (3.5)

ReLU exists in several variants, such as the soft ReLU

S(z) = log(1 + ez) (3.6)

and the leaky ReLU

S(z) = ϵz + (1− ϵ)max{0, z}, (3.7)

where 0 < ϵ≪ 1 is a small positive number. Another choice popular
in certain applications is the hyperbolic tangent (tanh) activation:

S(z) = tanh(z) =
ez − e−z

ez + e−z
. (3.8)

3.3.3 Pooling

The max pooling operator computes the maximum of each channel
of an input tensor in small sliding windows:

ycv = max
0≤u<F

xc,v+u. (3.9)
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Geometrically, the operation is similar to linear convolution. In
particular, the shape of the output tensor can be computed in the
same manner as in section 3.3.1: if the input tensor has dimensions
C × I and the pooling window has dimension F , the output tensor
has dimensions C ×O where O = I − F + 1.

Pooling can be use operators other than max. The general form
is

ycv = S

(
pool

0≤u<F
xc,v+u

)
. (3.10)

For example, average pooling is given by:

ycv =
1

F1 × · · · × FD

∑
0≤u<F

xc,v+u. (3.11)

Sum pooling is the same as average pooling, except that the result
is not normalized. Squared sum pooling is given by

ycv =

√ ∑
0≤u<F

x2
c,v+u. (3.12)

Just like for convolution in eq. (3.3), it is possible to introduce
padding (P−, P+), stride S and even dilation D for pooling oper-
ators (although the latter is not commonly used):

ycv = S

(
pool

0≤u<F
xc,Sv+Du−P−

)
. (3.13)

In this case, lemma 1 can be used to compute the output dimension.
There is a subtlety with padding: the input tensor x is (virtually)
padded with different values depending on the pooling operator: −∞
for max-pooling and 0 for the others.

3.3.4 Softmax

The perceptron was introduced as a predictor suitable for binary
(two-class) classification problems. There, the sigmoid function was
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used to convert a real class score into a probability value. How-
ever, in applications we are often interested in classification prob-
lems where there are C > 2 classes. In this case, we can use the
softmax function to convert a vector of scores x ∈ RC into a vector
of probabilities y ∈ [0, 1]

C
as follows:

yc =
exc∑C−1

k=0 exk

. (3.14)

The output vector can now interpreted as a probability vector be-
cause it is non-negative and because it sums to one (

∑C−1
c=0 yc = 1).

Shift invariance. An important property of the softmax operator
is that it is shift invariant ; namely, one can subtract a constant M
to all elements of the input tensor x without changing the output:

yc =
exc−M∑C−1

k=0 exk−M
=

e−Mexc

e−M
∑C−1

k=0 exk

=
exc∑C−1

k=0 exk

. (3.15)

Numerical stability

Computing the softmax operator may lead to numerical in-
stabilities due to the exponential functions and the division.
A simple trick to stabilize softmax is to subtract from the
input x its maximum component M = maxc xc. Due to shift
invariance (3.15), this does not change the result. The ad-
vantage is that in this manner the numerator is at most 1
and that the denominator is at least 1 and at most C.

Relation to sigmoid. For a two-class problems, C = 2 and the
softmax output is given by:

y0 =
ex0

ex0 + ex1
=

1

1 + e−(x0−x1)
= S(x0 − x1),

y1 = 1− S(x0 − x1) = S(x1 − x0),
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where S is the sigmoid function. This shows that softmax is a di-
rect generalization of the sigmoid. It also shows that, for a binary
classification problem, one can use the softmax operator on top of
two class scores x0 and x1, but this is not very meaningful as only
the score difference x0 − x1 matters.

Multi-dimensional softmax. Equation (3.14) is defined for a
vector input x and produces a normalized version of the vector y as
output. However, in CNNs we are interested in defining operators on
tensors. Softmax is extended to operate on tensors by normalizing
slices of the input tensor independently.

