
AIMS Big Data Course  
Introduction to deep learning
 
Dr Andrea Vedaldi  
Dr Andrew Zisserman
 
For lecture notes and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Overview

AIMS Big Data

Dr Andrew Zisserman (2 lectures)
Lecture 1: Discriminative Learning 1 [AZ]
Lecture 2: Discriminative Learning 2 and searching Big Data

Practical 1 (Image Classification)

Dr Andrea Vedaldi (2 lectures)
Lecture 3: Introduction to deep learning
Lecture 4: Universal, unsupervised and understandable representations 
+ Practical 2 (CNNs)

2

Notes and handout

AIMS Deep Learning Materials

Look for materials at 
 
http://www.robots.ox.ac.uk/~vedaldi/teach.html

3

AIMS Big Data Course 
Introduction to deep learning
Part 1: Convolutional neural networks

Learning a classifier

We would like to build a predictor
that can tell if an image contains a
certain object (say a “bicycle”).

We learn this function from example
images that do and do not contain the
object.

In the simplest case, the function is a
linear predictor :

Images are interpreted as (high-
dimensional) vectors.

 dots and a parameter
vector to obtain the score for
the positive hypothesis (bicycle).
The sign of is used as
prediction.

x

F(x)

F(x) x
w

F(x)

5

w

bicycle?

F(x) = ⟨w, x⟩

linear predictor

x

Linear predictors beyond vector inputs

Data representations

Beyond vector data
 A linear predictor applies to vector data.

 However, we want to process images, text, videos, or
sounds that are not necessarily vectors.

 For this, we use a representation function , which
maps the data to vectors.

Non-linear classification
 Representations are used even if the data is already
a vector.

 They result in a non-linear classifier function which can
be significantly more expressive than a linear one.

Φ

x

6

representation

vector

Φ(x) ∈ ℝdx

possibly not a vector

F(x) = ⟨w, Φ(x)⟩

non-linear predictor

F(x) = ⟨w, x⟩

linear predictor

Meaningful representations

A representation should help
the linear classifier to perform
discrimination.

The goal is to map the
semantic similarity between
data points to a corresponding
vector similarity.

A good representation is:
invariant to nuisance
factors
sensitive to semantic
factors

7

embedding space ℝd

near
far

congruous
pair

incongruous
pair

Semantic similarity Vector similarity 
(distance)

representation

x

y

z

Φ(x)

Φ(y)

Φ(z)

8

The perceptron

EvaluationLearning via SGD

Convolutional networks

9

The perceptron

EvaluationLearning via SGD

Convolutional networks

An early neural network by Rosenblatt (1957)

The perceptron

What
The perceptron maps an input vector

 to a probability value .

For example, could be the probability
that is an image of a “bicycle” rather
than not.

How
The perceptron computes this
probability by weighing the vector
components, summing them, and then
applying a non-linear sigmoid
activation function.

x y

y
x

10

∑⋮

b
w1

wD

w2

1
x1

x2

xD

S

f(x; w; b)x

w, b

weighing summation sigmoid  
activation

input

parameters

prediction

y = P(c = 1 |x, w)

y = P(c = 1 |x, w)

Makes the perceptron non-linear

The sigmoid activation function

The activation function in the perceptron is
a sigmoid

The sigmoid converts real scores in the
range into probability values in
the range .

It has several remarkable properties, such
as the following identity for its derivative

S(z) =
1

1 + e−z

z
(−∞, ∞)

(0, 1)

dS
dz

= S(z)(1 − S(z)) = S(z)S(−z)

11

Sigmoid function

S(
z)

0

0.25

0.5

0.75

1

z
-6 -4.5 -3 -1.5 0 1.5 3 4.5 6

Perceptron = linear classifier + sigmoid

The perceptron as a parametric function

The perceptron is a function
parametrised by a weight vector and a bias .

 The function:
1. Maps a vector to a scalar score using the

linear function .
2. Transforms the score into a probability

value by applying the sigmoid function
.

