

Dr Andrew Zisserman (2 lectures)

- Lecture 1: Discriminative Learning 1 [AZ]
- Lecture 2: Discriminative Learning 2 and searching Big Data
- Practical 1 (Image Classification)

Dr Andrea Vedaldi (2 lectures)

- Lecture 3: Introduction to deep learning
- Lecture 4: Universal, unsupervised and understandable representations + Practical 2 (CNNs)

AIMS Deep Learning Materials
Notes and handout

Look for materials at

http://www.robots.ox.ac.uk/~vedaldi/teach.html

A convolutional neural network primer For the Oxford C18 and AIMS Big Data courres $\underset{\text { vedaldi ierobobots.ox. }}{\text { Andi }}$ vedaldierobobts. ox.ac. uk Version 1.0 August 2018

AIMS Big Data Course
Introduction to deep learning
Part 1: Convolutional neural networks

Beyond vector data

A linear predictor applies to vector data.
However, we want to process images, text, videos, or sounds that are not necessarily vectors.

For this, we use a representation function Φ, which maps the data to vectors.

Non-linear classification

Representations are used even if the data \mathbf{x} is already a vector.

They result in a non-linear classifier function which can be significantly more expressive than a linear one.

A representation should help the linear classifier to perform discrimination.

The goal is to map the mantic similarity betwe data points to a corresponding vector similarity.
A good representation is:

- invariant to nuisance factors
sensitive to semantic factors

Meaningful representations

The perceptron	Convolutional networks
Learning via SGD	

What

The perceptron maps an input vector \mathbf{x} to a probability value y.

For example, y could be the probability that \mathbf{x} is an image of a "bicycle" rather than not.

How

The perceptron computes this probability by weighing the vector components, summing them, and then applying a non-linear sigmoid
activation function.

The sigmoid activation function
Makes the perceptron non-linear

The activation function in the perceptron is a sigmoid

$$
S(z)=\frac{1}{1+e^{-z}}
$$

The sigmoid converts real scores z in the range $(-\infty, \infty)$ into probability values in the range $(0,1)$.

It has several remarkable properties, such as the following identity for its derivative
$\frac{d S}{d z}=S(z)(1-S(z))=S(z) S(-z)$

The perceptron as a parametric function

Perceptron = linear classifier + sigmoid

The perceptron is a function $f(\mathbf{x} ; \mathbf{w} ; b)$
parametrised by a weight vector \mathbf{w} and a bias b.

The function:

1. Maps a vector \mathbf{x} to a scalar score using the linear function $\langle\mathbf{x}, \mathbf{w}\rangle+b$.
2. Transforms the score into a probability value by applying the sigmoid function $S(z)$.

There usually is a constant bias term b added to the score. This can be implemented by extending the input vector with a constant element equal to 1 and including b in \mathbf{w}.

$$
\begin{aligned}
f(\mathbf{x} ; \mathbf{w}, b) & =S(\langle\mathbf{w}, \mathbf{x}\rangle+b) \\
& =\frac{1}{1+\exp \left(-w_{1} x_{1}-\ldots-w_{D} x_{D}-b\right)}
\end{aligned}
$$

Given the probabilistic nature of the perceptron
output, usually the fitting criterion is not least square, but maximum log-likelihood.

The log-likelihood is computed as follows

- The posterior probability of the $0 / 1$ label y_{i} can be expressed as

$$
P\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)=f\left(\mathbf{x}_{i} ; \mathbf{w}\right)^{y_{i}}\left(1-f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{1-y_{i}}
$$

- The negative log-likelihood of the parameters is

The empirical negative log-likelihood is obtained by averaging the negative log-likelihood over all the training data points

```
E(\mathbf{w})=-\frac{1}{N}\mp@subsup{\sum}{i=1}{N}\mp@subsup{y}{i}{}\operatorname{log}f(\mp@subsup{\mathbf{x}}{i}{};\mathbf{w})+(1-\mp@subsup{y}{i}{})\operatorname{log}(1-f(\mp@subsup{\mathbf{x}}{i}{};\mathbf{w}))
```

Just like the squared objective of least square, this objective function can be minimised by using an iterative method such as gradient descent.

$$
-\log P\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)
$$

$$
=-y_{i} \log f\left(\mathbf{x}_{i} ; \mathbf{w}\right)-\left(1-y_{i}\right) \log \left(1-f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)
$$

Multi-class perceptron

Softmax layer

Multiple perceptrons can be combined to predict more than two classes.