In applications, where the dimensions N×C×U of a tensor x are
interpreted as sample, channel, and spatial, softmax is often applied
along the channel dimension, to produce a field of class probabilities
for dense image labelling (segmentation):

yncu =
exncu∑C−1

k=0 exnku

. (3.16)

Another common case is to sum over spatial dimensions, to pro-
duce a set of heat-maps for localizing a bank of objects or keypoints
in an image:

yncv =
exncv∑U−1

u=0 exncu

. (3.17)

These definitions can be generalized as follows. Given a tensor of
dimensions U1×· · ·×UM , a slice is a selection D ⊂ (1, . . . ,M) of the
list2 of the M dimensions. Using the multi-index u = (u1, . . . , uM )
to index entries in the tensor and using the shorthand uD = (ui :
i ∈ D) for the part of the multi-index spanning the selected slice,
the softmax operator can be written as

yv =
exv∑

u:uD=vD
exu

. (3.18)

2Mathematically, a list is a sequence of tuple.
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3.3.5 Losses

In order to learn a CNN, its output must ultimately be converted
to a scalar score E that is then optimized. Normally, this score is
the result of composing the CNN with a loss function ℓ(y, c), which
compares the CNN output y to some ground-truth output value c.
This section discusses the most common losses used in applications,
starting from a discussion of the tensor dimensions involved.

Dimensions. Different losses interpret data in a different man-
ners, which has an effect on the dimensions of the corresponding ten-
sors. For instance, in a classification problem, the tensor y ∈ [0, 1]

C

is a vector of class probabilities and c ∈ {0, . . . , C − 1} is a sin-
gle ground-truth class index. In a regression problem, on the other
hand, y, c ∈ RC are two vectors.

In practice, one seldom works with simple vectors. Most losses
operate in fact by averaging errors over samples in a batch. In this
case, the tensor y ∈ RN×C represents N C-dimensional outputs,
one for each sample in a batch. In this case, for classification-like
problems individual outputs are compared to a vector of ground
truth values c ∈ RN and the results averaged:

ℓ(y, c) =
1

N

N−1∑
n=0

ℓ(yn:, cn).

For regression-like problems, c ∈ RN×C has the same dimension-
ality as y, and the expression is changed accordingly to compare
corresponding tensor slices.

This can be generalized further. For instance, it is not uncommon
for a network to estimate a field of values (for example, pixel-level
classes in image segmentation). In this case, the loss is applied to
certain slices of the tensor y and the results are averaged. The most
common of these examples is to average over the batch and spatial
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indexes:

ℓ(y, c) =
1

NU1 · · ·UD

N−1∑
n=0

U−1∑
u=0

ℓ(yn,:,u, cnu).

Slicing conventions

Note that, in the last example, y has dimensions N × C ×
U1 × · · · ×UD whereas c has dimensions N ×U1 × · · · ×UD.
An alternative convention, used by some machine learning
toolboxes, is that the slicing dimension C in y is mapped to
a singleton dimension in c, which is therefore N × 1 × U1 ×
· · · ×UD. The singleton dimension is redundant, but has the
advantage of keeping the dimensions of y and c aligned.

Normalization factors

While dividing the loss output by the number of elements in
a batch (and/or the number of spatial locations) is common,
in some cases these factors are suppressed. This may be used,
for example, to facilitate the distributed calculation of a loss
over multiple GPUs.

Cross-entropy loss. A CNN configured for image classification
produces a tensor y ∈ [0, 1]

N×C
of class probabilities, compared to

a corresponding vector c ∈ {0, . . . , C − 1}N of ground-truth class
labels. In this case a common loss is the cross-entropy loss, given
by:

ℓ(y, c) = − 1

N

N−1∑
n=0

log yn,cn (3.19)

Multi-class logistic loss. If y is computed from a score vector
x using the softmax operator (3.14), then naively composing with
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the loss (3.19) may be numerically unstable. Instead, one uses the
multi-class logistic loss, which combines softmax and cross-entropy
into a single expression:

ℓ(x, c) =
1

N

N−1∑
n=0

[
−xn,cn + log

C−1∑
k=0

exnk

]
(3.20)

As for softmax, this expression can be stabilized numerically by
subtracting Mn = maxc xnc from x before calculation.

3.4 Receptive fields

A key property of many neural network layers is to be local. A layer
y = f(x) is local if every element of y depends only on a subset of
the elements of x.

Locality is usually spatial as many layers operate as filters: each
element yv of the output, depends on a corresponding window xu,
u ∈ Ωv of elements of the input. The set Ωv is called the receptive
field of the “neuron” or operator outputting yv.