There usually is a constant bias term added to
the score. This can be implemented by extending
the input vector with a constant element equal to
1 and including in .

f(x; w; b)
w b

x
⟨x, w⟩ + b

S(z)

b

b w

12

∑

b1

S y

f(x; w, b) = S (⟨w, x⟩ + b)
=

1
1 + exp(−w1x1 − … − wDxD − b)

bias

⋮

w1

wD

w2

x1

x2

xD

Training the perceptron: least square

Regard the perceptron as a parametric function from
an input space X to an output space Y:

The parameters of the perceptron are learned
empirically by fitting the function to example data

.

This can be done by solving a least-square problem:

 
 
This problem is non-linear due to the activation
function . It needs to be solved by an iterative
method such as gradient descent.

(w, b)

(x1, y1), (x2, y2), …(xN, yN),

S

13

X Y

data labelsperceptron

x

E(w, b) =
1
N

N

∑
i=1

(S(⟨w, x⟩ + b) − yi)2

y = S (⟨w, x⟩ + b)

Better than least square for classification problems

Cross-entropy loss

Given the probabilistic nature of the perceptron
output, usually the fitting criterion is not least square,
but maximum log-likelihood.

The log-likelihood is computed as follows:
The posterior probability of the 0/1 label can
be expressed as 
 

 

The negative log-likelihood of the parameters is 
 

The empirical negative log-likelihood is obtained by
averaging the negative log-likelihood over all the
training data points

Just like the squared objective of least square, this
objective function can be minimised by using an
iterative method such as gradient descent.

yi

P(yi |xi; w) = f(xi; w)yi(1 − f(xi; w))1−yi

−log P(yi |xi; w)
= − yi log f(xi; w) − (1 − yi)log(1 − f(xi; w))

E(w) = −
1
N

N

∑
i=1

yi log f(xi; w) + (1 − yi)log(1 − f(xi; w))

14

Softmax layer

Multi-class perceptron

Multiple perceptrons can be
combined to predict more
than two classes.

Each perceptron computes
the score for a class
hypothesis .

The vector of scores is
mapped to a vector of
probabilities using the
softmax operator, which is
a generalisation of the
sigmoid.

x2
c
c = 1,…, C

x2

x3

15

∑

⋮

b1
1

w1
1D

w1
12

1

x1
1

x1
2

x1
D

1

∑

b1
2

w1
2D

w1
22

1

x2
1

x2
2

soft 
max

w1
21 Shown for 2-classes, 

useful for 3 or more

 = x3
1 P(y = 1 |x, w, b)

 = x3
2 P(y = 2 |x, w, b)

x3
i =

ex2
i

ex2
1 + ex2

2

w1
11

In the binary case, the softmax is the same as the sigmoid

Softmax = sigmoid for 2 classes 16

∑

1

×
1
2

-1

x12

soft 
max

z

x3
1 =

ex3
1

ex3
1 + ex3

2
=

e
z
2

e z
2 + e− z

2
=

1
1 + e−z

= S(⟨w, x⟩ + b)

⋮

b
w1

wD

w2

x1

x2

xD

 = x3
1 P(y = 1 |x, w, b)

 = x3
2 P(y = 2 |x, w, b)

The log-likelihood and objective function for a multi class perceptron are given by:

This loss function is sometimes called cross-entropy. It measures the discrepancy between
the empirical posterior distributions and
the predicted posterior distributions .

−log P(y = c |xi, W) = − log
ew⊤

c x+bc

∑C
q=1 ew⊤

q x+bq
= − w⊤

c x − bc + log
C

∑
q=1

ew⊤
q x+bq

E(W) =
1
N

N

∑
i=1

−w⊤
yi
xi − byi

+ log
C

∑
q=1

ew⊤
q xi+bq

Q(c |xi) = δ(c − yi)
P(c |xi) = P(y = c |xi, W)

Learning from example data

Multi-class perceptron 17

Deep architectures

Multi-layer perceptron (MLP)

Perceptrons can also be chained, resoling in a so-called deep neural network. Depth refers to the fact that the
function decomposes as a long (“deep”) chain of simpler perception-like functions.

