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Learning a classifier

We would like to build a predictor 
that can tell if an image  contains a 
certain object (say a “bicycle”).

We learn this function from example 
images that do and do not contain the 
object.

In the simplest case, the function is a 
linear predictor :

Images are interpreted as (high-
dimensional) vectors.

 dots  and a parameter 
vector  to obtain the score for 
the positive hypothesis (bicycle).
The sign of  is used as 
prediction.
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w

bicycle?

F(x) = ⟨w, x⟩

linear predictor

x

Linear predictors beyond vector inputs

Data representations

Beyond vector data
 A linear predictor applies to vector data.

 However, we want to process images, text, videos, or 
sounds that are not necessarily vectors.

 For this, we use a representation function , which 
maps the data to vectors.

Non-linear classification
 Representations are used even if the data  is already 
a vector.

 They result in a non-linear classifier function which can 
be significantly more expressive than a linear one.

Φ

x
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representation 

vector

Φ(x) ∈ ℝdx

possibly not a vector

F(x) = ⟨w, Φ(x)⟩

non-linear predictor

F(x) = ⟨w, x⟩

linear predictor

Meaningful representations

A representation should help 
the linear classifier to perform 
discrimination.

The goal is to map the 
semantic similarity between 
data points to a corresponding 
vector similarity.

A good representation is:
invariant to nuisance 
factors
sensitive to semantic 
factors
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embedding space ℝd

near
far

congruous 
pair

incongruous 
pair

Semantic similarity Vector similarity 
(distance)

representation
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The perceptron
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An early neural network by Rosenblatt (1957)

The perceptron

What
The perceptron maps an input vector 

 to a probability value .

For example,  could be the probability 
that  is an image of a “bicycle” rather 
than not.

How
The perceptron computes this 
probability by weighing the vector 
components, summing them, and then 
applying a non-linear sigmoid 
activation function.

x y

y
x
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∑⋮

b
w1

wD

w2

1
x1

x2

xD

S

f(x; w; b)x

w, b

weighing summation sigmoid  
activation

input

parameters

prediction

y = P(c = 1 |x, w)

y = P(c = 1 |x, w)

Makes the perceptron non-linear

The sigmoid activation function

The activation function in the perceptron is 
a sigmoid

The sigmoid converts real scores  in the 
range  into probability values in 
the range .

It has several remarkable properties, such 
as the following identity for its derivative

S(z) =
1

1 + e−z

z
(−∞, ∞)

(0, 1)

dS
dz

= S(z)(1 − S(z)) = S(z)S(−z)
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Sigmoid function
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Perceptron = linear classifier + sigmoid

The perceptron as a parametric function

The perceptron is a function 
parametrised by a weight vector  and a bias .

 The function:
1. Maps a vector  to a scalar score using the 

linear function .
2. Transforms the score into a probability 

value by applying the sigmoid function 
.

There usually is a constant bias term  added to 
the score. This can be implemented by extending 
the input vector with a constant element equal to 
1 and including  in .

f(x; w; b)
w b

x
⟨x, w⟩ + b

S(z)

b

b w
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∑

b1

S y

f(x; w, b) = S (⟨w, x⟩ + b)
=

1
1 + exp(−w1x1 − … − wDxD − b)

bias

⋮

w1

wD

w2

x1

x2

xD



Training the perceptron: least square

Regard the perceptron as a parametric function from 
an input space X to an output space Y:

The parameters  of the perceptron are learned 
empirically by fitting the function to example data 

.

This can be done by solving a least-square problem:

 
 
This problem is non-linear due to the activation 
function . It needs to be solved by an iterative 
method such as gradient descent.

(w, b)

(x1, y1), (x2, y2), …(xN, yN),

S
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X Y

data labelsperceptron

x

E(w, b) =
1
N

N

∑
i=1

(S(⟨w, x⟩ + b) − yi)2

y = S (⟨w, x⟩ + b)

Better than least square for classification problems

Cross-entropy loss

Given the probabilistic nature of the perceptron 
output, usually the fitting criterion is not least square, 
but maximum log-likelihood.