In this section, we show how to compute the receptive field for
the most common neural network layers and of their composition.
The latter is required to determine which image pixels influence a
certain neuron deep down a multi-layer CNN.

3.4.1 The receptive field of a layer

In this section we compute the receptive field of a single layer y =
f(x). Many layers can be interpreted as non-linear filter. In such
cases, as shown by eq. (3.3), the output element yv depends on the
following elements xω in the input tensor:

xω where ω = vS + uD − P− and 0 ≤ u < F.

Thus the relevant input elements xω are in the window Ωv = [ω−
v , ω

+
v ],

which depends on the filter size F , the left padding P−, the stride S
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and the dilation D. Plugging u = 0 and u = F − 1 in the equation
above gives us the smallest and largest input indices ω involved in
the calculation of yv:

ω−
v = vS − P−,

ω+
v = vS − P− + (F − 1) ·D.

(3.21)

Rather than manipulating these two quantities directly, it is easier
to consider the receptive field size and center, given by:

R = ω+
v − ω−

v + 1 = (F − 1) ·D + 1,

µv =
ω+
v + ω−

v

2
= vS − P− +

R− 1

2
.

(3.22)

With these two quantities, we can express the receptive field as Ωv =
[µv−(R−1)/2, µv+(R−1)/2]. The receptive field size is the same as
the filter size after dilation has been applied to it (so if the dilation
is D = 1, then R = F ). The receptive filter size R does not depend
on the output location v because filters are spatially invariant and
so operate in the same way at all spatial locations.

Centered filters

Due to boundary effects, filters may apply a spatial shift to
the information in the tensors. In the calculations above,
this is captured by the left padding P−. In particular, if
the left padding is half the receptive field, or more exactly
P− = (R − 1)/2, which requires R to be odd, then the filter
is centered. By this, we mean that every output element
yv depends on a window centered at location µv = Sv in
the input, so there is no shift. This definition can be better
understood if the stride is S = 1, as in this case µv = v.
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Activation functions

Element-wise layers such as activation functions can be
thought of as filters of size F = 1, dilation D = 1, and
stride S = 1. Hence, their receptive field has size R = 1 and
it is centered, in the sense that µv = v.

3.4.2 Receptive field of two layers

Next, we consider the composition z = Φ◦f of a subnetwork Φ with
a filter-like layer y = f(x). We can visualize the dependency chain
as follows:

{xω, ω ∈ Ωv}
f7−→ {yλ, λ ∈ Λv}

Φ7−→ zv.

In other words, the output element zv depends on a window Λv of
elements of the intermediate tensor y, which in turn depends on a
window Ωv of elements in the tensor before it in the chain, namely
x.

Assume that we are given window Λv = [λ−
w , λ

+
w ]. We can cal-

culate Ωv exactly as we did in the previous question. In this case,
we must find which elements xω influence of any of the elements
yλ, λ ∈ Λv. As before, this depends on the parameters (F, P−, S,D)
of the filter f . The minimum and maximum ω are given

ω−
v = λ−

v S − P−,

ω+
v = λ+

v S − P− + F̂ − 1,

where F̂ = D · (F − 1) + 1 is the dilated filter size.
These formulas allow us to compute the receptive field recur-

sively, from the end of the network back to the input. As before,
these formulas can be simplified by considering the receptive field
size and center instead of the extrema. The receptive field size R in
x is given by

R = ω+
v − ω−

v + 1 = (λ+
v − λ+

v )S + F̂ − 1 = R′ · S + F̂ − 1
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where R′ is the receptive field size in y. The receptive field center
µv in x is given by

µv =
ω+
v + ω−

v

2
=

λ+
v + λ+

v

2
S − P− +

F̂ − 1

2
= µ′

vS +
F̂ − 1

2
− P−

where µ′
v is the receptive field center in y.

3.4.3 Receptive field of several layers

Consider a deep neural network formed by the chain

x0
f17−→ x1

f27−→ . . .
fn7−→ xn.