18

∑ S

∑ S

∑ S

w112

w122

x3
1

input

neuron 1 (1 of layer 1)

neuron 2 (2 of layer 1)

neuron 3 (1 of layer 2)

⋮

b1
1

w1
1D

w1
12

1

x1
1

x1
2

x1
D

b1
2

w1
2D

w1
22

x2
1

x2
2

w1
21

w1
11

19

The perceptron

EvaluationLearning via SGD

Convolutional networks

Hubel and Wiesel 1959

The discovery of oriented cells in the visual cortex

In 1959, Hubel & Wiesel
conducted seminal experiments
on the visual cortex of mammals
(Nobel Prize in Physiology and
Medicine in 1981).

They discovered the existence of
neurons that respond to specific
orientations and locations in the
retina.

These neurons form a local and
(statistically) translation invariant
image operator.

20

oriented 
filter

21 Tensors

Variables in CNNs are usually tensors, i.e. multi-
dimensional array.

Conventionally, the dimensions are  
 where

 is the batch size, i.e. the number of data
samples represented by the tensor.

 is the number of channels.
 are the spatial dimensions.

The number of spatial dimensions can vary. E.g.:
 is used to represent 2D data such as

images.
 is used to represent 3D data such as

volumes.

In general, it is possible to assign any meaning to the
dimensions (e.g. time), as required by the application.

N × C × U1 × … × UD
N

C
U1 × … × UD

D
D = 2

D = 3

22

height  
(or)

H
U1

width  
(or)

W
U2

channels C

samples N

Example: images as tensors

 A color image can be interpreted as a tensor with (color)
channels, one for each of the R, G, and B color components.

 More in general, any tensor can be interpreted as a
 field of C-dimensional feature vectors.

 The meaning of the feature channels is often not obvious.

C = 3

C × H × W
H × W

23

channels
C = 3

height  
(or)

H
U1

width  
(or)

W
U2

Tensor indexing

Tensor elements are identified via indexes, one for
each dimension:

 is the sample index in the batch
 is the feature channel index
 is the spatial index

The spatial index u is in fact a multi-index, a shorthand
notation for u = (u1, …, uD)

Indexes are 0-based:

Generally, whenever you see a spatial multi-index, just
pretend there is only one spatial dimension (). The
extension to is almost always trivial.

xncu

n
c
u

0 ≤ n < N
0 ≤ c < C
0 ≤ u < U = (U1, …, UD)

D = 1
D > 1

24

u1

u2

c

n

xncu

A simple filtering operation

Linear convolution

A linear filter computes the weighted summation
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input
and the filter parameters.
Locality: the operator looks at a small window
of data.
Translation invariance: all windows are
processed using the same filter weights.

f
x

25

∑

x y

f

Multiple input channels

Linear convolution 26

∑

f

A linear filter computes the weighted summation
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input
and the filter parameters.
Locality: the operator looks at a small window
of data.
Translation invariance: all windows are
processed using the same filter weights.

The filter has one channel for each input tensor
channel.

f
x

x y

Multiple output channels and filter banks

Linear convolution 27

∑

A linear filter computes the weighted summation
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input
and the filter parameters.
Locality: the operator looks at a small window
of data.
Translation invariance: all windows are
processed using the same filter weights.

The filter has one channel for each input tensor
channel.

A bank of filters is used to generated multiple
output channels, one per filter.

f
x

∑

f2

x y

f1

As a neural network operator

Linear convolution

A convolutional layer is an operator that takes an input a
tensor a filter bank and a bias vector and produces as
output a new tensor .