The log-likelihood is computed as follows:
The posterior probability of the 0/1 label  can 
be expressed as 
 

 

The negative log-likelihood of the parameters is 
 

The empirical negative log-likelihood is obtained by 
averaging the negative log-likelihood over all the 
training data points

Just like the squared objective of least square, this 
objective function can be minimised by using an 
iterative method such as gradient descent.

yi

P(yi |xi; w) = f(xi; w)yi(1 − f(xi; w))1−yi

−log P(yi |xi; w)
= − yi log f(xi; w) − (1 − yi)log(1 − f(xi; w))

E(w) = −
1
N

N

∑
i=1

yi log f(xi; w) + (1 − yi)log(1 − f(xi; w))
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Softmax layer

Multi-class perceptron

Multiple perceptrons can be 
combined to predict more 
than two classes.

Each perceptron computes 
the score   for a class 
hypothesis .

The vector of scores  is 
mapped to a vector of 
probabilities  using the 
softmax operator, which is 
a generalisation of the 
sigmoid.

x2
c
c = 1,…, C

x2

x3
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x2
1
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2

soft 
max

w1
21 Shown for 2-classes, 

useful for 3 or more

 = x3
1 P(y = 1 |x, w, b)

 = x3
2 P(y = 2 |x, w, b)

x3
i =

ex2
i

ex2
1 + ex2

2

w1
11

In the binary case, the softmax is the same as the sigmoid

Softmax = sigmoid for 2 classes 16
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The log-likelihood and objective function for a multi class perceptron are given by:

This loss function is sometimes called cross-entropy. It measures the discrepancy between 
the empirical posterior distributions and
the predicted posterior distributions .

−log P(y = c |xi, W) = − log
ew⊤

c x+bc

∑C
q=1 ew⊤

q x+bq
= − w⊤

c x − bc + log
C

∑
q=1

ew⊤
q x+bq

E(W) =
1
N

N

∑
i=1

−w⊤
yi
xi − byi

+ log
C

∑
q=1

ew⊤
q xi+bq

Q(c |xi) = δ(c − yi)
P(c |xi) = P(y = c |xi, W)

Learning from example data

Multi-class perceptron 17

Deep architectures

Multi-layer perceptron (MLP)

Perceptrons can also be chained, resoling in a so-called deep neural network. Depth refers to the fact that the 
function decomposes as a long (“deep”) chain of simpler perception-like functions.
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Hubel and Wiesel 1959

The discovery of oriented cells in the visual cortex

In 1959, Hubel & Wiesel 
conducted seminal experiments 
on the visual cortex of mammals 
(Nobel Prize in Physiology and 
Medicine in 1981).

They discovered the existence of 
neurons that respond to specific 
orientations and locations in the 
retina.

These neurons form a local and 
(statistically) translation invariant 
image operator.

20

oriented 
filter



21 Tensors

Variables in CNNs are usually tensors, i.e. multi-
dimensional array.

Conventionally, the dimensions are  
 where

 is the batch size, i.e. the number of data 
samples represented by the tensor.

 is the number of channels.
 are the spatial dimensions.

The number of spatial dimensions  can vary. E.g.:
 is used to represent 2D data such as 

images.
 is used to represent 3D data such as 

volumes.

In general, it is possible to assign any meaning to the 
dimensions (e.g. time), as required by the application.

N × C × U1 × … × UD
N

C
U1 × … × UD

D
D = 2

D = 3

22

height  
(or )

H
U1

width  
(or )

W
U2

channels C

samples N

Example: images as tensors

 A color image can be interpreted as a tensor with  (color) 
channels, one for each of the R, G, and B color components.

 More in general, any  tensor can be interpreted as a 
 field of C-dimensional feature vectors.

 The meaning of the feature channels is often not obvious.

C = 3

C × H × W
H × W

23

channels 
C = 3

height  
(or )

H
U1

width  
(or )

W
U2

Tensor indexing

Tensor elements  are identified via indexes, one for 
each dimension:

 is the sample index in the batch
 is the feature channel index
 is the spatial index

The spatial index u is in fact a multi-index, a shorthand 
notation for u = (u1, …, uD)

Indexes are 0-based:

Generally,  whenever you see a spatial multi-index, just 
pretend there is only one spatial dimension ( ). The 
extension to  is almost always trivial.

xncu

n
c
u

0 ≤ n < N
0 ≤ c < C
0 ≤ u < U = (U1, …, UD)

D = 1
D > 1

24

u1

u2

c

n

xncu



A simple filtering operation

Linear convolution

A linear filter  computes the weighted summation 
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input 
and the filter parameters.
Locality: the operator looks at a small window 
of data.
Translation invariance: all windows are 
processed using the same filter weights.

f
x

25

∑

x y

f

Multiple input channels

Linear convolution 26

∑

f

A linear filter  computes the weighted summation 
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input 
and the filter parameters.
Locality: the operator looks at a small window 
of data.
Translation invariance: all windows are 
processed using the same filter weights.