The receptive field of an element in the output tensor xn within the
same tensor is obviously the element itself, so we have (Rn, µvn) =
(1, v). Then, we can find the receptive field sizes in tensors xn−1,
xn−2,. . . as:

Rn−1 = (Rn − 1)Sn + F̂n = F̂n

Rn−2 = (Rn−1 − 1)Sn−1 + F̂n−1

= (F̂n − 1)Sn−1 + (F̂n−1 − 1) + 1

Rn−3 = (Rn−2 − 1)Sn−2 + F̂n−2

= (F̂n − 1)Sn−1Sn−2 + (F̂n−1 − 1)Sn−2 + (F̂n−2 − 1) + 1

...

R0 = 1 +

n∑
i=1

i−1∏
j=1

Sj

 (F̂i − 1)

Note that the total receptive field size is given by the sum of the in-
dividual filter sizes rescaled by the product of filter strides. Hence,
downsampling results in much larger receptive fields. A similar rea-
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soning gives use the centers:

µv,n−1 = vSn +
F̂n − 1

2
− Pn,−

µv,n−2 = µv,n−1Sn−1 +
F̂n−1 − 1

2
− Pn−1,−

= vSnSn−1 +

(
F̂n − 1

2
− Pn,−

)
Sn−1 +

(
F̂n−1 − 1

2
− Pn−1,−

)
...

µv0 = v ·

 n∏
j=1

Sj

+

n∑
i=1

i−1∏
j=1

Sj

( F̂i − 1

2
− Pi,−

)

The stride of the total receptive field is the product of the strides
along the chain. Furthermore, in order ot have a “centered” recep-
tive field (so that the second part of the last equation goes to zero)
the (dilated) filter size and the left padding must satisfy the relation
F̂i = 2Pi,− + 1.

Receptive fields: ‘of’ and ‘in’

The calculations above give the receptive fields (Ri, µvi) of
the function fn ◦ · · · ◦ fi+1 that maps a certain intermediate
tensor xi to the output tensor xn. We thus say that this is
the receptive field of xn in xi. In particular, if i = 0, then
this is the receptive field of the output of the deep neural
network into the input image (or tensor).
Often, we are interested in computing different receptive
fields. In particular, it is interesting to consider the func-
tion fi ◦ fi−1 · · · ◦ f1 that goes from the input image/tensor
x0 to a certain intermediate tensor xi. In this case, we are
may want to compute the receptive field of xi in x0. Can you
see how to use the formulas above to do so?



Chapter 4

Automatic
differentiation

The goal of automatic differentiation (shortened AutoDiff) is to effi-
ciently and transparently compute the derivative of functions result-
ing from the calculations performed in a program. In our context,
the program evaluates a certain deep neural network, and AutoDiff
provides automatically the gradients required for optimization.

This chapter provides a high-level introduction to AutoDiff (sec-
tion 4.1). It then develops a notation for the derivative of tensor
functions (section 4.2) and uses it to illustrate in more detail how
AutoDiff works (section 4.3). It also discusses the backpropagation
algorithm (section 4.4), the key building block of AutoDiff.

4.1 Overview of AutoDiff

When training a CNN , one start from an image x0, applies to it a
sequence of operations x1 = f1(x0,w1), . . . , xn = fn(xn−1,wn) to
evaluate the CNN, and eventually computes the loss ℓ(y, c) to asses
the quality of the CNN prediction with respect to the ground truth

39
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label c.
This sequence of steps can be summarised in pseudo-code as

follows:

Require: tensors c,x0,w1, . . . ,wn

1: x1 = f1(x0,w0)
2: x2 = f2(x1,w1)
3: · · ·
4: xn = fn(xn−1,wn)
5: E = ℓ(xn, c)

In fact, we can write this more compactly by iterating over the CNN
layers using a for loop:

Require: tensors c,x0,w1, . . . ,wn

1: for i = 1, . . . n do
2: xi = fi(xi−1,wi)
3: end for
4: E = ℓ(xn, c)

A neural network toolbox such as PyTorch or MatConvNet allows
to evaluate the operators fi, and thus compute E, given the vari-
ous data and parameter tensors. After E is computed, such tool-
boxes allow to automatically compute the value of all derivatives
dE/dc, dE/dx0, dE/dw1, . . . , dE/dwn (which, since E is a scalar
quantity, are all gradients). Due to AutoDiff, doing so does not
require write any additional code. These derivatives can then be
used in optimization algorithms such as stochastic gradient descent
to learn the parameters of the model.