Dimensions:
The batch size N is the same for input and output.
Input and filters have the same number of channels .
The number of output channels is the same as the
number of filters in the bank.
The output dimension is given by 
 

Recall that , , and as
we are using the multi-index shorthand.

x f b
y

C
K

O

O = I − F + 1

O = (O1, O2) F = (F1, F2) I = (I1, I2)

28

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*

N × C × I K × C × F N × K × O

input output

Padding and downsampling

Linear convolution

Padding extends a tensor with a border filled with
zeros.

Downsampling retain one every pixels in a tensor,
where is called the stride. 
 

Padding and downsampling can be interpreted as additional layers before and after standard convolution:

x P

S
S

29

P

padding  
P

f, b

*
down-

sampling
S

x
y

P, S

f, b

*
x y

The non-linearity in deep networks

Activation functions

Activation functions are scalar non-linear functions S(z)
that are applied element-wise to an input tensor x to
generate an output tensor y (with the same dimensions).

30

S

yncu = S(xncu)

x y

N × C × I N × C × I

input output

-1.1

-0.325

0.45

1.225

2

-3 -1.5 0 1.5 3

Sigmoid Tanh ReLU
Leaky ReLU Soft ReLU

z = max{0, z}, rectified linear unit (ReLU),
z = log(1 + ez), soft ReLU,
z = ϵz + (1 − ϵ) max{0, z}, leaky ReLU,
z = (1 + e−z)−1, sigmoid,
z = tanh(z), hyperbolic tangent,

Parameter-less non-linear filters

Pooling 31

The max pooling operator is similar to linear filter,
operating transitively on sized windows.

The operator extracts the maximum response for
each channel and window

Pooling can use other operators, for example
average

F = (F1, F2)

yncv = max
0≤u<F

xnc,v+u

yncv =
1

F1 ⋅ F2 ∑
0≤u<F

xnc,v+u

x y

max

max

CNN layers summary 32

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*
N × C × I

K × C × F

N × K × O

input output

ReLUx y yncu = max{0, xncu}

max
F

x y yncv = max
0≤u<F

xnc,v+u

filters O = I − F + 1

O = I − F + 1

K = C, O = I

expression dimensions

A long sequence of layers

Deep convolutional neural networks

A deep convolutional neural
network is a chain of several
layers.

The typical pattern is to alternate
linear convolution and non-linear
activation, usually ReLU.

The other typical pattern is to
gradually reduce the spatial
resolution (via downsampling) and
increase the number of feature
channels.

Max-pooling is often used, in
combination with downsampling, to
reduce resolution further.

33

x

Σ

Σ

y

S

S

Σ S …

Σ

Σ

S

S

Σ S …

downsampling

AlexNet: a CNN for image classification

AlexNet contains 8 blocks, each formed by:
A linear convolution operator (with padding/downsampling)
A ReLU operator (except for f8)
An optional max pooling operator (with padding/downsamplin

34

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

P, S

fi, bi

xi−1 y* ReLU max
F,P,S xi

3 ⨉ 244 ⨉ 244

F filter size 11 5 3 3 3 6 1 1
K filters number 64 256 384 384 256 4096 4096 1000

F’ pooling size 3 3 - - 3 - - -
S’ pooling stride 2 2 - - 2 - - -

P filter padding 0 2 1 1 1 0 0 0

64
⨉ 27

 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6
⨉ 6

40
96

 ⨉ 1
⨉ 1

40
96

 ⨉ 1
⨉ 1

1000 ⨉ 1 ⨉ 1

S filter stride 4 1 1 1 1 1 1 1

P’ pooling padding 1 0 - - 0 - - -

The output is a 1000 ⨉ 1 ⨉ 1 tensor.

Each entry represents the score for
the hypothesis that the image contains
one out of a 1000 possible classes
(defined in ImageNet).