The filter has one channel for each input tensor 
channel.

f
x

x y

Multiple output channels and filter banks

Linear convolution 27

∑

A linear filter  computes the weighted summation 
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input 
and the filter parameters.
Locality: the operator looks at a small window 
of data.
Translation invariance: all windows are 
processed using the same filter weights.

The filter has one channel for each input tensor 
channel.

A bank of filters is used to generated multiple 
output channels, one per filter.

f
x

∑

f2

x y

f1

As a neural network operator

Linear convolution

A convolutional layer is an operator that takes an input a 
tensor  a filter bank  and a bias vector  and produces as 
output a new tensor .

Dimensions:
The batch size N is the same for input and output.
Input and filters have the same number of channels .
The number of output channels  is the same as the 
number of filters in the bank.
The output dimension  is given by 
 

Recall that , , and  as 
we are using the multi-index shorthand.

x f b
y

C
K

O

O = I − F + 1

O = (O1, O2) F = (F1, F2) I = (I1, I2)

28

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*

N × C × I K × C × F N × K × O

input output



Padding and downsampling

Linear convolution

Padding extends a tensor  with a border  filled with 
zeros.

Downsampling retain one every  pixels in a tensor, 
where  is called the stride. 
 

Padding and downsampling can be interpreted as additional layers before and after standard convolution:

x P

S
S

29

P

padding  
P

f, b

*
down-

sampling 
S

x
y

P, S

f, b

*
x y

The non-linearity in deep networks

Activation functions

Activation functions are scalar non-linear functions S(z) 
that are applied element-wise to an input tensor x to 
generate an output tensor y (with the same dimensions).

30

S

yncu = S(xncu)

x y

N × C × I N × C × I

input output

-1.1

-0.325

0.45

1.225

2

-3 -1.5 0 1.5 3

Sigmoid Tanh ReLU
Leaky ReLU Soft ReLU

z = max{0, z}, rectified linear unit (ReLU),
z = log(1 + ez), soft ReLU,
z = ϵz + (1 − ϵ) max{0, z}, leaky ReLU,
z = (1 + e−z)−1, sigmoid,
z = tanh(z), hyperbolic tangent,

Parameter-less non-linear filters

Pooling 31

The max pooling operator is similar to linear filter, 
operating transitively on  sized windows.

The operator extracts the maximum response for 
each channel and window

Pooling can use other operators, for example 
average

F = (F1, F2)

yncv = max
0≤u<F

xnc,v+u

yncv =
1

F1 ⋅ F2 ∑
0≤u<F

xnc,v+u

x y

max

max

CNN layers summary 32

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*
N × C × I

K × C × F

N × K × O

input output

ReLUx y yncu = max{0, xncu}

max
F

x y yncv = max
0≤u<F

xnc,v+u

filters O = I − F + 1

O = I − F + 1

K = C, O = I

expression dimensions



A long sequence of layers

Deep convolutional neural networks

A deep convolutional neural 
network is a chain of several 
layers.

The typical pattern is to alternate 
linear convolution and non-linear 
activation, usually ReLU.

The other typical pattern is to 
gradually reduce the spatial 
resolution (via downsampling) and 
increase the number of feature 
channels.