Each perceptron computes the score x_{c}^{2} for a class hypothesis $c=1, \ldots, C$.
The vector of scores \mathbf{x}^{2} is mapped to a vector of probabilities \mathbf{x}^{3} using the softmax operator, which is a generalisation of the sigmoid.

In the binary case, the softmax is the same as the sigmoid

Learning from example data

The log-likelihood and objective function for a multi class perceptron are given by.

$$
\begin{gathered}
-\log P\left(y=c \mid \mathbf{x}_{i}, W\right)=-\log \frac{e^{\mathbf{w}_{c}^{\top} \mathbf{x}+b_{c}}}{\sum_{q=1}^{C} e^{\mathbf{w}_{q}^{\top} \mathbf{x}+b_{q}}}=-\mathbf{w}_{c}^{\top} \mathbf{x}-b_{c}+\log \sum_{q=1}^{C} e^{\mathbf{w}_{q}^{\top} \mathbf{x}+b_{q}} \\
E(W)=\frac{1}{N} \sum_{i=1}^{N}\left(-\mathbf{w}_{y_{i}}^{\top} \mathbf{x}_{i}-b_{y_{i}}+\log \sum_{q=1}^{C} e^{\mathbf{w}_{q}^{\top} \mathbf{x}_{i}+b_{q}}\right)
\end{gathered}
$$

This loss function is sometimes called cross-entropy. It measures the discrepancy between

- the empirical posterior distributions $Q\left(c \mid \mathbf{x}_{i}\right)=\delta\left(c-y_{i}\right)$ and
- the predicted posterior distributions $P\left(c \mid \mathbf{x}_{i}\right)=P\left(y=c \mid \mathbf{x}_{i}, W\right)$

Perceptrons can also be chained, resoling in a so-called deep neural network. Depth refers to the fact that the function decomposes as a long ("deep") chain of simpler perception-like functions

The discovery of oriented cells in the visual cortex

In 1959, Hubel \& Wiesel
conducted seminal experimen conducted seminal experiments on visual cortex mammals Modicine in 1981).

They discovered the existence of neurons that respond to specific orientations and locations in the retina.

These neurons form a local and (statistically) translation invariant image operator.

The perceptron
Convolutional networks

Evaluation

Hubel and Wiesel 1959

Variables in CNNs are usually tensors, i.e. multidimensional array.

Conventionally, the dimensions are
$N \times C \times U_{1} \times \ldots \times U_{D}$ where
II N is the batch size, i.e. the number of data samples represented by the tensor.

- C is the number of channels.
- $U_{1} \times \ldots \times U_{D}$ are the spatial dimensions.

The number of spatial dimensions D can vary. E.g.

- $D=2$ is used to represent 2 D data such as images.
- $D=3$ is used to represent 3D data such as volumes.

In general, it is possible to assign any meaning to the dimensions (e.g. time), as required by the application.
samples N

Example: images as tensors

A color image can be interpreted as a tensor with $C=3$ (color) channels, one for each of the R, G, and B color components.

More in general, any $C \times H \times W$ tensor can be interpreted as a $H \times W$ field of C-dimensional feature vectors.

The meaning of the feature channels is often not obvious.

Tensor indexing

Tensor elements $x_{n c u}$ are identified via indexes, one for each dimension:

- n is the sample index in the batch
c is the feature channel index
- u is the spatial index

The spatial index u is in fact a multi-index, a shorthand notation for $u=\left(u_{1}, \ldots, u_{D}\right)$
Indexes are 0-based:
$0 \leq n<N$
$0 \leq c<C$

- $0 \leq u<U=\left(U_{1}, \ldots, U_{D}\right)$

Generally, whenever you see a spatial multi-index, just pretend there is only one spatial dimension $(D=1)$. The extension to $D>1$ is almost always trivial.

A linear filter \mathbf{f} computes the weighted summation of a window of the input tensor \mathbf{x}.

Key properties:

- Linearity: the operation is linear in the input and the filter parameters.
- Locality: the operator looks at a small window of data.
- Translation invariance: all windows are processed using the same filter weights.

Linear convolution

Multiple output channels and filter banks

A linear filter \mathbf{f} computes the weighted summation of a window of the input tensor \mathbf{x}.

Key properties:

- Linearity: the operation is linear in the input and the filter parameters.
- Locality: the operator looks at a small window of data.
- Translation invariance: all windows are processed using the same filter weights

The filter has one channel for each input tensor channel.

A bank of filters is used to generated multiple output channels, one per filter.

Padding and downsampling

Padding extends a tensor \mathbf{x} with a border P filled with zeros.