Class scores are converted into
probabilities by using the softmax
layer (multi-class generalization of the
sigmoid)

AlexNet: a CNN for image classification 35

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

3 ⨉ 244 ⨉ 244
64

⨉ 27
 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6
⨉ 6

40
96

 ⨉ 1
⨉ 1

40
96

 ⨉ 1
⨉ 1

1000 ⨉ 1 ⨉ 1

yc =
exc

∑C−1
k=0 exk

class scores

Softmaxx y

class probabilities

36

The perceptron

EvaluationLearning via SGD

Convolutional networks

Learning a CNN

Given a dataset the total
error is obtained by averaging the cross-entropy loss. 
 
 
The goal is to optimize this energy over the model
parameters .

(x1, y1), (x2, y2), …(xN, yN)

w

37

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

ciclass

image error

E(w) =
1
N

N

∑
i=1

Ei(w), Ei(w) = ℓ(ci, Φ(xi))

w* = argmin
w

E(w)

parameters w

ImageNet benchmark data

Learning a CNN

A CNN classifiers has millions of parameters.
Hence, learning requires massive amounts
of data.

ImageNet is a large collection of labelled
image.

The standard subset (ILSVRC12) contains
1,000 object classes
~1,000 example images for each class
1.2M training images in total

Without ImageNet (or a similar dataset) it
would have been impossible to develop
modern deep neural networks for computer
vision.

38

ImageNet benchmark data

Learning a CNN 39 Stochastic gradient descent

The objective function is an average over N = 1.2M
data points, and so is the gradient. The cost of a single
gradient descent update is way too large to be
practical.

Stochastic gradient
Approximate the gradient by sampling a single data
point (or a small batch of size N’ << N). Perform the
gradient update using the approximation.

Momentum
SGD can be accelerated by denoising the gradient
estimate using a moving average. This average is
called momentum.

40

E(w) =
1
N

N

∑
i=1

Ei(w) ⇒ ∇E(w) =
1
N

N

∑
i=1

∇Ei(w)

wt+1 = wt − ηt ∇Ei(wt), i ∼ 𝒰({1,2,…, N})
uniform distribution

mt+1 = 0.9 mt + ηt ∇Ei(wt), wt+1 = wt − mt+1

Further details and practical notes

Learning a CNN

Epochs & mini-batches
In practice, the data is visited not randomly, but in
random order (without repetitions). A full pass is
called an epoch.

Gradients are estimated by averaging mini-batches
of 10-1000 examples. This takes advantage of
parallel hardware such as GPUs.

Annealing schedule
The learning rate is gradually reduced over time,
usually by a factor 10 when no progress is observed.

This allows SGD to slow down and more accurately
land on an optimum as the latter is approached. 

Time required
On a fast GPU, it is possible to process ~1k images
per second for AlexNet.

An epoch thus lasts for 20 minutes. 40-100 epochs
are required, requiring 13-33 hours (faster training
requires tricks such as batch normalisation).

On a CPU, this could be 100 x slower (four months).

Some networks are much slower (10 - 50 x).
ηt

41 The need for gradients

In order to train a neural network we minimize the
average prediction error

 
In order to do so, we require the gradients of the
error with respect to all parameters

42

argmin
w1,…,w8

E(w1, …, w8) ∇E = (dE
dw1

, ⋯,
dE
dw8)

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

ciclass

image error

parameters w

An efficient algorithm to compute the gradients

Backpropagation 43

ℝx
forward

backward

dE
dw1

dE
dw2

dE
dw3

dE
dw4

dE
dw5

dE
dw6

dE
dw7

dE
dw8

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

ciclass

image

Automatic backpropagation

AutoDiff

Modern machine learning toolboxes provide AutoDiff.

This means that calculations can be performed as
normal in a programming language.

Underneath, the toolbox builds a compute graph.

Eventually, gradients can be requested.