AutoDiff works by implicitly keeping track of all operations per-
formed and intermediate results obtained while executing the pro-
gram. Instructions in the program define a forward chain of calcu-
lations, in which each application of an operator fi produces a new
tensor xi. These steps can be tracked in a so-called compute graph,
which captures all dependencies between input, output and interme-
diate variables. The graph is directed and acyclic, as operators are
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only applied to inputs that have already been calculated. By quickly
working backward through the compute graph, AutoDiff can then
compute the required derivatives.

The advantage of AutoDiff, in addition to computing derivatives
automatically, is that it is embedded (more or less) transparently in
a programming language such as Python or MATLAB. This means
that, differently from early CNN toolboxes such as Caffe that require
explicitly defining neural networks as compute graphs, one simply
executes the CNN layers as instructions in the program. A corre-
sponding compute graph is built transparently and on the fly. This
approach affords tremendous development efficiency and flexibility.
A clear advantage to work with such “on the fly” graphs is that
calculations can vary from batch to batch, which can be useful to
process sequences of variable length or to perform conditional pro-
cessing (if...then) in neural networks. In fact, AutoDiff makes
the concept of a deep network as a static graph somewhat obsolete;
instead, a more flexible viewpoint is to think of programs that con-
tain some parameters that can be optimized over, using AutoDiff
and gradient descent.

4.2 Derivatives of tensor functions

In order to describe AutoDiff in more detail, we need to develop
a notation for the derivatives of tensor functions. Recall that a
function f : X → Y is a rule that maps elements x of the set X (the
domain) to elements y = f(x) of the set Y (the codomain).

In machine learning, we are often interested in functions that
map a subset of real numbers X ⊂ R to another subset Y ⊂ R
(sometimes R is replaced by the field of complex numbers C). The
derivative of the scalar function y = f(x) is given by:

df

dx
(x) = lim

δ→0

f(x+ δ)− f(x)

δ
. (4.1)

Note that the derivative is evaluated at a chosen point x, which is
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either implied or specified after the df/dx symbol. Assuming that
the limit exists for all x ∈ X, then, if f is a function from X to Y ,
the derivative df/dx is a function from X to R.

The derivative provides an approximation to the function f around
point x:

f(x+ dx) ≈ f(x) +
df

dx
(x) · dx.

Such an approximation is also called a linearization of f at x.
When working with neural networks, the derivative formula (4.1)

needs to be generalized to functions that have a tensor input x ∈
X ⊂ RU and a tensor output y ∈ Y ⊂ RV . The difficulty is that
input and output tensors have multiple dimensions U = U1×· · ·×UD

and V = V1 × · · ·VE , respectively. So, given a tensor function f :
X → Y , what is the meaning of the symbol df/dx?

Extending the considerations above, the derivative should con-
tain approximate linear dependencies of all the elements of the out-
put tensor y with respect to all the elements of the input tensor x.
Such dependencies can be collected in a table or tensor of dimension
V × U = V1 × · · ·VE × U1 × · · · × UD. This tensor is given by the
formula: [

df

dx
(x)

]
vu

= lim
δ→0

fv(x+ euδ)− fv(x)

δ
,

where eu ∈ RU is the indicator tensor of element u in the input:

∀ : 0 ≤ u′ < U : [eu]u′ = δu=u′ .

There are three cases of interest. The first is when the output
y is a scalar. As suggested in section 3.2, in this case is convenient
to interpret this scalar as having no dimensions (V = ϕ) so that the
derivative V × U = U is a tensor with the same shape as the input
x:

df

dx
(x) ∈ RU .

In this case, the derivative is also called a gradient.
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The second notable case is when both x and y are vectors, in
the sense that they have single dimensions U = U1 and V = V1

respectively. In this case:

df

dx
(x) ∈ RV1×U1

is a V1 × U1 matrix, known ans the Jacobian. The Jacobian, as
a matrix, is a convenient quantity to work with. An important
application is to express the chain rule for the derivative of function
chains as a product of matrices (appendix A.1).

The third notable case is when the function y = f(x) operates on
general tensors. In this case, in addition to considering the derivatie
a tensor with “combined” dimensions, we can use the vec operator
(section 3.2.1) to reshape first tensors into vectors. The advantage
is that allows to use the Jacobian notation:

d vec f

d vecx
∈ R(V1···VE)×(U1···UD).