Downsampling retain one every S pixels in a tensor, where S is called the stride.

Padding and downsampling can be interpreted as additional layers before and after standard convolution:

Activation functions

The non-linearity in deep networks

Activation functions are scalar non-linear functions $S(z)$
that are applied element-wise to an input tensor \mathbf{x} to
generate an output tensor \mathbf{y} (with the same dimensions).

$$
\begin{cases}z=\max \{0, z\}, & \text { rectified linea } \\ z=\log \left(1+e^{z}\right), & \text { soft ReLU, } \\ z=\epsilon z+(1-\epsilon) \max \{0, z\}, & \text { leaky ReLU, } \\ z=\left(1+e^{-z}\right)^{-1}, & \\ \text { sigmoid, }\end{cases}
$$

$$
z=\tanh (z), \quad \text { hyperbolic tangent, }
$$

Pooling

Parameter-less non-linear filters

The max pooling operator is similar to linear filter, operating transitively on $F=\left(F_{1}, F_{2}\right)$ sized windows.

The operator extracts the maximum response for each channel and window

$$
y_{n c v}=\max _{0 \leq u<F} x_{n c, v+u}
$$

Pooling can use other operators, for example average

$$
y_{n c v}=\frac{1}{F_{1} \cdot F_{2}} \sum_{0 \leq u<F} x_{n c, v}
$$

A long sequence of layers

A deep convolutional neural network is a chain of several layers.
The typical pattern is to alternate linear convolution and non-linear activation, usually ReLU.

The other typical pattern is to gradually reduce the spatial resolution (via downsampling) and increase the number of feature channels.
Max-pooling is often used, in combination with downsampling, to reduce resolution further.

 of data.
ImageNet is a large collection of labelled image.

IMAGENET

The standard subset (ILSVRC12) contains

- 1,000 object classes
- ~1,000 example images for each class
- 1.2 M training images in total

Without ImageNet (or a similar dataset) it would have been impossible to develop modern deep neural networks for computer vision.

The objective function is an average over $N=1.2 \mathrm{M}$
data points, and so is the gradient. The cost of a sing gradient descent update is way too large to be practical.

Stochastic gradient

Approximate the gradient by sampling a single data point (or a small batch of size $\mathrm{N}^{\prime} \ll \mathrm{N}$). Perform the gradient update using the approximation.

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \nabla E_{i}\left(\mathbf{w}_{t}\right), \quad i \sim \mathscr{U}(\{1,2, \ldots, N\})
$$ uniform distribution

Momentum

SGD can be accelerated by denoising the gradient estimate using a moving average. This average is called momentum.

$$
\mathbf{m}_{t+1}=0.9 \mathbf{m}_{t}+\eta_{t} \nabla E_{i}\left(\mathbf{w}_{t}\right), \quad \mathbf{w}_{t+1}=\mathbf{w}_{t}-\mathbf{m}_{t+1}
$$

Epochs \& mini-batches

In practice, the data is visited not randomly, but in random order (without repetitions). A full pass is called an epoch.

Gradients are estimated by averaging mini-batches of 10-1000 examples. This takes advantage of parallel hardware such as GPUs.

Annealing schedule

The learning rate η_{t} is gradually reduced over time, usually by a factor 10 when no progress is observed

This allows SGD to slow down and more accurately land on an optimum as the latter is approached.

Time required

On a fast GPU, it is possible to process $\sim 1 \mathrm{k}$ images per second for AlexNet

An epoch thus lasts for 20 minutes. 40-100 epochs are required, requiring 13-33 hours (faster training requires tricks such as batch normalisation).

On a CPU, this could be 100 x slower (four months) Some networks are much slower (10-50 x)

Backpropagation
An efficient algorithm to compute the gradients

parameters \mathbf{W}
In order to train a neural network we minimize the average prediction error

$$
\underset{\mathbf{w}_{1}, \ldots, \mathbf{w}_{8}}{\operatorname{argmin}} E\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{8}\right) \quad \nabla E=\left(\frac{d E}{d \mathbf{w}_{1}}, \cdots, \frac{d E}{d \mathbf{w}_{8}}\right)
$$

In order to do so, we require the gradients of the
error with respect to all parameters

General approach

Evaluation is not dissimilar to any other machine learning method, such as SVMs or the perceptron.

Evaluation must always be done on a held-out validation or test set. This is because we need to test generalization, not just model fitting.

$$
E(\Phi)=\frac{1}{\left|\mathscr{D}_{\text {validation }}\right|} \sum_{(\mathbf{x}, c) \in \mathscr{Q} \text { validation }} \operatorname{err}(\Phi(\mathbf{x}), c)
$$

Most benchmarks provide validation data for this purpose.