44

x1

x2

x4

x3

w

sum()

plus()

conv()

x0

ReLU()

import torch

Define two random inputs, both requiring grads
x0 = torch.randn(1,3,20,20, requires_grad=True)
x1 = torch.randn(1,10,18,18, requires_grad=True)

Get a convolutional layer. Implicitly this contains
a parameter tensor conv.weight with requires_grad=True
conv = torch.nn.Conv2d(3,10,3)

Intermediate calculations
x2 = conv(x0)
x3 = torch.nn.ReLU()(x2) + x1

Obtain a scalar output by summing everything
x4 = x3.sum()

Invoke AutoGrad to compute gradients
x4.backward()

Print gradient shapes (just to check)
print(x0.grad.shape)
print(x1.grad.shape)
print(conv.weight.grad.shape)

dx4

dx3

dx0

dx1

dw

dx2

implicit!

45

The perceptron

EvaluationLearning via SGD

Convolutional networks

Evaluating deep networks

General approach
Evaluation is not dissimilar to any other machine
learning method, such as SVMs or the perceptron.

Evaluation must always be done on a held-out
validation or test set. This is because we need to
test generalization, not just model fitting.

 
 
Most benchmarks provide validation data for this
purpose. 
 
Evaluation can use the same loss used for training.
However, it is not uncommon to evaluate with respect
to other, more meaningful losses err as well. 

Top-k error
For classification problems, there are two popular
losses.

Classification error: the percentage of incorrectly
classified image in the validation set.

Top-k error: the percentage of images whose ground
truth class is not contained in the top-k more likely
classes according to the model.

The top-k error requires the network to estimate
confidences. Top-1 is the same as the classification
error.

46

E(Φ) =
1

|𝒟validation | ∑
(x,c)∈𝒟validation

err(Φ(x), c)

AIMS Big Data Course 
Introduction to deep learning
Part 2: Backpropagation and automatic differentiation

The need for gradients

In order to train a neural network we minimise the
average prediction error

In order to do so, we require the gradients of the
error with respect to all parameters

argmin
w1,…,w8

E(w1, …, w8)

48

∇E = (dE
dw1

, ⋯,
dE
dw8)

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class ci

image xi error

parameters w

An efficient algorithm to compute the gradients

Backpropagation 49

ℝx
forward

backward

dE
dw1

dE
dw2

dE
dw3

dE
dw4

dE
dw5

dE
dw6

dE
dw7

dE
dw8

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class ci

image xi

Chain rule: scalar version 50

f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

Chain rule (scalar version)

A composition of functions

The derivative is obtained by using the chain rule

n

xn = (fn ∘ fn−1 ∘ ⋯ ∘ f2 ∘ f1) (x0)

dxn

dx0
=

dfn
dxn−1

×
dfn−1

dxn−2
× ⋯ × df2

dx1
× df1

dx0

51

f1f2fn−1fn
xn x1

⋯
x0xn−1

The operator rearranges the elements of a tensor
as a column vector, unrolling the tensor dimensions.

The order of unrolling is not essential, but a consistent
convention must be used. PyTorch uses the row major
convention:

 
 
 
 
 
 
 
By reshaping tensors in this manner, 
a tensor layer y = f(x) can be thought of as  
a vector layer vec y = f(vec x).

vec

Reshaping tensors into vectors

The operatorvec 52

tensors

f

vec f

vectors

vec
vec [y00 y01

y10 y11] =

y00
y01
y10
y11

vec y vec x

y x

Derivative of tensor-valued functions

We use the operator to reduce a tensor
derivative to a Jacobian matrix:

1. converts the tensor function to
a vector function .

2. The derivative of a vector function is its
Jacobian matrix.

3. The Jacobian matrix contains the derivative of
each element of the output vector with
respect to each element of the input vector

.