Note that the Jacobian is still a matrix, but the first dimension is
the product of the dimensions of the output tensor y and the second
dimension is the product of the dimensions of input tensor x. Hence,
the Jacobian can be a very large matrix.

4.3 Using AutoDiff

In order to use AutoDiff correctly, it is important to understand
what it does and how it works.

AutoDiff keeps track of calculations performed in a program us-
ing a compute graph. Importantly, most AutoDiff implementations
do so only for calculations involving variables that have a certain
special type. In PyTorch, for example, these are variables of class
torch.Tensor.

Whenever a new variable x is obtained as a result of a calculation,
it is added to the graph together with the operator f used to compute
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it. In principle, f can take as input all variables that have already
been computed prior to it. In practice, the inputs of f are only a
small subset of those, called the parent variables π ⊂ (x1, . . . ,xn).
Note that the order of the variables in π is important as these are
used as positional arguments for the operator f .

The compute graph G = (V,E) then has:

• As nodes V a set of variable-operator-parent triplets v = (x, f, π).

• As edges the pairs E = {(u, v) : v = (x, f, π) ∈ V, u ∈ π}
connecting parent variables to their children.

The inputs to the graph are nodes v = (x, f, π) that are associated
the null operator f = ϵ and have no parents π = ϕ.1 The outputs
of the graph are the nodes that do not have children — still, any
variable in the graph be read off as output in practice.

Every time a new calculation is performed, a new node and cor-
responding edges are added to the compute graph. Since every new
calculation produces a new variable as output, the resulting graph
is acyclic. While this may seem obvious, it is worth remarking. In
fact, it is not uncommon to find code like:

Require: tensors c,x,w1, . . . ,wn

1: x = f1(x,w0)
2: x = f2(x,w1)
3: · · ·
4: x = fn(x,wn)
5: E = ℓ(x, c)

where apparently the same variable x is assigned multiple times.
In fact, what happens is that the variable name x is reassigned,
but each equation causes a new variable to be created under the
hood, and a new node to be added to the compute graph. This is
consistent with the semantics of imperative programming languages

1Alternatively, they can be modelled as the output of nullary functions f that
output a constant value.
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where names can be reused when intermediate results are not needed
anymore. However, this distinction becomes essential for AutoDiff,
which must keep track of all intermediate calculations even if variable
names are reassigned.

Once the graph has been (implicitly) assembled as calculations
are performed, AutoDiff is ready to compute derivatives. In order
to do so, one must specify which gradients are required with respect
to which variable. Normally, this is done as follows:

1. While the graph is constructed by performing calculations, a
subset of the variables w1, . . . , wk is declared as “requiring
gradients”.

2. An output variable z is selected. This variable is a scalar z ∈ R
representing an energy value, error, or loss to be optimized.

3. AutoDiff is invoked to compute gradients dz/dw1, . . . , dz/dwk.

Under the hood, AutoDiff will also compute gradients with re-
spect to all intermediate variables between wk and z that are re-
quired to perform the desired calculation via the chain rule.

Gradient accumulation

In PyTorch, each invocation of AutoDiff does not simply
write gradients, but accumulates new gradients to gradient
“buffers” that are associated to each variable. This is useful
because in this manner it is possible to compute gradients
with respect to the sum z1+ · · ·+zk over several output vari-
ables (which could be multiple losses) by invoking AutoDiff
multiple times. This features, however, requires to clear the
gradient buffers (zero_grads in PyTorch) before starting a
new cycle.
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4.4 Backpropagation

In order to carry out the actual derivative calculations, AutoDiff uses
the backpropagation (BackProp) algorithm. BackProp is essentially
an efficient implementation of the chain rule to differentiate compo-
sition of functions operating on large data variables such as tensors.

Understanding backpropagation is important in order to under-
stand the cost and limitations of AutoDiff, as well as to extend neural
network toolboxes with efficient implementations of new layers.

In order to understand backpropagation, consider first a simple
chain or composition of vector functions:

xn = (fn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f1)(x0) = h(x0).