Max-pooling is often used, in 
combination with downsampling, to 
reduce resolution further.
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x

Σ

Σ

y

S

S

Σ S …

Σ

Σ

S

S

Σ S …

downsampling

AlexNet: a CNN for image classification

AlexNet contains 8 blocks, each formed by:
A linear convolution operator (with padding/downsampling)
A ReLU operator (except for f8)
An optional max pooling operator (with padding/downsamplin

34

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

P, S

fi, bi

xi−1 y* ReLU max
F,P,S xi

3 ⨉ 244 ⨉ 244

F filter size 11 5 3 3 3 6 1 1
K filters number 64 256 384 384 256 4096 4096 1000

F’ pooling size 3 3 - - 3 - - -
S’ pooling stride 2 2 - - 2 - - -

P filter padding 0 2 1 1 1 0 0 0

64
⨉ 27

 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6 
⨉ 6

40
96

 ⨉ 1 
⨉ 1

40
96

 ⨉ 1 
⨉ 1

1000 ⨉ 1 ⨉ 1

S filter stride 4 1 1 1 1 1 1 1

P’ pooling padding 1 0 - - 0 - - -

The output is a 1000 ⨉ 1 ⨉ 1 tensor.

Each entry represents the score for 
the hypothesis that the image contains 
one out of a 1000 possible classes 
(defined in ImageNet).

Class scores are converted into 
probabilities by using the softmax 
layer (multi-class generalization of the 
sigmoid)

AlexNet: a CNN for image classification 35

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

3 ⨉ 244 ⨉ 244
64

⨉ 27
 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6 
⨉ 6

40
96

 ⨉ 1 
⨉ 1

40
96

 ⨉ 1 
⨉ 1

1000 ⨉ 1 ⨉ 1

yc =
exc

∑C−1
k=0 exk

class scores

Softmaxx y

class probabilities

36
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Learning a CNN

Given a dataset  the total 
error is obtained by averaging the cross-entropy loss. 
 
 
The goal is to optimize this energy over the model 
parameters .

(x1, y1), (x2, y2), …(xN, yN)

w
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c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

ciclass

image error

E(w) =
1
N

N

∑
i=1

Ei(w), Ei(w) = ℓ(ci, Φ(xi))

w* = argmin
w

E(w)

parameters w

ImageNet benchmark data

Learning a CNN

A CNN classifiers has millions of parameters. 
Hence, learning requires massive amounts 
of data.

ImageNet is a large collection of labelled 
image.

The standard subset (ILSVRC12) contains
1,000 object classes
~1,000 example images for each class
1.2M training images in total

Without ImageNet (or a similar dataset) it 
would have been impossible to develop 
modern deep neural networks for computer 
vision.

38

ImageNet benchmark data

Learning a CNN 39 Stochastic gradient descent

The objective function is an average over N = 1.2M 
data points, and so is the gradient. The cost of a single 
gradient descent update is way too large to be 
practical.

Stochastic gradient
Approximate the gradient by sampling a single data 
point (or a small batch of size N’ << N). Perform the 
gradient update using the approximation.

Momentum
SGD can be accelerated by denoising the gradient 
estimate using a moving average. This average is 
called momentum.

40

E(w) =
1
N

N

∑
i=1

Ei(w) ⇒ ∇E(w) =
1
N

N

∑
i=1

∇Ei(w)

wt+1 = wt − ηt ∇Ei(wt), i ∼ 𝒰({1,2,…, N})
uniform distribution

mt+1 = 0.9 mt + ηt ∇Ei(wt), wt+1 = wt − mt+1



Further details and practical notes

Learning a CNN

Epochs & mini-batches
In practice, the data is visited not randomly, but in 
random order (without repetitions). A full pass is 
called an epoch.

Gradients are estimated by averaging mini-batches 
of 10-1000 examples. This takes advantage of 
parallel hardware such as GPUs.

Annealing schedule
The learning rate   is gradually reduced over time, 
usually by a factor 10 when no progress is observed.

This allows SGD to slow down and more accurately 
land on an optimum as the latter is approached. 

Time required
On a fast GPU, it is possible to process ~1k images 
per second for AlexNet.

An epoch thus lasts for 20 minutes. 40-100 epochs 
are required, requiring 13-33 hours (faster training 
requires tricks such as batch normalisation).

On a CPU, this could be 100 x slower (four months).

Some networks are much slower (10 - 50 x).
ηt

41 The need for gradients

In order to train a neural network we minimize the 
average prediction error

 
In order to do so, we require the gradients of the 
error with respect to all parameters

42

argmin
w1,…,w8

E(w1, …, w8) ∇E = ( dE
dw1

, ⋯,
dE
dw8 )

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

ciclass

image error

parameters w

An efficient algorithm to compute the gradients

Backpropagation 43

ℝx
forward

backward

dE
dw1

dE
dw2

dE
dw3

dE
dw4

dE
dw5

dE
dw6

dE
dw7

dE
dw8

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

ciclass

image

Automatic backpropagation

AutoDiff

Modern machine learning toolboxes provide AutoDiff.