vec

vec y = f(x)
vec y = (vec f)(vec x)

vec y

vec x

53

vec f

Jacobian  
matrix

d vec f
d vec x

vectorised  
tensor 

function
vec xvec y

vec x⊤

vec y

Using and matrix notationvec

Chain rule (tensor version) 54

f1f2fn−1fn
xn x1

⋯
x0xn−1

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

d vec xn

d vec x0

The (unbearable) size of tensor derivatives 55

32 ⨉ 32 ⨉ 512

32 ⨉ 32 ⨉ 512

275 B elements

1 TB of memory 
required !!

The size of these Jacobian matrices is huge. Example:

vec f

d vec f
d vec x

vec xvec y

vec y

vec x⊤ x

y

Unless the output is a scalar 56

f

Now the Jacobian reduces to a gradient and has the same size as . Example:x

1 ⨉ 1 ⨉ 1

32 ⨉ 32 ⨉ 512

Just 2MB of
memory

524K elements

Scalar
This is always the case  

if the last layer 
is the loss function

d vec f
d vec x

vec x

vec x⊤

y

x

y

Assume that is a scalarxn

Backpropagation 57

f1f1fn−1fn ⋯

too largesmal

compute this first !

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

pn−1

xn x1 x0xn−1

× × × ×
⏟

Assume that is a scalarxn

Backpropagation 58

too largesmall

pn−2

d vec(fn ∘ fn−1)
d vec xn−2

⋯
d vec f1
d vec x0

d vec f2
d vec x1

× × ×

f1f1fn−1fn ⋯
xn x1 x0xn−1

Assume that is a scalarxn

Backpropagation 59

too largesmall

pn−2

d vec f1
d vec x0

d vec fn ∘ ⋯ ∘ f2
d vec x1

f1f1fn−1fn ⋯
xn x1 x0xn−1

×

Assume that is a scalarxn

Backpropagation 60

small

d vec fn ∘ ⋯ ∘ f1
d vec x0

p0

f1f1fn−1fn ⋯
xn x1 x0xn−1

Vector-Jacobian product fBP

The key step is the calculation of the  
vector-Jacobian product

 
 
The result is a vector that has the same size
as , so not too large.

The Jacobian matrix is still too large to explicitly
compute.

The key idea is to use layer-specific
optimisation to compute without computing
the Jacobian matrix explicitly.

p′ = fBP(p; x) = p ⋅
d vec f
d vec x

p′

x

fBP

61

fg
z y

p

d vec g
d vec y

d vec f
d vec x

x
rest of network

= p′

p′ = p ⋅
d vec f
d vec x

fBP
p

x

×

Sigmoid layer

An example of fBP

Assume that is a vector (otherwise use).

Let be the sigmoid activation layer:

 

 
The Jacobian is then given by:

 

Most derivatives are equal to zero:

The Jacobian is the diagonal matrix

is then given by

 
 

x vec

y = f(x)

f(x) =

σ(x1)
σ(x2)

⋮
σ(xC)

, σ(x) =
ex

ex + e−x
.

df
dx

=

dσ(x1)
dx1

dσ(x1)
dx2

… dσ(x1)
dxC

dσ(x2)
dx1

dσ(x2)
dx2

… dσ(x2)
dxC

⋮ ⋮ ⋱ ⋮
dσ(xC)

dx1

dσ(xC)
dx2

…
dσ(xC)

dxC

.

dσ(xc)
dxk

= {
·σ(xc), c = k,
0, c ≠ k .

, ·σ(x) =
dσ
dx

(x) .

df
dx

=

·σ(x1) 0 … 0
0 ·σ(x2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … ·σ(xC)

.

fBP

fBP(p; x) = p ⋅
df
dx

= [p1
·σ(x1) p2

·σ(x2) ⋯ pC
·σ(xC)] .

62

 as a reversed layerfBP

The function is a forward layer .

The function defines a backward layer operating in
the reverse direction .

This generates a new mirror block diagram; the forward
diagram feeds into the backward diagram via .

f y = f(x)

fBP

p′ = fBP(p; x)

x

63

fBP

f

forward

backward

x

x

p

y = f(x)

p′ = p ⋅
d vec f
d vec x

 computes gradientsfBP

So what are these vectors anyways?

Each is the gradient of the network output with
respect to the corresponding variable :

Thus computes a gradient out of another gradient:

p

p z
x

p′ =
dz
dx

or even just p′ = dx

fBP

p =
dz
dy

⇒ p′ = fBP(p; x) =
dz
dx

64

fg
z y x

rest of the network

fBPgBP

dz
dy

dz
dz

= 1 dz
dx

p p′

Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a
mechanism to keep track of the
calculations in a program.