We thus assume that all variables are vectors xi ∈ RUi (i.e. tensors
with one dimension), and we further assume that the last variable
is a scalar. If the functions work on multi-dimensional tensors, as it
is commonly the case, we can fall back to this case by reshaping all
tensors into vectors using the vec operator (section 3.2).

Suppose that our goal is to calculate the derivative of the output
xn with respect to the input of the chain, namely dh/dx0. Applying
the chain rule (appendix A.1), we find immediately:

d(fn ◦ fn−1 ◦ · · · ◦ f1)
dx0︸ ︷︷ ︸
1×U0

=
dfn

dxn−1︸ ︷︷ ︸
1×Un−1

· dfn−1

dxn−2︸ ︷︷ ︸
Un−1×Un−2

· dfn−2

dxn−3︸ ︷︷ ︸
Un−2×Un−3

· · · df1
dx0︸︷︷︸

U1×U0

.

(4.2)
Here each derivative is a Jacobian matrix, and all we need to do is
to multiply them together to obtain the solution.

The problem of this approach is the sheer dimensionality of these
matrices in practical neural networks. When data are tensors, each
Ui in eq. (4.2) is in fact the product of the corresponding tensor
dimensions. In practical networks, this means that a single Ui ×
Ui−1 Jacobian matrix, may occupy several GBs of memory, making
calculations unfeasible.
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Notably, however, the final result of (4.2) is a 1× U0 (or simply
U0) dimensional Jacobian matrix, a special case due to the fact that
the output is a scalar score xn. This is nearly always the case, as
the goal is to compute the derivative of an energy function (average
error) to optimize it. Hence, at least the result of the computa-
tion dh/dx0 has the same dimension as x0 and hence can be stored
without problems.

Interestingly, if we group terms in eq. (4.2) from the left to the
right, we see that all intermediate products have a similar sturcture:

d(fn ◦ · · · ◦ f1)
dx0︸ ︷︷ ︸
1×U0

=
dfn

dxn−1︸ ︷︷ ︸
1×Un−1

· dfn−1

dxn−2︸ ︷︷ ︸
Un−1×Un−2︸ ︷︷ ︸

1×Un−2

· dfn−2

dxn−3︸ ︷︷ ︸
Un−2×Un−3

︸ ︷︷ ︸
1×Un−3

· · · df1
dx0︸︷︷︸

U1×U0

︸ ︷︷ ︸
1×U0

.

(4.3)
Hence, if we multiply matrices from left to right, all intermediate
results can be stored without problems.

We now examine such intermediate results in more detail, giving
them names pn−1,pn−2, . . . ,p0:

d(fn ◦ · · · ◦ f1)
dx0︸ ︷︷ ︸
p0

=
dfn

dxn−1︸ ︷︷ ︸
pn−1

· dfn−1

dxn−2

︸ ︷︷ ︸
pn−2

· dfn−2

dxn−3

︸ ︷︷ ︸
pn−3

· · · df1
dx0

︸ ︷︷ ︸
p0

. (4.4)

We see that each pi is simply the derivative of the output variable
xn with respect to the intermediate variable xi:

pi =
d(fn ◦ · · · ◦ fi+1)

dxi
(xi) ∈ R1×Ui .
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This suggests the following iteration, which computes pi backward,
from left to right:

pi−1 ← pi ·
dfi

dxi−1
. (4.5)

The iteration starts with pn = 1 (the derivative of xn w.r.t. xn)
and terminates with p0 = dh/dx0 as required. The advantage of
this iteration is that the output of each step is a tensor pi that
has the same size as the corresponding variable xi, and is therefore
manageable.

The problem, of course, is that in order to compute each iter-
ation eq. (4.5) one still needs to compute a potentially unfeasibly-
large Jacobian matrix dfi/dxi−1. However, such matrices have in
practice a lot of structure, and in particular are very sparse, as they
reflect the computations performed by each layer fi. The key idea of
backpropagation is to exploit in ad-hoc manner such layer-specific
structures in order to greatly optimize the computation of (4.5).

The key ingredient is the following lemma:

Lemma 2. Let y = f(x) be a vector function where y ∈ RV and
x ∈ RU and let p ∈ R1×V a fixed row vector. Then:

p · df
dx

(x) =
d(p · f)

dx
(x).