This means that calculations can be performed as 
normal in a programming language.

Underneath, the toolbox builds a compute graph.

Eventually, gradients can be requested.

44

x1

x2

x4

x3

w

sum()

plus()

conv()

x0

ReLU()

import torch 

# Define two random inputs, both requiring grads 
x0 = torch.randn(1,3,20,20, requires_grad=True) 
x1 = torch.randn(1,10,18,18, requires_grad=True) 

# Get a convolutional layer. Implicitly this contains 
# a parameter tensor conv.weight with requires_grad=True 
conv = torch.nn.Conv2d(3,10,3) 

# Intermediate calculations 
x2 = conv(x0) 
x3 = torch.nn.ReLU()(x2) + x1 

# Obtain a scalar output by summing everything 
x4 = x3.sum() 

# Invoke AutoGrad to compute gradients 
x4.backward() 

# Print gradient shapes (just to check) 
print(x0.grad.shape) 
print(x1.grad.shape) 
print(conv.weight.grad.shape) 

dx4

dx3

dx0

dx1

dw

dx2

implicit!
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Evaluating deep networks

General approach
Evaluation is not dissimilar to any other machine 
learning method, such as SVMs or the perceptron.

Evaluation must always be done on a held-out 
validation or test set. This is because we need to 
test generalization, not just model fitting.

 
 
Most benchmarks provide validation data for this 
purpose. 
 
Evaluation can use the same loss used for training. 
However, it is not uncommon to evaluate with respect 
to other, more meaningful losses err as well. 

Top-k error
For classification problems, there are two popular 
losses.

Classification error: the percentage of incorrectly 
classified image in the validation set.

Top-k error: the percentage of images whose ground 
truth class is not contained in the top-k more likely 
classes according to the model.

The top-k error requires the network to estimate 
confidences. Top-1 is the same as the classification 
error.

46

E(Φ) =
1

|𝒟validation | ∑
(x,c)∈𝒟validation

err(Φ(x), c)

AIMS Big Data Course 
Introduction to deep learning
Part 2: Backpropagation and automatic differentiation

The need for gradients

In order to train a neural network we minimise the 
average prediction error

In order to do so, we require the gradients of the 
error with respect to all parameters

argmin
w1,…,w8

E(w1, …, w8)

48

∇E = ( dE
dw1

, ⋯,
dE
dw8 )

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class ci

image xi error

parameters w



An efficient algorithm to compute the gradients

Backpropagation 49

ℝx
forward

backward

dE
dw1

dE
dw2

dE
dw3

dE
dw4

dE
dw5

dE
dw6

dE
dw7

dE
dw8

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class ci

image xi

Chain rule: scalar version 50

f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

Chain rule (scalar version)

A composition of  functions

The derivative is obtained by using the chain rule

n

xn = ( fn ∘ fn−1 ∘ ⋯ ∘ f2 ∘ f1) (x0)

dxn

dx0
=

dfn
dxn−1

×
dfn−1

dxn−2
× ⋯ × df2

dx1
× df1

dx0

51

f1f2fn−1fn
xn x1

⋯
x0xn−1

The  operator rearranges the elements of a tensor 
as a column vector, unrolling the tensor dimensions.

The order of unrolling is not essential, but a consistent 
convention must be used. PyTorch uses the row major 
convention:

 
 
 
 
 
 
 
By reshaping tensors in this manner, 
a tensor layer y = f(x) can be thought of as  
a vector layer vec y = f(vec x).

vec

Reshaping tensors into vectors

The  operatorvec 52

tensors

f

vec f

vectors

vec
vec [y00 y01

y10 y11] =

y00
y01
y10
y11

vec y vec x

y x



Derivative of tensor-valued functions

We use the  operator to reduce a tensor 
derivative to a Jacobian matrix:

1.  converts the tensor function  to 
a vector function .