Evaluation can use the same loss used for training. However, it is not uncommon to evaluate with respect to other, more meaningful losses err as well.

Top-k error

For classification problems, there are two popular losses.

Classification error: the percentage of incorrectly classified image in the validation set

Top-k error: the percentage of images whose ground ruth class is not contained in the top-k more likely classes according to the model.

The top-k error requires the network to estimate confidences. Top-1 is the same as the classification error.

The need for gradients

parameters \mathbf{w}
In order to train a neural network we minimise the average prediction error
$\operatorname{argmin} E\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{8}\right)$
$\mathbf{w}_{1}, \ldots, \mathbf{w}_{8}$

$$
\nabla E=\left(\frac{d E}{d \mathbf{w}_{1}}, \cdots, \frac{d E}{d \mathbf{w}_{8}}\right)
$$

In order to do so, we require the gradients of the
error with respect to all parameters

We use the vec operator to reduce a tensor derivative to a Jacobian matrix:

1. vec converts the tensor function $\mathbf{y}=f(\mathbf{x})$ to a vector function $\operatorname{vec} \mathbf{y}=(\operatorname{vec} f)(\operatorname{vec} \mathbf{x})$.
2. The derivative of a vector function is its Jacobian matrix.
3. The Jacobian matrix contains the derivative of each element of the output vector vec \mathbf{y} with respect to each element of the input vector vec \mathbf{x}.

The (unbearable) size of tensor derivatives

The size of these Jacobian matrices is huge. Example:

Unless the output is a scalar

Now the Jacobian reduces to a gradient and has the same size as \mathbf{x}. Example:

Backpropagation
Assume that x_{n} is a scalar

Backpropagation
Assume that x_{n} is a scalar

Assume that x_{n} is a scalar

The key step is the calculation of the vector-Jacobian product

$$
\mathbf{p}^{\prime}=f^{\mathrm{BP}}(\mathbf{p} ; \mathbf{x})=\mathbf{p} \cdot \frac{d \operatorname{vec} f}{d \operatorname{vec} \mathbf{x}}
$$

The result \mathbf{p}^{\prime} is a vector that has the same size as \mathbf{x}, so not too large.

The Jacobian matrix is still too large to explicitly compute.

The key idea is to use layer-specific
optimisation to compute f^{BP} without computing he Jacobian matrix explicitly.
[${ }^{\text {p }}$

The function f is a forward layer $\mathbf{y}=f(\mathbf{x})$
The function f^{BP} defines a backward layer operating in the reverse direction $\mathbf{p}^{\prime}=f^{\mathrm{BP}}(\mathbf{p} ; \mathbf{x})$

This generates a new mirror block diagram; the forward diagram feeds into the backward diagram via \mathbf{x}.

backward

Sigmoid layer

Assume that \mathbf{X} is a vector (otherwise use vec).
Let $\mathbf{y}=f(\mathbf{x})$ be the sigmoid activation layer:
$f(\mathbf{x})=\left[\begin{array}{c}\sigma\left(x_{1}\right) \\ \sigma\left(x_{2}\right) \\ \vdots \\ \sigma\left(x_{C}\right)\end{array}\right], \quad \sigma(x)=\frac{e^{x}}{e^{x}+e^{-x}}$.
The Jacobian is then given by:

Most derivatives are equal to zero:

$$
\frac{d \sigma\left(x_{c}\right)}{d x_{k}}=\left\{\begin{array}{ll}
\dot{\sigma}\left(x_{c}\right), & c=k, \\
0, & c \neq k .
\end{array} \quad \dot{\sigma}(x)=\frac{d \sigma}{d x}(x) .\right.
$$

The Jacobian is the diagonal matrix

$$
\frac{d f}{d \mathbf{x}}=\left[\begin{array}{cccc}
\dot{\sigma}\left(x_{1}\right) & 0 & \ldots & 0 \\
0 & \dot{\sigma}\left(x_{2}\right) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \dot{\sigma}\left(x_{C}\right)
\end{array}\right]
$$

f^{BP} is then given by

$$
f^{\mathrm{BP}}(\mathbf{p} ; \mathbf{x})=\mathbf{p} \cdot \frac{d f}{d \mathbf{x}}=\left[\begin{array}{llll}
p_{1} \dot{\sigma}\left(x_{1}\right) & p_{2} \dot{\sigma}\left(x_{2}\right) & \cdots & p_{C} \dot{\sigma}\left(x_{C}\right)
\end{array}\right] .
$$