In other words, the vector-matrix product in the left hand side can
be computed as the derivative of the scalar-valued projected function
p · f to the right.

Proof. This is a direct application of the linearity of the derivative
operator:

p · df
dx

(x) =
∑
v

pv ·
dfv
dx

(x) =
d

dx

[∑
v

pvfv(x)

]
=

d(p · f)
dx

.
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We call the quantity

fBP(x,p) =
d(p · f)

dx
(x) (4.6)

projected function derivative. The reason is that this is the derivative
of the function p·f(x), which is the projection of the vector function
f on the constant vector p.

Dimensions and simplified notation

We note that p as defined above is a row vector R1×V . This
notation is fine, but cumbersome. Instead, we often just think
of p as having the same dimension RV as the corresponding
output variable y. Then, and also to emphasize the projec-
tion operator, we write (4.6) as

d⟨p, f⟩
dx

∈ RU .

A nice thing about this version of the equation is that it
works out of the box if, instead of vectors, we work with
multi-dimensional tensors (so that V = V1 × · · · × VE and
U = U1 × · · · × UD).

The importance of the projected function derivative is that ma-
chine learning toolboxes, or you as an author of a new layer, can
focus on writing an optimized algorithm to compute quantity (4.6),
exploiting any layer-specific simplification.

In practice, a machine learning toolbox provides for each “atomic
layer” f (i.e. layers that are not obtained as the composition of
other more elementary layers, to which AutoDiff can be applied)
two implementations:

• A forward mode implementation that takes as input x and
computes y = f(x).
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• A backward mode implementation that takes as input x and
p and computes p′ = fBP (x,p), i.e. the derivative not of f ,
but of ⟨p, f⟩, with respect to the argument x.

While toolboxes make these functions available, and you many need
to author them to add new layers, the backward mode function is
usually invoked automatically by AutoDiff when needed.



Appendix A

Elements of linear
algebra and
multivariate analysis

We use boldface symbols such as x to denote multi-dimensional ob-
jects such as vectors and tensors. In most cases, we consider real
vector spaces Rd.

A.1 Composition and the chain rule

Deep learning is based on computing derivatives of compositions of
functions.

Two functions f : X → Y and g : Y → Z can be composed to
result in a third function g◦f that maps elements x ∈ X to elements
z = g(f(x)) of Z. The composition symbol ◦ looks like a product
but is not (although it is essentially a product if the functions are all
linear). Function composition is associative (h◦ (g ◦f) = (h◦g)◦f),
so parentheses are not required and one may just write h ◦ g ◦ f for

51
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the composition of several functions.
Computing the derivative of composition of functions is based on

thechain rule: the derivative of a composition is the product of the
individual derivatives. Consider first the scalar case y = f(x) and
z = g(y). If we linearise the functions we geometry

f(x+ dx) ≈ f(x) + dy, dy =
df

dx
(x) · dx,

g(y + dy) ≈ g(y) + dz, dz =
dg

dy
(y) · dy,

so that

dz =
dg

dy
(y) · df

dx
(x) · dx.

This substitution suggests (but does not prove!) that the derivative
of the composition g ◦ f is given by:

d(g ◦ f)
dx

(x) =
dg

dy
(y) · df

dx
(x), where y = f(x).

If x ∈ RU1 , y ∈ RV1 and z ∈ RW1 are vectors, then the chain
rule has exactly the same form (and intuitive justification), except
that derivatives are matrices:

d(g ◦ f)
dx

(x)︸ ︷︷ ︸
W1×U1

=
dg

dy
(y)︸ ︷︷ ︸

W1×V1

· df

dx
(x)︸ ︷︷ ︸

V1×U1

, where y = f(x).

Finally, if x ∈ RU , y ∈ RV and z ∈ RW are tensors U = U1 ×
· · · × UD, V = V1 × · · · × VE and W = W1 × · · · ×WF , then we can
use the vec operator to obtain:

d vec(g ◦ f)
d vecx

(x)︸ ︷︷ ︸∏
k Wk×

∏
i Ui

=
d vec g

d vecy
(y)︸ ︷︷ ︸∏

k Wk×
∏

j Vi

· d vec f

d vecx
(x)︸ ︷︷ ︸∏

j Vj×
∏

i Ui

, where y = f(x).
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