2. The derivative of a vector function is its 
Jacobian matrix.

3. The Jacobian matrix contains the derivative of 
each element of the output vector  with 
respect to each element of the input vector 

.

vec

vec y = f(x)
vec y = (vec f )(vec x)

vec y

vec x

53

vec f

Jacobian  
matrix

d vec f
d vec x

vectorised  
tensor 

function
vec xvec y

vec x⊤

vec y

Using  and matrix notationvec

Chain rule (tensor version) 54

f1f2fn−1fn
xn x1

⋯
x0xn−1

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

d vec xn

d vec x0

The (unbearable) size of tensor derivatives 55

32 ⨉ 32 ⨉ 512

32 ⨉ 32 ⨉ 512

275 B elements

1 TB of memory 
required !!

The size of these Jacobian matrices is huge. Example:

vec f

d vec f
d vec x

vec xvec y

vec y

vec x⊤ x

y

Unless the output is a scalar 56

f

Now the Jacobian reduces to a gradient and has the same size as . Example:x

1 ⨉ 1 ⨉ 1

32 ⨉ 32 ⨉ 512

Just 2MB of 
memory

524K elements

Scalar
This is always the case  

if the last layer 
is the loss function

d vec f
d vec x

vec x

vec x⊤

y

x

y



Assume that  is a scalarxn

Backpropagation 57

f1f1fn−1fn ⋯

too largesmal

compute this first !

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

pn−1

xn x1 x0xn−1

× × × ×
⏟

Assume that  is a scalarxn

Backpropagation 58

too largesmall

pn−2

d vec( fn ∘ fn−1)
d vec xn−2

⋯
d vec f1
d vec x0

d vec f2
d vec x1

× × ×

f1f1fn−1fn ⋯
xn x1 x0xn−1

Assume that  is a scalarxn

Backpropagation 59

too largesmall

pn−2

d vec f1
d vec x0

d vec fn ∘ ⋯ ∘ f2
d vec x1

f1f1fn−1fn ⋯
xn x1 x0xn−1

×

Assume that  is a scalarxn

Backpropagation 60

small

d vec fn ∘ ⋯ ∘ f1
d vec x0

p0

f1f1fn−1fn ⋯
xn x1 x0xn−1



Vector-Jacobian product fBP

The key step  is the calculation of the  
vector-Jacobian product

 
 
The result  is a vector that has the same size 
as , so not too large.

The Jacobian matrix is still too large to explicitly 
compute.

The key idea is to use layer-specific 
optimisation to compute  without computing 
the Jacobian matrix explicitly.

p′ = fBP(p; x) = p ⋅
d vec f
d vec x

p′ 

x

fBP

61

fg
z y

p

d vec g
d vec y

d vec f
d vec x

x
rest of network

= p′ 

p′ = p ⋅
d vec f
d vec x

fBP
p

x

×

Sigmoid layer

An example of fBP

Assume that  is a vector (otherwise use ).

Let  be the sigmoid activation layer:

 

 
The Jacobian is then given by:

 

Most derivatives are equal to zero:

The Jacobian is the diagonal matrix

is then given by

 
 

x vec

y = f(x)

f(x) =

σ(x1)
σ(x2)

⋮
σ(xC)

, σ(x) =
ex

ex + e−x
.

df
dx

=

dσ(x1)
dx1

dσ(x1)
dx2

… dσ(x1)
dxC

dσ(x2)
dx1

dσ(x2)
dx2

… dσ(x2)
dxC

⋮ ⋮ ⋱ ⋮
dσ(xC)

dx1

dσ(xC)
dx2

…
dσ(xC)

dxC

.

dσ(xc)
dxk

= {
·σ(xc), c = k,
0, c ≠ k .

, ·σ(x) =
dσ
dx

(x) .

df
dx

=

·σ(x1) 0 … 0
0 ·σ(x2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … ·σ(xC)

.

fBP

fBP(p; x) = p ⋅
df
dx

= [p1
·σ(x1) p2

·σ(x2) ⋯ pC
·σ(xC)] .

62

 as a reversed layerfBP

The function  is a forward layer .

The function defines a backward layer operating in 
the reverse direction .

This generates a new mirror block diagram; the forward 
diagram feeds into the backward diagram via .

f y = f(x)

fBP

p′ = fBP(p; x)

x

63

fBP

f

forward

backward

x

x

p

y = f(x)

p′ = p ⋅
d vec f
d vec x

 computes gradientsfBP

So what are these vectors  anyways?