It can be used to automatically
deduce which computations are
required to compute the
gradients.

These computations can then be
added to the graph and the
process repeated to obtain
higher-order derivatives.

65

f1f2fn−1fn
xn x1

⋯
x0xn−1

fBP
1fBP

2fBP
n−1fBP

n

dxn dx1
⋯

dx0dxn−1

Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a
mechanism to keep track of the
calculations in a program.

It can be used to automatically
deduce which computations are
required to compute the
gradients.

These computations can then be
added to the graph and the
process repeated to obtain
higher-order derivatives.

The graph is more commonly
shown the other way around, with
the forward direction left to right.

66

f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

fBP
1 fBP

2 fBP
n−1 fBP

n

dxndx1
⋯

dx0 dxn−1

forward

backward

Conv, ReLU, MP and their transposed blocks

Backpropagation network 67

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯

Usually much less information is needed

Sufficient statistics and bottlenecks 68

on/off  
mask

nothing! pooling  
switches

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯

A PyTorch example

Automatic differentiation (AutoDiff)

Modern machine learning toolboxes provide AutoDiff.

This means that calculations can be performed as
normal in a programming language.

Underneath, the toolbox builds a compute graph.

Eventually, gradients can be requested.

69

x1

x2

x4

x3

w

sum()
plus()

conv()

x0

ReLU()

import torch

Define two random inputs, both requiring grads
x0 = torch.randn(1,3,20,20, requires_grad=True)
x1 = torch.randn(1,10,18,18, requires_grad=True)

Get a convolutional layer. It contains
a parameter tensor conv.weight with requires_grad=True
conv = torch.nn.Conv2d(3,10,3)

Intermediate calculations
x2 = conv(x0)
x3 = torch.nn.ReLU()(x2) + x1
x4 = x3.sum() # Scalar!

Invoke AutoGrad to compute the gradients
x4.backward()

Print the gradient shapes
print(x0.grad.shape)
print(x1.grad.shape)
print(conv.weight.grad.shape)

dx4

dx3

dx0

dx1

dw

dx2

implicit!

AIMS Big Data Course 
Introduction to deep learning
Part 3: Applications

Label individual pixels

Semantic image segmentation 71

sofa

personcat

Detection, verification, recognition, emotion, 3D fitting

Face analysis

E.g. VGG-Face

72

same different

Detection, word recognition, character recognition

Text spotting

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/

73

CREAM

Extract individual object instances

Object detection 74

boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

Evolution

Neural network architectures 75

AlexNet (2012)

5 convolutional layers

3 fully-connected layers

Evolution

Neural network architectures 76

16 conv layers

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014)

Evolution

Neural network architectures 77

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 78

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 79

AlexNet (2012)

VGG-M (2013)

VGG-VD-16 (2014)

GoogLeNet (2014)

ResNet 152 (2015)

ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet classification with deep convolutional

neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image

recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. In Proc.

CVPR, 2016.

3 ⨉ more accurate in 3 years

Accuracy 80

To
p

5
er

ro
r

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

M
or

e
ac

cu
ra

te

0.0

0.3

0.7

1.0

1.3

1.6

2.0

2.3

2.6

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

5 ⨉ slower

Speed 81

sp
ee

d
(im

ag
es

/s
 o

n
Ti

ta
n

X)

0

100

200

300

400

500

600

700

800

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

Sl
ow

er

0.0

0.6

1.3

1.9

2.5

3.1

3.8

4.4

5.0

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

Num. of parameters is about the same

Model size

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

82

m
od

el
 s

iz
e

(M
Bs

)

0

63

125

188

250

313

375

438

500

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

La
rg

er

0.0

0.8

1.5

2.3

3.0

3.8

4.5

5.3

6.0

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