So what are these vectors \mathbf{p} anyways?
Each \mathbf{p} is the gradient of the network output z with respect to the corresponding variable \mathbf{x} :

$$
\mathbf{p}^{\prime}=\frac{d z}{d \mathbf{x}} \quad \text { or even just } \quad \mathbf{p}^{\prime}=d \mathbf{x}
$$

Thus f^{BP} computes a gradient out of another gradient:
$\mathbf{p}=\frac{d z}{d \mathbf{y}} \Rightarrow \mathbf{p}^{\prime}=f^{\mathrm{BP}}(\mathbf{p} ; \mathbf{x})=\frac{d z}{d \mathbf{x}}$

The compute graph is a mechanism to keep track of the calculations in a program.
It can be used to automatically deduce which computations are required to compute the gradients.

These computations can then be added to the graph and the process repeated to obtain higher-order derivatives.

Backpropagation network
Conv, ReLU, MP and their transposed blocks

Keeping track of calculations for automatic differentiation

The compute graph is a mechanism to keep track of the calculations in a program.

It can be used to automatically deduce which computations are required to compute the gradients.

These computations can then be added to the graph and the process repeated to obtain higher-order derivatives.

The graph is more commonly shown the other way around, with the forward direction left to right.

Sufficient statistics and bottlenecks
Usually much less information is needed

backward

Automatic differentiation (AutoDiff)

A PyTorch example
Modern machine learning toolboxes provide AutoDiff. import torch
This means that calculations can be performed a normal in a programming language.

Underneath, the toolbox builds a compute graph.
Eventually, gradients can be requested.

\# Define two random inputs, both requiring grads
\# Define two random inputs, both requiring grads
$\times 0=$ torch. randn $(1,3,20,20$, requires
$\times 1=$ torchad $=$ True
$\times 1$, randn $(1,10,18,18$, requires $x 0=\operatorname{torch} \cdot \operatorname{randn}(1,3,20,20$, requires_grad=True)
$x 1=$ torch. $\operatorname{randn}(1,10,18,18$, requires_grad=True $)$
\# Get a convolutional layer. It contains
\# Get a convolutional layer. It contains
\# a parameter tensor conv.weight with requires_grad=True
conv $=$ torch. n. Conv2d $(3,10,3)$ conv $=$ torch. nn. Conv2d ($3,10,3$)
\# Intermediate calculations
$x 2=\operatorname{conv}(x 0)$
$x 3=$ torch. n. ReLU ($)(x 2)+x 1$
$x 3=$ torch.nn.ReLU()(x2)
$x 4=x 3$. sum() \# Scalar!
\# Invoke AutoGrad to compute the gradients
x4.backward()
\# Print the gradient shapes print (x0.grad. shape)
print(x1.grad. shape)
print(conv.weight.grad.shape)

Semantic image segmentation
Label individual pixels

Text spotting
Detection, word recognition, character recognition

E.g. SynthText and VGG-Text
http://zeus.robots.ox.ac.uk/textsearch/\#/search

Extract individual object instances

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Rierarchies for Accurate Obiect Detection and Semantic
R. Girshick, J. Donahaue, T. Darrell, . . Malik, CVPR 2014

Neural network architectures
Evolution
AlexNet (2012)

5 convolutional layers

3 fully-connected layers

Neural network architectures
Evolution
VGG-M (2013)
VGG-VD-16 (2014)

Neural network architectures		
AlexNet (2012)	Evolution	
VGG-M (2013)		
	VGG-VD-16 (2014)	

Neural network architectures		
AlexNet (2012)	VgG-M (2013)	VGG-VD-16 (2014)
	GoogLeNet (2014)	

Neural network architectures				78
		Evolution		
AlexNet (2012)	VGG-M (2013)	VGG-VD-16 (2014)	GoogLeNet (2014)	
E $=$ $=$	E	E		

Neural network architectures
Evolution

50 convolutional layers \qquad

152 convolutional layers \qquad Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classicication with deep convolutional neural networks. In Proc. NIPS, 2012
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proc. CVPR, 2015.
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.

Accuracy
80
$3 \times$ more accurate in 3 years

Speed
$5 \times$ slower

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
Reason: far fewer feature channels (quadratic speed/space gain)
Moral: optimize your architecture

Model size
82
Num. of parameters is about the same

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
Reason: far fewer feature channels (quadratic speed/space gain)
Moral: optimize your architecture