Each  is the gradient of the network output  with 
respect to the corresponding variable :

Thus  computes a gradient out of another gradient:

 

p

p z
x

p′ =
dz
dx

or even just p′ = dx

fBP

p =
dz
dy

⇒ p′ = fBP(p; x) =
dz
dx

64

fg
z y x

rest of the network

fBPgBP

dz
dy

dz
dz

= 1 dz
dx

p p′ 



Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a 
mechanism to keep track of the 
calculations in a program.

It can be used to automatically 
deduce which computations are 
required to compute the 
gradients.

These computations can then be 
added to the graph and the 
process repeated to obtain 
higher-order derivatives.

65

f1f2fn−1fn
xn x1

⋯
x0xn−1

fBP
1fBP

2fBP
n−1fBP

n

dxn dx1
⋯

dx0dxn−1

Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a 
mechanism to keep track of the 
calculations in a program.

It can be used to automatically 
deduce which computations are 
required to compute the 
gradients.

These computations can then be 
added to the graph and the 
process repeated to obtain 
higher-order derivatives.

The graph is more commonly 
shown the other way around, with 
the forward direction left to right.

66

f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

fBP
1 fBP

2 fBP
n−1 fBP

n

dxndx1
⋯

dx0 dxn−1

forward

backward

Conv, ReLU, MP and their transposed blocks

Backpropagation network 67

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯

Usually much less information is needed

Sufficient statistics and bottlenecks 68

on/off  
mask

nothing! pooling  
switches

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯



A PyTorch example

Automatic differentiation (AutoDiff)

Modern machine learning toolboxes provide AutoDiff.

This means that calculations can be performed as 
normal in a programming language.

Underneath, the toolbox builds a compute graph.

Eventually, gradients can be requested.

69

x1

x2

x4

x3

w

sum()
plus()

conv()

x0

ReLU()

import torch 

# Define two random inputs, both requiring grads 
x0 = torch.randn(1,3,20,20, requires_grad=True) 
x1 = torch.randn(1,10,18,18, requires_grad=True) 

# Get a convolutional layer. It contains 
# a parameter tensor conv.weight with requires_grad=True 
conv = torch.nn.Conv2d(3,10,3) 

# Intermediate calculations 
x2 = conv(x0) 
x3 = torch.nn.ReLU()(x2) + x1 
x4 = x3.sum() # Scalar! 

# Invoke AutoGrad to compute the gradients 
x4.backward() 

# Print the gradient shapes 
print(x0.grad.shape) 
print(x1.grad.shape) 
print(conv.weight.grad.shape) 

dx4

dx3

dx0

dx1

dw

dx2

implicit!

AIMS Big Data Course 
Introduction to deep learning
Part 3: Applications

Label individual pixels

Semantic image segmentation 71

sofa

personcat

Detection, verification, recognition, emotion, 3D fitting

Face analysis

E.g. VGG-Face

72

same different



Detection, word recognition, character recognition

Text spotting

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/

73

CREAM

Extract individual object instances

Object detection 74

boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

Evolution

Neural network architectures 75

AlexNet (2012)

5 convolutional layers

3 fully-connected layers

Evolution

Neural network architectures 76

16 conv layers

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014)



Evolution

Neural network architectures 77

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 78

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 79

AlexNet (2012)

VGG-M (2013)

VGG-VD-16 (2014)

GoogLeNet (2014)

ResNet 152 (2015)

ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton. 
ImageNet classification with deep convolutional 

neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. 
Reed, D. Anguelov, D. Erhan, V. Vanhoucke, 

and A. Rabinovich. Going deeper with 
convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep 
convolutional networks for large-scale image 

recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep 
residual learning for image recognition. In Proc. 

CVPR, 2016.

3 ⨉ more accurate in 3 years

Accuracy 80
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5 ⨉ slower

Speed 81

sp
ee

d 
(im

ag
es

/s
 o

n 
Ti

ta
n 

X)

0

100

200

300

400

500

600

700

800

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

Sl
ow

er

0.0

0.6

1.3

1.9

2.5

3.1

3.8

4.4

5.0

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

Num. of parameters is about the same

Model size

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture
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